JPH0579008B2 - - Google Patents

Info

Publication number
JPH0579008B2
JPH0579008B2 JP61080187A JP8018786A JPH0579008B2 JP H0579008 B2 JPH0579008 B2 JP H0579008B2 JP 61080187 A JP61080187 A JP 61080187A JP 8018786 A JP8018786 A JP 8018786A JP H0579008 B2 JPH0579008 B2 JP H0579008B2
Authority
JP
Japan
Prior art keywords
substrate
molten resin
mold
optical
birefringence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61080187A
Other languages
Japanese (ja)
Other versions
JPS62246708A (en
Inventor
Akihiro Inotsuka
Yoshio Kizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP8018786A priority Critical patent/JPS62246708A/en
Publication of JPS62246708A publication Critical patent/JPS62246708A/en
Publication of JPH0579008B2 publication Critical patent/JPH0579008B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光デイスク、光カード等の光学式高密
度情報記録方式に用いられる透明プラスチツク基
板の射出成形方法に関するものであり、特に光磁
気記録媒体に適用可能な透明プラスチツク基板の
成形方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an injection molding method for transparent plastic substrates used in optical high-density information recording systems such as optical disks and optical cards, and particularly relates to a method for injection molding transparent plastic substrates used in optical high-density information recording systems such as optical disks and optical cards. The present invention relates to a method of molding a transparent plastic substrate that can be applied to media.

(従来技術) 透明基板を介してレーザービームによつてサブ
ミクロンオーダーの情報スポツトを記録再生する
光学式高密度情報記録媒体においては、透明基板
の複屈折が問題となる。特に、光磁気記録のよう
に0.1〜0.3度といつた微小な偏光面の変化を読取
る記録媒体においては複屈折の値が大きいとCN
比が低下し、実用にはならない。上記透明基板は
コスト面および耐吸水変化性等の特性面からポリ
カーボネートを射出成形して作るのが望ましい
が、ポリカーボネート樹脂は複屈折が大きいとい
う欠点がある。
(Prior Art) Birefringence of the transparent substrate poses a problem in optical high-density information recording media in which submicron-order information spots are recorded and reproduced using a laser beam through a transparent substrate. In particular, in recording media that read minute changes in the plane of polarization such as magneto-optical recording of 0.1 to 0.3 degrees, a large birefringence value causes CN
The ratio decreases and it is not practical. The above-mentioned transparent substrate is desirably made by injection molding polycarbonate from the viewpoint of cost and properties such as resistance to change due to water absorption, but polycarbonate resin has a drawback of high birefringence.

