JPH02310016A - Manufacture of optical disk board - Google Patents

Manufacture of optical disk board

Info

Publication number
JPH02310016A
JPH02310016A JP13225289A JP13225289A JPH02310016A JP H02310016 A JPH02310016 A JP H02310016A JP 13225289 A JP13225289 A JP 13225289A JP 13225289 A JP13225289 A JP 13225289A JP H02310016 A JPH02310016 A JP H02310016A
Authority
JP
Japan
Prior art keywords
frequency induction
induction coil
cavity
optical disk
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13225289A
Other languages
Japanese (ja)
Inventor
Yasumasa Shibata
康雅 柴田
Kotaro Kojima
小島 光太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP13225289A priority Critical patent/JPH02310016A/en
Publication of JPH02310016A publication Critical patent/JPH02310016A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs
    • B29C45/2642Heating or cooling means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0811Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7343Heating or cooling of the mould heating or cooling different mould parts at different temperatures

Abstract

PURPOSE:To obtain a low birefringent optical disc board by eliminating inequalty in a temperature distribution on the surface of a cavity at the time of injection of resin, by a method wherein the surface of a cavity is heated by providing a temperature gradient where the surface becomes gradually high toward an inner circumferential part from an outer circumferential part by breaking a mold. CONSTITUTION:A high-frequency induction coil sheet 20 is constituted, for example, of a holding board 21 made of rectangular phenolic resin, a disk 22 made of the phenolic resin provided on one end part of both faces of the holding board 21 and a high-frequency induction coil 23 which is arranged on the disk 22 and in a spiral state and the high-frequency induction coil 23 is connected by a connecting device 25 with the other end part. A groove part 24 in the spiral state where the high-frequency induction coil 23 is arranged is formed in the disks 22 each and a depth of the groove part 24 is made shallow gradually toward an inner circumferential part from an outer circumferential part of the disk 22. When the high-frequency induction coil 23 is arranged along the groove 24, a position of the high-frequency coil 23 becomes high gradually toward the inner circumference from the outer circumference. With this constitution, it becomes that the surface of a cavity 7 is heated so as to negate influence from a heating medium flow path 17 for cooling of a sprue 9.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光ディスク基板の製造方法に関する。。[Detailed description of the invention] [Industrial application field] The present invention relates to a method of manufacturing an optical disc substrate. .

[背景技術] ポリカーボネート(PC)樹脂等のり41セ可塑性樹脂
を使用した光ディスク基板の製造に才9い゛(、射出成
形時の分子鎖の配向による歪み及び温度分布の不均一に
よる熱応力によって、得られた光デイスフ基板の複層+
iiが増大する。複屈折の大きな光ディスク7、(板は
、信号再生時ζこSN比を悪化させるので好ましく 、
:1:い。そごで、この複屈折の低減を図るため、高温
状態での溶融創出と均一な冷却をViっている。
[Background technology] It is difficult to manufacture optical disk substrates using plastic resins such as polycarbonate (PC) resins (due to distortion due to the orientation of molecular chains during injection molding and thermal stress due to uneven temperature distribution, Multilayer of the obtained optical disc substrate +
ii increases. Optical disks 7 with large birefringence (plates are preferable because they deteriorate the SN ratio during signal reproduction).
:1: Yes. In order to reduce this birefringence, we aim to create melting at high temperatures and uniform cooling.

従来、)岩礁射出を高温で行うためには、金型のキャビ
う−イの表面を熱媒体を使用して加熱する方法(特開昭
64−42215 ’i;公報等)、高周波加熱時1イ
ルを使用して加熱する方法等が提案されている。この高
周波誘導コイルを使用した方法にlJ、人別して、金型
内に埋設された高周波誘導コイルに上り加夕1(−する
方法(IRj開昭C; 2−183320号公報等)及
び金型のり(部に配置された高周波誘導コイルにより加
熱する方法(特開昭62−66913号公報、特開昭6
1−7961.4号公報等)がある。
Conventionally, in order to perform reef injection at high temperatures, there is a method of heating the surface of the cavity of the mold using a heat medium (Japanese Patent Application Laid-Open No. 64-42215'i; Publication, etc.), and a method of high-frequency heating 1. A method of heating using an oil has been proposed. There are methods using this high-frequency induction coil, depending on the person, a method of climbing the high-frequency induction coil buried in the mold (IRj Kaisho C; Publication No. 2-183320, etc.) and mold glue. (Heating method using a high-frequency induction coil placed in the
1-7961.4, etc.).