本出願人は特願昭59−12565号(特開昭60−
155424号)において、成形条件の改良によつてポ
リカーボネートの射出成形基板の複屈折を大巾に
低下させる方法を開示したが、その後の研究の結
果、プラスチツク基板には従来考えられていた基
板の偏平表面と平行な方向の複屈折だけでなく、
偏平表面と直角な方向の複屈折が存在し、しかも
後者の複屈折の方が光学特性、従つてCN比によ
り重大な影響を与えることを発見し、本発明を完
成した。すなわち、従来の複屈折測定法では直線
偏光を基板表面に垂直に入射させていたため基板
表面と直角な方向の複屈折は観察されなかつた。
しかし、上記直線偏光を基板表面に対して例えば
30°傾けて入射させると、透過光はクロスニコル
下においてもれ光を生じる。この現象は基板表面
に平行な複屈折だけが存在すると仮定しては説明
が付かず、基板と直角な方向の複屈折が存在する
と仮定すると説明が付く。さらに詳細に検討する
と、ポリカーボネート製基板は基板表面に直角な
方向の屈折率nzと、基板表面に平行な方向の屈折
率nz,nyを有する光学的異方性を持つており、一
般に|nx−ny|≒0である。しかし、|nz−nx
および|nz−ny|はゼロではなく、かなり大きな
値、例えば0.0005〜0.0006となり、光デイスクの
厚さ1.2mmを用いると、光デイスクでは600〜
780nmのリターテーシヨンが断面方向に存在する
ことになる。
The present applicant is Japanese Patent Application No. 59-12565
No. 155424) disclosed a method for greatly reducing the birefringence of injection-molded polycarbonate substrates by improving molding conditions, but subsequent research revealed that plastic substrates do not have flattened substrates, which had been previously thought. In addition to birefringence in the direction parallel to the surface,
We completed the present invention by discovering that there is birefringence in the direction perpendicular to the flat surface, and that the latter birefringence has a more significant effect on optical properties and therefore on the CN ratio. In other words, in the conventional birefringence measurement method, linearly polarized light was incident perpendicularly to the substrate surface, so birefringence in a direction perpendicular to the substrate surface was not observed.
However, for example, when the linearly polarized light is applied to the substrate surface,
When the incident light is tilted at 30 degrees, the transmitted light causes leakage light under crossed nicol conditions. This phenomenon cannot be explained by assuming that only birefringence exists parallel to the substrate surface, but can be explained by assuming that birefringence exists in a direction perpendicular to the substrate. When examined in more detail, polycarbonate substrates have optical anisotropy, with a refractive index n z in the direction perpendicular to the substrate surface and refractive indices n z , n y in the direction parallel to the substrate surface, and generally |n x −n y |≒0. However, |n z −n x |
and |n z −n y | are not zero but rather large values, for example 0.0005 to 0.0006, and if the thickness of the optical disc is 1.2 mm, the optical disc will have a value of 600 to
A retardation of 780 nm exists in the cross-sectional direction.

ポリカーボネート製基板がこのような二軸性結
晶と同じような光学的異方性を持つ理由は現在の
ところ不明であるが、成形キヤビテイー中での樹
脂分子の配向が重大な影響を与えていることは事
実である。すなわち、第1図に示す成形キヤビテ
イー中での溶融樹脂の挙動モデルにおいて、溶融
樹脂3には金型表面1,2からの半径方向内向き
の剪断応力と、射出圧力による半径方向外向きの
力とが加わつている。従つて、溶融樹脂には成形
キヤビテイーの厚さ方向に於て半径方向内向きに
配向させる力と、厚さ方向に配向させる力と、半
径方向内向きに配向させる力とが同時に加わつて
いる。第1図ではこれらの力の加わる領域をそれ
ぞれA,B,Aで示してある。前記の3つの主屈
折率nz,nx,nyがこれらのどの領域によつて影響
させるかは不明であるが、基盤の厚さ方向に配向
方向の異なる3つの領域が存在すると考えられ
る。
It is currently unclear why polycarbonate substrates have optical anisotropy similar to that of biaxial crystals, but the orientation of resin molecules in the molded cavity has a significant effect. is a fact. That is, in the behavior model of the molten resin in the molding cavity shown in FIG. is added. Therefore, a force for orienting the molten resin radially inward in the thickness direction of the molded cavity, a force for orienting it in the thickness direction, and a force for orienting it radially inward are simultaneously applied to the molten resin. In FIG. 1, the areas to which these forces are applied are indicated by A, B, and A, respectively. Although it is unclear in which region the three principal refractive indices n z , n x , and n y are influenced, it is thought that there are three regions with different orientation directions in the thickness direction of the base. .

本発明者達はポリカーボネート樹脂基板を用い
た場合のCN比の低下の原因の一つである高複屈
率を下げるためには上記Bの領域における配向を
制御する必要があるであろうとの仮説に基づき
種々実験を行つた結果、本発明を完成した。従来
の複屈折測定法、すなわち基板表面に直角に直線
偏光を入射させる方法では上記の基板表面に直角
方向の屈折率nzの影響は測定できず、従つて本発
明の対象とする特定な複屈折値を有するデイスク
基板は本出願前存在しない。
The present inventors hypothesized that it would be necessary to control the orientation in the above region B in order to reduce the high birefringence, which is one of the causes of the decrease in the CN ratio when using a polycarbonate resin substrate. As a result of various experiments based on the above, the present invention was completed. Conventional birefringence measuring methods, that is, methods in which linearly polarized light is incident perpendicularly to the substrate surface, cannot measure the influence of the refractive index n z in the direction perpendicular to the substrate surface. No disk substrates with refractive values existed prior to this application.