[発明が解決しようとする課題] 1述した金型の外部に配置された高周波誘導コイルを使
用してキャビティの表面を加熱する方法によれば、キャ
ビティ表面の全面が均一な温度となるように加熱してい
る。しかし、通常1、金型にはスプルー冷却用の熱媒体
流路か設けられているため、キャビティ表面の全面が均
一な温度となるように加熱しても、実際にはキャビティ
の内周部が外周部より温度か低(なり、これによってl
I+!度分布の不均一が牛し7て、光ディスク基板に熱
応力による複屈折の発生は避りられなくなる。1[:た
従来、成形時の金型温度は、通常80〜I 30 ’(
としているが、溶融樹脂の流動性を高めて、転′q性を
向トさせる点からは、更に高614での射出成形が好ま
しく、この高温状態を・1−ヤビティ表面の全面につい
て実際に均一・に保つことが望まれている。
[Problems to be Solved by the Invention] According to the method of heating the surface of the cavity using a high-frequency induction coil placed outside the mold as described in 1, it is possible to heat the surface of the cavity so that the entire surface of the cavity has a uniform temperature. It's heating up. However, usually (1) the mold is equipped with a heat medium flow path for cooling the sprue, so even if the entire surface of the cavity is heated to a uniform temperature, the inner circumference of the cavity actually The temperature is lower than that of the outer periphery (this causes l
I+! Due to the non-uniformity of the power distribution, the occurrence of birefringence due to thermal stress on the optical disk substrate becomes unavoidable. Conventionally, the mold temperature during molding is usually 80 to I30' (
However, from the point of view of increasing the fluidity of the molten resin and improving its rolling properties, injection molding at a height of 614 is preferable.・It is desirable to maintain the

本発明は、高周波加熱時6.二おりるキャビケイ表面の
温度分布を不均一4こして、樹脂射出■Aの温度分布を
均一ないしC:1内周部をやや高くすることにより、樹
脂の配向や熱応力の発生を抑え、低複屈折性の光ティス
フ基板が得られる製造方法を(に供することを目的とす
る。
The present invention provides the advantages of 6. during high frequency heating. By making the temperature distribution on the surface of the two cavities uneven and making the temperature distribution of resin injection A uniform or C: 1 slightly higher on the inner periphery, the orientation of the resin and the occurrence of thermal stress are suppressed and the temperature distribution is reduced. The purpose of the present invention is to provide a manufacturing method for obtaining a birefringent optical fiber substrate.

「課題を解決するための手段J 本発明は、片面に所定の成形パターンが形成された・1
−ヤビティ中にン岩礁樹脂を射出充填した後、冷却固化
させる光ディスク基板の製造方法においζ、金型が開い
た状態で前記キャビティを高周波加熱する隙、前記キャ
ビティの表面を、その外周部から内周部に向かって漸次
高くなる温度勾配を設りて加熱することを特徴とする光
ディスク基板の製造方法である。
"Means for solving the problem
- In a method for manufacturing an optical disk substrate in which resin is injected and filled into a cavity and then cooled and solidified, the cavity is heated with high frequency while the mold is open, and the surface of the cavity is heated from the outer periphery to the inside. This method of manufacturing an optical disk substrate is characterized in that heating is performed by providing a temperature gradient that gradually increases toward the periphery.

所定の成形パターンとは、光ディスク基板に記録担体と
なる例えばビット、溝等の凹凸パターンを形成するため
のネガ型パターンである。
The predetermined molding pattern is a negative pattern for forming, for example, a concavo-convex pattern such as bits and grooves that will become a recording carrier on the optical disc substrate.

この光ディスク基板の製造方法において使用する高周波
誘導−1イル板は、高周波誘導コイルの位置が外周から
内周に向かって凸状に漸次高くなるように配置したもの
とすることができる。
The high-frequency induction coil plate used in this method of manufacturing an optical disk substrate can be arranged such that the position of the high-frequency induction coil becomes gradually higher in a convex manner from the outer circumference toward the inner circumference.

また、使用する高周波誘導コイル板は、高周波誘導:I
イルの密度が外周から内周に向がって漸次高(なるよう
に配置したものであってもよい。
In addition, the high frequency induction coil plate used is high frequency induction: I
The arrangement may be such that the density of the fibers gradually increases from the outer periphery to the inner periphery.