(発明の目的) 従つて、本発明の目的は光学式高密度情報記録
方式に用いられるCN比の高い記録媒体を提供す
るための透明プラスチツク基板の成形方法を提供
することにある。
(Object of the Invention) Therefore, an object of the present invention is to provide a method for molding a transparent plastic substrate for providing a recording medium with a high CN ratio used in an optical high-density information recording system.

(発明の構成) 本発明による射出成形方法の特色は一対の割型
によつて形成される成形キヤビテイー中に溶融樹
脂を射出して成形される光学式高密度情報記録再
生方式に用いられる透明プラスチツク基板の射出
成形方法において、上記溶融樹脂が上記成形キヤ
ビテイー中に流入を開始する時点から溶融樹脂が
実質的に固化する時点までの時間の少なくとも一
部の時間において、上記割型の少なくとも一方を
両割型の当接面に沿つて相対変位させる点にあ
る。
(Structure of the Invention) The injection molding method according to the present invention is characterized by molding a transparent plastic used in an optical high-density information recording/reproducing system, which is molded by injecting molten resin into a molding cavity formed by a pair of split molds. In the method for injection molding a substrate, at least one of the split molds is molded for at least a portion of the time from the time the molten resin starts flowing into the mold cavity until the time the molten resin substantially solidifies. The point is to cause relative displacement along the contact surface of the split mold.

上記の光学式高密度情報記録再生方式自体は周
知のものであり、レーザービームを1ミクロン程
度に絞つて情報を記録および再生するもので、一
般にはデイスク形状の記録媒体を用いる。上記情
報は本発明による透明プラスチツク基板の一方の
面にプレピツトの形で基板の成形時に記録される
か、トラツク溝やプレフオーマツトピツトを有す
る、または有しないプラスチツク基板の表面上に
Te系等のDRAW膜、Tb Fe Co系等のE−
DRAW膜を付着させて、使用時にユーザーが書
き込む。この場合、レーザービームは上記透明プ
ラスチツク基板を介して入射される(いわゆる背
面読取り方式)。本発明はこの背面読取り方式の
みならず、いわゆる表面読取り方式にも適用でき
る。その場合には上記情報は適当な支持体に担持
され、レーザービームはこの情報の上方に配置さ
れた本発明による透明プラスチツク基板を介して
入射される。いずれの方式の場合でも透明プラス
チツク基板の複屈折はできるだけおさえなければ
ならない。
The above-mentioned optical high-density information recording/reproducing method itself is well known, and information is recorded and reproduced by focusing a laser beam to about 1 micron, and generally uses a disk-shaped recording medium. The above information may be recorded in the form of a prepit on one side of the transparent plastic substrate according to the invention during molding of the substrate, or on the surface of the plastic substrate with or without track grooves or preformat pits.
DRAW films such as Te-based, E- films such as Tb Fe Co-based, etc.
A DRAW film is attached and written by the user during use. In this case, the laser beam is incident through the transparent plastic substrate (so-called back reading method). The present invention can be applied not only to this back-side reading method but also to a so-called front-side reading method. In that case, the information is carried on a suitable support and the laser beam is incident through the transparent plastic substrate according to the invention, which is placed above this information. In either method, the birefringence of the transparent plastic substrate must be suppressed as much as possible.