更に、この光ディスク基板の製造方法において、前記キ
ャビティ表面の加熱温度は、樹脂のガラス転移温度T 
[以」−とし、例えばポリカーボネートの場合は] 8
0 ’C以上、好ましくは200 ’C以1−とする。
Furthermore, in this optical disc substrate manufacturing method, the heating temperature of the cavity surface is equal to or equal to the glass transition temperature T of the resin.
[or more]-, for example, in the case of polycarbonate] 8
0'C or more, preferably 200'C or more.

加熱温度がガラス転移温度より低い場合には、溶融樹脂
の流動性が低下して、成形パターンの樹脂への転写性が
低下する。
When the heating temperature is lower than the glass transition temperature, the fluidity of the molten resin decreases, and the transferability of the molding pattern to the resin decreases.

使用する成形用樹脂は、光学祠料用として不純物の低い
ポリカーボネート(Mv=12000〜20000)、
ポリメチルメタクリレ−1−8非品性ポリオレフィン等
である。
The molding resin used is polycarbonate with low impurities (Mv = 12,000 to 20,000) for optical polishing.
Polymethyl methacrylate-1-8 non-quality polyolefin and the like.

なお、本発明において、射出成形には、射出圧縮成形の
場合も含む。
In the present invention, injection molding also includes injection compression molding.

[作用] 金型が開いた状態でキャビティを高周波加熱する際、ス
プルー冷却用の熱媒体流路による温度低下の影響があっ
ても、キャビティの前面を、その外周部から内周部に向
かって漸次高くなる温度勾配を設けて加熱することによ
り、樹脂の射出時にその全面が均一化された温度あるい
は内周部がやや、Y′jjい温度性4置どムる。こねに
より、樹脂の配向や熱j11”−1力の発生が抑え・L
れ、低複屈折性の光子イス/)基板か得られイ)。
[Function] When performing high-frequency heating on the cavity with the mold open, even if there is a temperature drop due to the heat medium flow path for cooling the sprue, the front surface of the cavity is heated from the outer periphery toward the inner periphery. By heating the resin with a temperature gradient that gradually increases, the temperature is made uniform over the entire surface during injection of the resin, or the temperature at the inner circumference is slightly higher. Kneading suppresses the orientation of the resin and the generation of thermal force.
As a result, a photon substrate with low birefringence can be obtained.

[実施例1 し1曲を参!t4! L ”(ト発明の−・実施例を説
明する。
[Example 1: See one song! t4! Embodiments of the invention will be described.

第1図に示す1表うに、不実施例において使用する射出
成形用金早は、固定側タイブレーh Iに取り(−1L
J 4.れたステア1/ス泪製固定金型2と、可動側ダ
・イプレー1−3に取り旬りられたステンレス鋼!!i
j l−1J動金Jν14とをイ’j して構成される
。固定金型2の表面は、鏡面2Δとなっている。そして
、スベーリ゛5,6を介してこれらの固定金型2と可動
金型4との突き1)ね・1面に形成されるディスク状の
隙間が、光ディス・′)基板を成形するためのキャビテ
ィ7となる。
As shown in FIG. 1, the injection molding die used in the non-example is attached to the fixed side tie brake
J4. Stainless steel was used for the steerer 1/stainless steel fixed mold 2 and the movable side die play 1-3! ! i
It is constructed by i'j j l-1J moving money Jν14. The surface of the fixed mold 2 is a mirror surface 2Δ. Then, a disc-shaped gap formed between the stationary mold 2 and the movable mold 4 on the surface of the fixed mold 2 and the movable mold 4 through the sliding plates 5 and 6 is used to mold the optical disk. cavity 7.

固定金型2の中央部には、円筒状のスプループツシ−+
、8が埋設され、ごのスプルーブツシュ8の中心線に沿
って溶融樹脂が1・1出されるスプルー9が形成されて
いる。また、この固定金型2内には:トヤヒティ7から
適当な距削をおいて複数の環状熱媒体?A路10が形成
されている。
In the center of the fixed mold 2, there is a cylindrical sprue
. Also, inside this fixed mold 2 are: a plurality of annular heating media placed at an appropriate distance from the Toyahiti 7? A path 10 is formed.

他方の可動金型4の中央部に番、12円筒状のヒンタ一
部拐11が埋設され、このセンタ一部月11の中心線に
沿ってカッi・ビン12が配設されている。可動金型4
の内端境面に番:11、記録(l1体となるビ・ノド、
溝等の凹凸パターンか形成されたNll製ツタ′バー1
3か設けられ、このスタンバ−13は、スタンバ−ボル
ダ−14で固定されている。
A cylindrical hinge piece 11 is embedded in the center of the other movable mold 4, and a cutter bottle 12 is disposed along the center line of the center piece 11. Movable mold 4
Number: 11, recorded on the inner boundary surface (Bi-nod, which becomes l1 body,
Nll made vine bar 1 with uneven patterns such as grooves formed
Three stand bars 13 are provided, and the stand bars 13 are fixed with stand bar boulders 14.

また、この可動金型4内にも、=1−ヤヒティ7から適
当な距離をおいて複数の環状熱媒体流路15か形成され
ている。
Also, within this movable mold 4, a plurality of annular heat medium flow paths 15 are formed at appropriate distances from the =1-Yachti 7.

固定金型2とjiJ動金型金型4突き合71つされた際
、スプルーブツシュ8とセンタ一部刊11とによって形
成される隙間が、スプルー9から−1−ヤヒティ7に溶
融樹脂を摺入するデー1〜部16となる。
When the fixed mold 2 and the jiJ movable mold 4 are butted together, the gap formed by the sprue bush 8 and the center part 11 allows the molten resin to flow from the sprue 9 to the -1-Yachti 7. Days 1 to 16 are to be inserted.

スプルーブツシュ8内にば、スプルー9を囲むように冷
却用の環状熱媒体流路I7が形成され、またセンタ一部
材11内にもカントピン]2を囲むように冷却用の環状
熱媒体流路18が形成されている。
A cooling annular heat medium flow path I7 is formed in the sprue bush 8 so as to surround the sprue 9, and an annular cooling heat medium flow path I7 is formed in the center member 11 so as to surround the canto pin 2. 18 are formed.

第1回及び第2図に示すように、本実施例において使用
する高周波誘導コイル板20ば、長方形状のフェノール
樹脂製支持基板21と、この支持基板2゛1の両面の一
端部に設けられたフェノール樹脂製円板22と、これら
の円板22に配置された渦巻き状の高周波誘導コイル2
3とを有して構成され、他端部で高周波誘導コイル23
が係止具25によって係1トされている。各円板22に
は、高周波誘導コイル23が配設される渦巻き状の溝部
24が形成され、この溝部24は、円板22の外周部か
ら内周部に向かって漸次その深さが浅くなっている。こ
の溝部24に沿って高周波誘導コイル23が配設される
ことにより、高周波誘導コイル23の位置が外周から内
周に向かって漸次高くなるように、即ち中央が突出した
凸状となるように配設された高周波誘導コイル板20が
得られる。なお、この高周波誘導コイル23は、外径6
mm及び内径3祁の514管より成り、内部に冷却水が
流れる。
As shown in Part 1 and FIG. 2, the high frequency induction coil plate 20 used in this embodiment is provided on a rectangular phenol resin support substrate 21 and one end of both sides of this support substrate 2'1. phenolic resin disks 22 and spiral high frequency induction coils 2 arranged on these disks 22.
3, and a high frequency induction coil 23 at the other end.
is locked by a locking tool 25. A spiral groove 24 in which a high-frequency induction coil 23 is disposed is formed in each disk 22, and the depth of the groove 24 gradually becomes shallower from the outer circumference to the inner circumference of the disk 22. ing. By disposing the high-frequency induction coil 23 along this groove 24, the position of the high-frequency induction coil 23 is arranged so that it gradually becomes higher from the outer circumference toward the inner circumference, that is, it has a convex shape with a protruding center. A high frequency induction coil plate 20 is obtained. Note that this high frequency induction coil 23 has an outer diameter of 6
It consists of 514 tubes with an inner diameter of 3 mm and an inner diameter of 3 mm, through which cooling water flows.

この高周波誘導コイル板20を使用して、次のようにし
て光ディスク基板の製造を行う。
Using this high frequency induction coil plate 20, an optical disk substrate is manufactured as follows.