本発明ではプラスチツク基板の表面に直角な方
向の屈折率nzを考える。第2図に示すように透明
プラスチツク基板5は基板の偏平表面6,7と平
行で且つ互いに直交する屈折率nx,nyと、偏平表
面6,7と直角な方向の屈折率nzを持つものと仮
定する。従来の複屈折測定法では観察用の直線偏
光を偏平表面6,7に直角に入射させていたた
め、上記のnzに起因する複屈折は観測できなかつ
た。本発明者は直線偏光8を偏平表面6に対して
傾けて、例えば入射角θ=30°にして入射させる
ことによつて上記のnzを観測した。この複屈折測
定法は基板への入射角度を0°から30°にした以外
は従来のものと同じであるので、その詳細は省略
する。要は入射角30°で基板に入射させた直線偏
光のクロスニコル下での透過光強度を測定すれば
よい。
In the present invention, the refractive index n z in the direction perpendicular to the surface of the plastic substrate is considered. As shown in FIG. 2, the transparent plastic substrate 5 has refractive indices n x and n y that are parallel to the flat surfaces 6 and 7 of the substrate and perpendicular to each other, and refractive index n z that is perpendicular to the flat surfaces 6 and 7. Assume that you have. In the conventional birefringence measurement method, the linearly polarized light for observation was incident on the flat surfaces 6 and 7 at right angles, so the birefringence caused by the above n z could not be observed. The inventor observed the above n z by making the linearly polarized light 8 incident on the flat surface 6 at an angle of incidence θ=30°, for example. This birefringence measurement method is the same as the conventional method except that the angle of incidence on the substrate is changed from 0° to 30°, so the details will be omitted. In short, it is sufficient to measure the transmitted light intensity under crossed Nicol conditions of linearly polarized light incident on the substrate at an incident angle of 30°.

本発明者達の実験によると、一般にnxとnyは等
しい。しかし|nz−nx|および|nz−ny|の値は
従来考えられている複屈折よりもはるかに大き
く、従来法で射出成形した基板ではこれらの値は
0.0005以上であり、この基板に光磁気記録膜を形
成して作つた光磁気デイスクのCN比は48dB程度
である。
According to the inventors' experiments, n x and n y are generally equal. However, the values of |n z −n x | and |n z −n y | are much larger than the conventionally thought birefringence, and these values are
0.0005 or more, and the CN ratio of a magneto-optical disk produced by forming a magneto-optical recording film on this substrate is about 48 dB.

一方、本発明によつて上記|nz−nx|および|
nz−ny|の値を0.0004以下に低下させた基板上に
上記と同時光磁気記録膜を形成して作つた光磁気
デイスクのCN比は50dBに向上した。このように
CN比が向上する理由はθkの増加と、ノイズレベ
ルの低下にあるものと考えられる。
On the other hand, according to the present invention, the above |n z −n x | and |
The CN ratio of a magneto-optical disk produced by simultaneously forming a magneto-optical recording film as described above on a substrate in which the value of n z −ny | was lowered to 0.0004 or less was improved to 50 dB. in this way
The reason for the improvement in the CN ratio is considered to be the increase in θk and the decrease in the noise level.

上記樹脂としては屈折率異方性を示す樹脂を全
てが本発明方法に適用できる。他の特性とのかね
合いで、ポリカーボネート樹脂に本発明は特に有
効に適用できる。上記成形キヤビテイーの寸法は
成形されるデイスクによつて異るが、直径は約3
cmから約30cm、厚さは1〜2mm、一般には1.2mm
である。成形機は成形されるデイスク寸法に応じ
て適宜選択され、成形条件も以下で述べる本発明
の特殊操作以外は通常のデイスク成形で用いられ
ているものと同じである。ポリカーボネート樹脂
の場合、射出シリンダー温度は一般に300〜400
℃、金型温度は約100℃、樹脂のキヤビテイー中
への流入速度は10〜500ml/秒であり、これらは
当然ながらデイスク寸法によつて異なり、他の種
類で別の条件が選択される。ポリカーボネート樹
脂を用いた光デイスク基板の射出条件については
本出願人による前記特開昭60−155424号を参照さ
れたい。
As the above-mentioned resin, all resins exhibiting refractive index anisotropy can be applied to the method of the present invention. In consideration of other properties, the present invention can be particularly effectively applied to polycarbonate resins. The dimensions of the molded cavity described above vary depending on the disc being molded, but the diameter is approximately 3
cm to about 30cm, thickness 1-2mm, generally 1.2mm
It is. The molding machine is appropriately selected depending on the size of the disc to be molded, and the molding conditions are the same as those used in normal disc molding, except for the special operations of the present invention described below. For polycarbonate resin, the injection cylinder temperature is generally 300-400
DEG C., the mold temperature is about 100 DEG C., and the flow rate of the resin into the cavity is from 10 to 500 ml/sec, which will of course vary depending on the disk size, and other conditions will be selected for other types. Regarding the injection conditions for optical disk substrates using polycarbonate resin, please refer to the above-mentioned Japanese Patent Application Laid-Open No. 155424/1983 by the present applicant.