第1図に示すように、固定金型2と可動金型4とが開い
た状態の両金型2.4間に高周波誘導コイル板20を挿
入して10〜15kWの出力で高周波発振させる。通電
時間は、3〜10秒間か適当である。両金型2,4間に
この高周波誘導:】イル板20を配置した際、スタンバ
−13のNiは、固定金型2のステンレス鋼より強磁性
であり、高周波加熱されやすいので、被加熱面の加熱温
度を略等しくするため、円板22とスタンバ−13との
距離り、は、円板22と固定金型鏡面2△との距離L2
より大きく設定する。高周波加熱が終丁した後、高周波
誘導コイル板20を両全型2,4間から取り出す。
As shown in FIG. 1, a high frequency induction coil plate 20 is inserted between the fixed mold 2 and the movable mold 4 in an open state, and high frequency oscillation is caused with an output of 10 to 15 kW. The current application time is suitably 3 to 10 seconds. When this high-frequency induction plate 20 is placed between both molds 2 and 4, the Ni of the stand bar 13 is more ferromagnetic than the stainless steel of the stationary mold 2 and is more easily heated by high-frequency waves, so the surface to be heated is In order to make the heating temperatures approximately equal, the distance between the disc 22 and the stand bar 13 is the distance L2 between the disc 22 and the fixed mold mirror surface 2Δ.
Set larger. After the high-frequency heating is finished, the high-frequency induction coil plate 20 is taken out from between both molds 2 and 4.

次に、固定金型2と可動金型4とを突き合わせ、固定金
型2と可動金型4の熱媒体流路10.15に、100〜
130°Cの加圧水を20〜1001/ va i n
の流量で流しておく。そして、310〜350°Cの溶
融樹脂を射出ノズル19から250〜・350 kg 
/ rホの圧力でスプルー9内に射出し、ゲート部1G
を介してこの溶融樹脂をキャビティ7内に導入する。導
入された溶融樹脂は、固定金型2と可動金型4の熱媒体
流路10.15に流れる加圧水によって10〜20秒間
で冷却固化される。
Next, the fixed mold 2 and the movable mold 4 are butted together, and a heat medium flow path 10.15 of the fixed mold 2 and the movable mold 4 is injected with
130°C pressurized water 20~1001/va in
Let it flow at a flow rate of Then, 250 to 350 kg of molten resin at 310 to 350°C is injected from the injection nozzle 19.
/ Inject into the sprue 9 with pressure of r, and gate part 1G
This molten resin is introduced into the cavity 7 through. The introduced molten resin is cooled and solidified in 10 to 20 seconds by pressurized water flowing into the heat medium channels 10.15 of the fixed mold 2 and the movable mold 4.

一方、スプルーブツシュ8とセンタ一部材11の熱媒体
流路17.18には、20〜90°Cの冷却用媒体が2
0〜70 E /min の流量で流されていることに
より、スプルー9内の溶融樹脂が冷却固化される。
On the other hand, in the heat medium flow paths 17 and 18 of the sprue bush 8 and the center member 11, a cooling medium of 20 to 90°C
By flowing at a flow rate of 0 to 70 E/min, the molten resin in the sprue 9 is cooled and solidified.

光ディスク基板を成形後、可動金型4を開いてキャビテ
ィ7から光ディスク基板を取り出す。
After molding the optical disk substrate, the movable mold 4 is opened and the optical disk substrate is taken out from the cavity 7.

11貫 上記実施例における各条件を次のように具体的に設定し
て光ディスク基板の製造を行った。
11 optical disk substrates were manufactured by setting the conditions in the above examples specifically as follows.

高周波誘導コイル板20を固定金型2と可動金型4との
間に配置した際、円板22とスタンバ−13との距#l
、1は25.’5mm、円板22と固定金型鏡面2Aと
の距離L2は5 mmとした。
When the high frequency induction coil plate 20 is placed between the fixed mold 2 and the movable mold 4, the distance #l between the disk 22 and the stand bar 13
, 1 is 25. The distance L2 between the disk 22 and the fixed mold mirror surface 2A was 5 mm.

高周波加熱の際、高周波誘導コイル23の出力を10k
W、通電時間を5秒とし、射出時におけるキャビティ表
面の温度を、従来よりかなり高温の170 ’Cとした
During high-frequency heating, the output of the high-frequency induction coil 23 is set to 10k.
W, the current application time was set to 5 seconds, and the temperature of the cavity surface during injection was set to 170'C, which is considerably higher than the conventional temperature.

樹脂成形の際、固定金型2と可動金型4の熱媒体流路1
0.15に流される加圧水は、温度を118°C1流量
を80f/min とした。
During resin molding, the heat medium flow path 1 between the fixed mold 2 and the movable mold 4
The pressurized water flowing at 0.15°C had a temperature of 118°C and a flow rate of 80f/min.

射出ノズル19から射出される溶融樹脂は、IAa度を
330°C1樹脂圧力を330kg/(稲とし、キャビ
ティ7内で15秒間で冷却した。
The molten resin injected from the injection nozzle 19 was cooled in the cavity 7 for 15 seconds at an IAa degree of 330° C. and a resin pressure of 330 kg/(rice).

スプルーブツシュ8とセンタ一部材11の熱媒体流路1
7.18に流される冷却用媒体は、温度を70°C1流
量を10fl/min とした。
Heat medium flow path 1 between sprue bush 8 and center member 11
The temperature of the cooling medium flowing in step 7.18 was 70° C., and the flow rate was 10 fl/min.

これらの条件で製造した光ディスク基板について、半径
方向における複屈折ΔN2を測定した。
Birefringence ΔN2 in the radial direction was measured for the optical disc substrate manufactured under these conditions.

ここで、八N z = ((n I+n 2 ) / 
2− n 31で表され、第3図に示すように、nlは
光ディスク基板30のX方向成分の屈折率、n2はX方
向成分の屈折率、n 3ばZ方向成分の屈折率である。
Here, 8N z = ((n I+n 2 ) /
2-n31, as shown in FIG. 3, nl is the refractive index of the X-direction component of the optical disc substrate 30, n2 is the refractive index of the X-direction component, and n3 is the refractive index of the Z-direction component.

この複屈折ΔN2の測定結果を第4図の曲線へに示す。The measurement results of this birefringence ΔN2 are shown in the curves of FIG.

また、高周波誘導コイルの高さ位置が外周部と内周部に
おいて等しくなっている高周波誘導コイル板を使用し、
他の条件は上記実験例と同様にして比較例1に係る光デ
ィスク基板を製造した。この比較例1の光ディスク基板
についても上記実験例と同様にΔN2を測定した。この
結果を第4図の曲線Bに示す。
In addition, we use a high-frequency induction coil plate in which the height position of the high-frequency induction coil is equal on the outer circumference and the inner circumference,
An optical disc substrate according to Comparative Example 1 was manufactured under the same conditions as in the above experimental example. Regarding the optical disc substrate of Comparative Example 1, ΔN2 was also measured in the same manner as in the above experimental example. The results are shown in curve B in FIG.

更に、高周波誘導コイル板を使用しないで、他の条件は
上記実験例と同様にして比較例2に係る光ディスク基板
を製造した。この比較例2の光ディスク基板についても
、上記実験例と同様にΔN2を測定した。この結果を第
4図の曲線Cに示す。
Furthermore, an optical disk substrate according to Comparative Example 2 was manufactured under the same conditions as the above experimental example except that the high-frequency induction coil plate was not used. Regarding the optical disc substrate of Comparative Example 2, ΔN2 was also measured in the same manner as in the above experimental example. This result is shown in curve C in FIG.

これらの測定結果によれば、本実施例により得られた光
ディスク基板は、ΔN2が4.0XIO−4以下であり
、比較例1及び2により得られた光ディスク基板と比べ
て、低複屈折性を有していることがわかる。比較例1に
より得られた光ディスク基板と比べると、高周波誘導コ
イル板を使用しても、高周波誘導コイルの高さ位置が外
周部と内周部において等しくなっている場合には、加熱
されたキャビティ表面の温度分布の不均一が改浮されな
いため、依然として複屈折性が余り良好でないことがわ
かる。特に、全く高周波加熱していない比較例2のΔN
2は、略6.0X10−’であり、本実施例よりかなり
大きな値を示した。
According to these measurement results, the optical disc substrate obtained in this example has a ΔN2 of 4.0XIO-4 or less, and has lower birefringence than the optical disc substrates obtained in Comparative Examples 1 and 2. It can be seen that it has. Compared to the optical disc substrate obtained in Comparative Example 1, even if a high-frequency induction coil plate is used, if the height position of the high-frequency induction coil is equal on the outer and inner circumferences, the heated cavity It can be seen that the birefringence is still not very good because the non-uniformity of the temperature distribution on the surface is not improved. In particular, ΔN of Comparative Example 2, which was not subjected to high-frequency heating at all.
2 was approximately 6.0×10 −′, which was a much larger value than that of this example.