本発明の特徴は、一対の割型部分によつて形成
される偏平な成形キヤビテイー中に溶融樹脂を射
出することによつて偏平な透明プラスチツク基板
を成形し、こうして成形された透明プラスチツク
基板を介して入射されるレーザービームによつて
記録および/または再生される情報層を上記透明
プラスチツク基板の少なくとも片側に配置するこ
とによつて構成される光学式高密度情報記録再生
方式によつて用いられる記録媒体の透明プラスチ
ツク基板の射出成形方法において、上記溶融樹脂
が上記成形キヤビテイー中に流入を開始する時点
から溶融樹脂が実質的に固化する時点までの間の
少なくとも一部の時間において、上記割型の少な
くとも一方を両割型の当接面に沿つた方向に相対
変位させる点にある。
A feature of the present invention is that a flat transparent plastic substrate is molded by injecting molten resin into a flat molding cavity formed by a pair of split mold parts, and a flat transparent plastic substrate is molded through the molded transparent plastic substrate. Recording used by an optical high-density information recording and reproducing system, which is constructed by arranging an information layer recorded and/or reproduced by a laser beam incident on at least one side of the transparent plastic substrate. In a method for injection molding a transparent plastic substrate as a medium, the split mold is heated at least part of the time from when the molten resin begins to flow into the mold cavity until the molten resin substantially solidifies. The point is that at least one side is relatively displaced in the direction along the abutting surfaces of the bisegmented molds.

上記割型の相対変位の方向に成形するプラスチ
ツク基板の形状によつて適宜選択される。すなわ
ち、円盤状デイスク用基板の場合には固定型およ
び/または移動型を互いに相対回動する。この回
動角度はデイスク基板の厚さによつて異るが、厚
さが1.2mmのデイスクの場合には約0.1°から約45°、
好ましくは約0.5°から約10°程度である。回動方向
は一方向でもよいが、両方向に交番的に回動する
こともできる。この回動をいつ行うかのタイミン
グは射出成形機の構造、射出条件、使用樹脂、デ
イスク寸法によつて異るが、一般的には、成形キ
ヤビテイーへの溶融樹脂の射出充填完了後に行う
のが好ましい。具体的には約0.5〜2秒間の射出
工程の完了後、型締め力を急速に解除してから樹
脂の固化とともに両割型を相対回動させ、その
後、再度型締め力を増加させて転写特性を向上さ
せるのが好ましい。
It is appropriately selected depending on the shape of the plastic substrate to be molded in the direction of relative displacement of the split molds. That is, in the case of a disc-shaped disk substrate, the fixed type and/or the movable type are rotated relative to each other. This rotation angle varies depending on the thickness of the disk substrate, but for a disk with a thickness of 1.2 mm, it ranges from about 0.1° to about 45°.
Preferably it is about 0.5° to about 10°. The rotation direction may be one direction, but it may also be rotated alternately in both directions. The timing of when to perform this rotation varies depending on the structure of the injection molding machine, injection conditions, resin used, and disk dimensions, but generally it is performed after injection and filling of the molten resin into the molding cavity is completed. preferable. Specifically, after the injection process is completed for about 0.5 to 2 seconds, the mold clamping force is rapidly released, and as the resin solidifies, the split molds are rotated relative to each other, and then the mold clamping force is increased again to transfer. It is preferable to improve the properties.

四角形のカード状光カードの基板の成形の場合
には両割型をカード表面に平行な一方向に平行変
位するか、両方向に交番的に変位させる。
In the case of molding a substrate for a rectangular card-like optical card, the two split dies are displaced parallel to each other in one direction parallel to the card surface, or alternately displaced in both directions.

いずれの場合でも、その目的は第1図に示す表
面に直角な方向の配向を緩和あるいは分散させる
ことにある。
In either case, the purpose is to relax or disperse the orientation perpendicular to the surface shown in FIG.

上記の相対変位は保圧工程の少なくとも一部に
於いて行なう必要がある。実際には約0.5〜2秒
間の射出工程によつて溶融樹脂が成形キヤビテイ
ー中に充填完了された直後から型開き工程開始ま
での間に行なえばよい。一般的には転写性の問題
を考慮して適当なタイミングで行なうが、キヤビ
テイー中に充填された溶融樹脂の表面が金型温度
によつて固化を開始し、且つ内部にまで冷却温度
が伝達される前に行なう。換言すれば第1図のB
の領域が未固化の段階に行なうのが好ましい。
The above relative displacement needs to be performed during at least a part of the pressure holding process. In fact, the injection process may be carried out immediately after the molten resin is completely filled into the molding cavity by the injection process for about 0.5 to 2 seconds and before the mold opening process starts. Generally, this is done at an appropriate timing taking transferability issues into account, but the surface of the molten resin filled in the cavity begins to solidify due to the mold temperature, and the cooling temperature is transmitted to the inside. Do it before. In other words, B in Figure 1
It is preferable to carry out this process while the area is still unsolidified.

実際には、上記の相対移動を行うために、割型
を閉じている型締力を射出完了後に大巾に、場合
によつてはゼロ近くまで急速に低下させる必要が
ある。型締力が低下あるいは実質的にゼロになつ
た段階で、割型の少なくとも、一方、好ましくは
割型の一部分を適当な駆動機構によつて相対変位
させる。この駆動機構は機械的なもの、例えばラ
ツク−ピニオン組立体、でも油圧によるものでも
よい。上記の移動を容易にするために適当な摩擦
低下手段、例えば機械的軸受、空気ベアリングの
ような手段を用いることもできる。
In fact, in order to perform the above relative movement, it is necessary to rapidly reduce the mold clamping force that closes the split mold to a large extent, in some cases to nearly zero, after injection is completed. At the stage when the mold clamping force has decreased or become substantially zero, at least one of the split molds, preferably a portion of the split molds, is relatively displaced by a suitable drive mechanism. The drive mechanism may be mechanical, such as a rack-and-pinion assembly, or hydraulic. Suitable friction-reducing means, such as mechanical bearings, air bearings, etc., may also be used to facilitate the movement.

本発明の上記方法を用いることによつて成形歪
みと冷却歪みの一部が緩和され、前記の複屈折|
nz−nx|および|nz−ny|の値の小さなデイスク
基板が成形できる。
By using the above method of the present invention, some of the molding distortion and cooling distortion are alleviated, and the above-mentioned birefringence |
A disk substrate with small values of n z −n x | and |n z −n y | can be formed.

以下、第3,4図を用いて本発明方法を実施す
るための射出成形用金型組立体を簡単に説明す
る。
Hereinafter, an injection mold assembly for carrying out the method of the present invention will be briefly described using FIGS. 3 and 4.

第3図は本発明方法を光デイスク基板の射出成
形に適用した場合の、金型組立体の概念的断面図
である。この図では本発明に直接関係のない機構
は全て省略してある。周知のように、光デイスク
基板の射出成形用金型組立体は一対の割型1,2
すなわち固定側割型1と移動側割型2を有し、両
割型はタイバー3によつて軸方向以外の変位が規
制されている。
FIG. 3 is a conceptual sectional view of a mold assembly when the method of the present invention is applied to injection molding of an optical disk substrate. In this figure, all mechanisms not directly related to the present invention are omitted. As is well known, the mold assembly for injection molding of optical disk substrates consists of a pair of split molds 1 and 2.
That is, it has a fixed side split mold 1 and a movable side split mold 2, and displacement of both split molds in directions other than the axial direction is regulated by tie bars 3.