なお、上記実施例では、キャビティ7の表面を、その外
周部から内周部に向かって漸次高くなる温度勾配を設け
て加熱するために、高周波誘導コイル23が外周から内
周に向かってその位置がお次高くなるように配置された
高周波誘導コイル板を使用したが、このような加熱のた
めに、他の構成に係る高周波誘導コイル板を使用するこ
ともできる。例えば、第5図に示すように、高周波誘導
コイル23の密度が外周から内周に向かってff=Ji
次濃くなるように配置された高周波誘導コイル仮26を
使用してもよい。
In the above embodiment, in order to heat the surface of the cavity 7 by providing a temperature gradient that gradually increases from the outer periphery to the inner periphery, the high frequency induction coil 23 changes its position from the outer periphery to the inner periphery. Although we have used high frequency induction coil plates arranged such that the heating temperature increases, high frequency induction coil plates of other configurations can also be used for such heating. For example, as shown in FIG. 5, the density of the high-frequency induction coil 23 increases from the outer circumference to the inner circumference as ff=Ji
You may use the high frequency induction coil temporary 26 arranged so that it becomes darker.

また、上記実施例では、両金型2,4間に高周波誘導コ
イル仮20を配置した際、被加熱面の加熱温度を略等し
くするため、円板22とスタンバ−13との距離L l
 を円板22と固定金型鏡面2Aとの距m L−2より
大きく設定したが、距離を調整する代わりtこ、両面の
高周波誘導コイル23の出力を別々に調整するようにし
てもよい。
Further, in the above embodiment, when the temporary high-frequency induction coil 20 is placed between the two molds 2 and 4, the distance between the disk 22 and the stand bar 13 is L l in order to make the heating temperature of the heated surface substantially equal.
is set to be larger than the distance m L-2 between the disk 22 and the fixed mold mirror surface 2A, but instead of adjusting the distance, the outputs of the high-frequency induction coils 23 on both sides may be adjusted separately.

[発明の効果1 本発明に係る光ディスク基板の製造方法によれば、特定
条件の高周波加熱により、樹脂射出時のキャビう″−イ
表面の温度分布の不均一がなくなるため、低複屈折性の
光ディスク基板が得られる。また、本発明にまり、キ中
ビティ表面の全面について均一な高温状態を保って射出
成形することが可能になるため、転写性が向上する。
[Effect of the invention 1] According to the method for manufacturing an optical disk substrate according to the present invention, high-frequency heating under specific conditions eliminates uneven temperature distribution on the cavity surface during resin injection, resulting in low birefringence. An optical disc substrate is obtained.Furthermore, according to the present invention, it is possible to perform injection molding while maintaining a uniform high temperature state over the entire surface of the middle bit, so that transferability is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例に係る光ディスク基板の製造方法を示す
断面図、第2図は実施例で使用する高周波誘導コ・イル
板の平面図、第3図はΔN2の測定の説明に供する光デ
ィスク基板の一部破断した斜視図、第4図は実施例と比
較例により得られた光ディスク基板についてΔN2を測
定した結果を示ずグラフ、第5図は高周波誘導コイル板
の他の実施例を示す断面図である。 2・・・固定金型、4・・・可動金型、7・・・キャビ
ティ、20.26・・・高周波誘導コイル板、23・・
・高周波誘導コイル、30・・・光ディスク基板。
Fig. 1 is a cross-sectional view showing a method for manufacturing an optical disk substrate according to an example, Fig. 2 is a plan view of a high frequency induction coil plate used in the example, and Fig. 3 is an optical disk substrate used to explain the measurement of ΔN2. FIG. 4 is a graph showing the results of measuring ΔN2 for optical disk substrates obtained in Examples and Comparative Examples, and FIG. 5 is a cross section showing another example of a high-frequency induction coil plate. It is a diagram. 2... Fixed mold, 4... Movable mold, 7... Cavity, 20.26... High frequency induction coil plate, 23...
- High frequency induction coil, 30... optical disc board.