各割型1,2には温度調節用溝6を有するプラ
テン4,5がそれぞれ固定されている。溶融樹脂
は射出シリンダー(図示せず)からノズルタツチ
部7を介して成形キヤビテイー8中に射出され、
光デイスク用中心開口部をポンチ9と金型組立体
との相対移動によつて明けた後、冷却・固化され
てから型開きを行つて成形品として取り出され
る。成形キヤビテイーの表面はプラテン表面ある
いはスタンパー10によつて構成されている。図
ではスタンパー10が固定側割型1にホルダー1
1によつて取付けられているが、移動側割型2に
取付けることも当然できる。
Platens 4 and 5 having temperature adjusting grooves 6 are fixed to each of the split molds 1 and 2, respectively. The molten resin is injected from an injection cylinder (not shown) into the molding cavity 8 through the nozzle touch part 7,
After opening the center opening for the optical disk by relative movement between the punch 9 and the mold assembly, the mold is cooled and solidified, and then the mold is opened and taken out as a molded product. The surface of the molding cavity is defined by the platen surface or stamper 10. In the figure, the stamper 10 is placed on the fixed side split die 1 with the holder 1.
1, but it can of course also be attached to the movable split mold 2.

本発明方法を実施するための金型組立体の特徴
は可動プラテン20とその駆動手段にある。上記
可動プラテン20は割型の一方、図の場合には固
定側割型1のプラテン4、にボルベアリング2
1,22を介して回動自在に保持されている。プ
ラテン4には、プラテン4と可動プラテン20と
の間の放射方向接触面の摩擦による回動時の抵抗
力に打勝つために、両者の接触面に流体、例えば
空気を供給するための螺旋溝23が形成されてお
り、この螺旋溝23には回動時にライン24を介
して圧縮空気が供給される。なお、上記の流体ベ
アリングの代りに玉軸受等の機械的ベアリングを
先端に備えたエジエクターに類似した機械的離反
手段を用いて上記の抵抗力に打勝つてもよい。当
然ながら、これらの摩擦低減手段は可動プラテン
20に回動時にのみ付勢され、通常は非作動にな
つている。
A feature of the mold assembly for carrying out the method of the present invention is the movable platen 20 and its driving means. The movable platen 20 is mounted on one side of the split mold, in the case of the figure, the platen 4 of the fixed side split mold 1, and a ball bearing 2
1 and 22 so as to be rotatable. The platen 4 is provided with a spiral groove for supplying fluid, for example, air, to the contact surface between the platen 4 and the movable platen 20 in order to overcome the rotational resistance caused by the friction of the contact surface in the radial direction between the platen 4 and the movable platen 20. 23 is formed, and compressed air is supplied to this spiral groove 23 via a line 24 during rotation. Note that, instead of the above-mentioned fluid bearing, a mechanical separation means similar to an ejector having a mechanical bearing such as a ball bearing at the tip may be used to overcome the above-mentioned resistance force. Naturally, these friction reducing means are energized only when the movable platen 20 rotates, and are normally inactive.

上記可動プラテン20を回動させるために、図
示した具体例では流体圧力を用いた駆動手段が用
いられる。この駆動手段は第4図に示すようにシ
リンダーピストン組立体で構成されている。すな
わち、プラテン4に固着されたシリンダー25中
を摺動するピストンに固着されたピストンロツド
26の自由端によつて可動プラテン20に形成し
た係止部27を押すようになつている。上記係止
部27は可動プラテン20の直径方向両端に設け
られ且つプラテン4に形成した収容部28中に収
容されている。上記収容部28と上記係止部27
との間にはシリンダー25の消勢時に可動プラテ
ン20を初期位置へ戻すための戻しバネ29が収
容されている。上記収容部28の周方向長さは可
動プラテン20の回動量によつて決まる。
In order to rotate the movable platen 20, driving means using fluid pressure is used in the illustrated embodiment. This drive means is comprised of a cylinder-piston assembly as shown in FIG. That is, a locking portion 27 formed on the movable platen 20 is pushed by the free end of a piston rod 26 fixed to a piston sliding in a cylinder 25 fixed to the platen 4. The locking portions 27 are provided at both ends of the movable platen 20 in the diametrical direction and are housed in housing portions 28 formed in the platen 4. The housing portion 28 and the locking portion 27
A return spring 29 for returning the movable platen 20 to the initial position when the cylinder 25 is deenergized is housed between the cylinder 25 and the cylinder 25. The circumferential length of the accommodating portion 28 is determined by the amount of rotation of the movable platen 20.