Claims (4)

【特許請求の範囲】[Claims] (1)片面に所定の成形パターンが形成されたキャビテ
ィ中に溶融樹脂を射出充填した後、冷却固化させる光デ
ィスク基板の製造方法において、金型が開いた状態で前
記キャビティを高周波加熱する際、前記キャビティの表
面を、その外周部から内周部に向かって漸次高くなる温
度勾配を設けて加熱することを特徴とする光ディスク基
板の製造方法。
(1) In a method for manufacturing an optical disk substrate in which a molten resin is injected and filled into a cavity having a predetermined molding pattern formed on one side and then cooled and solidified, when the cavity is high-frequency heated with the mold open, the A method for manufacturing an optical disk substrate, characterized in that the surface of a cavity is heated by providing a temperature gradient that gradually increases from the outer periphery to the inner periphery.
(2)第1請求項記載の光ディスク基板の製造方法にお
いて、 高周波誘導コイルを、その位置が外周から内周に向かっ
て漸次高くなるように凸状に配置した高周波誘導コイル
板を使用することを特徴とする光ディスク基板の製造方
法。
(2) In the method for manufacturing an optical disk substrate according to the first aspect, a high-frequency induction coil plate is used in which high-frequency induction coils are arranged in a convex manner so that the positions of the high-frequency induction coils are gradually raised from the outer circumference toward the inner circumference. A method for manufacturing a featured optical disk substrate.
(3)第1請求項記載の光ディスク基板の製造方法にお
いて、 高周波誘導コイルを、その密度が外周から内周に向かっ
て漸次高くなるように配置した高周波誘導コイル板を使
用することを特徴とする光ディスク基板の製造方法。
(3) The method for manufacturing an optical disk substrate according to claim 1, characterized in that a high-frequency induction coil plate is used in which high-frequency induction coils are arranged such that the density of the high-frequency induction coils gradually increases from the outer circumference to the inner circumference. A method for manufacturing an optical disc substrate.
(4)第1請求項から第3請求項のいずれかに記載の光
ディスク基板の製造方法において、 前記キャビティ表面の加熱温度を樹脂のガラス転移温度
以上としたことを特徴とする光ディスク基板の製造方法
(4) The method for manufacturing an optical disk substrate according to any one of claims 1 to 3, characterized in that the heating temperature of the cavity surface is set to be higher than the glass transition temperature of the resin. .
JP13225289A 1989-05-24 1989-05-24 Manufacture of optical disk board Pending JPH02310016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13225289A JPH02310016A (en) 1989-05-24 1989-05-24 Manufacture of optical disk board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13225289A JPH02310016A (en) 1989-05-24 1989-05-24 Manufacture of optical disk board

Publications (1)

Publication Number Publication Date
JPH02310016A true JPH02310016A (en) 1990-12-25

Family

ID=15076930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13225289A Pending JPH02310016A (en) 1989-05-24 1989-05-24 Manufacture of optical disk board

Country Status (1)

Country Link
JP (1) JPH02310016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001181A (en) * 2005-06-24 2007-01-11 Sony Corp Apparatus and method for molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001181A (en) * 2005-06-24 2007-01-11 Sony Corp Apparatus and method for molding

Similar Documents

Publication Publication Date Title
JP4184091B2 (en) Injection molding method
JPH078514B2 (en) Injection molding method for plastic substrates for optical disks
JPH02310016A (en) Manufacture of optical disk board
JPH1186353A (en) Optical disk, metal mold for injection molding of optical disk and injection molding machine for optical disk production
JPS62135334A (en) Method and apparatus for preparing disk substrate for recording optical information
JP3871815B2 (en) Mold for optical disc
JP2006327147A (en) Forming method of plastic lens and plastic lens
JP2707501B2 (en) Injection molding stamper
JP2002264191A (en) Injection mold
JP4670196B2 (en) Injection molding apparatus and injection molding method
JPS609721A (en) Assembly of mold for injection molding for plastic disc for carrier of high density informaton record
JP2007083653A (en) Disc molding apparatus, disc molding method and information recording disc
JPS62135333A (en) Method and apparatus for preparing disk substrate for recording optical information
JPH02160525A (en) Injection mold and molding method of disc board for which the same mold is used
JPS61290024A (en) Mold for molding plastic lens
JPS6259014A (en) Mold for molding disc-type recording medium
JP4079541B2 (en) Disc board
JP2000263615A (en) Mold for optical information recording medium substrate
JPH0566245B2 (en)
JP2002347093A (en) Mold for injection molding
JPH0531777A (en) Method of molding optical disk substrate
JPH011511A (en) Injection mold for high-density information recording disks
JP2001058341A (en) Optical disk substrate and mold therefor
JP2002361689A (en) Method for molding thin substrate, method for manufacturing optical disk media and stamper for molding thin substrate
JPH08169032A (en) Substrate-forming mold, substrate-molding method, and the substrate