上記可動プラテン20をプラテン4に対して回
動自在に保持するため、両者の間には放射方向に
一定の間隙が必要になる。この間隙はスタンパー
10上のトラツク等の信号面を金型組立体に対し
て心出しすることを難しくする。すなわち、シヨ
ツト毎にスタンパー10が放射方向に動くという
欠点がある。この欠点を克服するために、図示し
た具体例では心出し機構が設けられている。この
心出し機構は先端にテーパー部を有する心出しリ
ング30と、可動プラテン20表面に形成された
上記テーパーに対応した対向テーパー面を有する
環状溝31とで構成されている。上記心出しリン
グ30は非作動時すなわち可動プラテン20の回
動時には後退しており、可動プラテン20の非回
動時には前進して可動プラテン20の心出しと固
定とを行う。
In order to hold the movable platen 20 rotatably relative to the platen 4, a certain gap is required in the radial direction between the two. This gap makes it difficult to center signal surfaces such as tracks on stamper 10 with respect to the mold assembly. That is, there is a drawback that the stamper 10 moves in the radial direction with each shot. To overcome this drawback, a centering mechanism is provided in the illustrated embodiment. This centering mechanism is composed of a centering ring 30 having a tapered portion at its tip, and an annular groove 31 having an opposing tapered surface corresponding to the taper formed on the surface of the movable platen 20. The centering ring 30 is retracted when the movable platen 20 is not in operation, that is, when the movable platen 20 is rotating, and moves forward to center and fix the movable platen 20 when the movable platen 20 is not rotating.

使用時には、溶融樹脂がキヤビテイー8中に充
填された後、好ましくは、充填終了直後に、両割
型1,2を閉じている型締め力を急速に、好まし
くはゼロ近くまで低下させ、上記摩擦低減手段を
付勢してから駆動手段25を付勢して可動プラテ
ン20を回動する。その後、再度型締め力を増加
させて一定時間保圧工程に維持し、樹脂の固化
後、成形されたデイスク基板を割型を開いて取出
す。
In use, after the molten resin is filled into the cavity 8, preferably immediately after the filling is completed, the clamping force that closes the split molds 1 and 2 is rapidly reduced, preferably to near zero, to reduce the above-mentioned friction. After the reducing means is energized, the driving means 25 is energized to rotate the movable platen 20. Thereafter, the mold clamping force is increased again to maintain the pressure holding process for a certain period of time, and after the resin has solidified, the molded disk substrate is opened and taken out.

上記具体例は単なる例示であつて、本発明の精
神を逸脱しない限り種々の変更が可能であること
は明らかである。例えば、上記具体例ではプラテ
ン4と可動プラテン20とを別体にしているが、
プラテン4自体を回動するようにすることも可能
である。また、上記の心出しリング30の代りに
周方向に等間隔に分布させた複数の心出しロツド
を用い、これら心出しロツドを金型組立体の外に
設けた駆動リングで同時に駆動することもでき
る。さらに、上記可動プラテンの駆動手段を前記
係止部27の外周に形成した弧状ラツクと、プラ
テンを貫通し且つそれと螺合するウオームとで構
成し、このウオームをモーターで正逆回転させる
ことによつて可動プラテンを回動してもよい。
It is clear that the above specific examples are merely illustrative and that various changes can be made without departing from the spirit of the invention. For example, in the above specific example, the platen 4 and the movable platen 20 are separate bodies,
It is also possible to rotate the platen 4 itself. Alternatively, instead of the centering ring 30 described above, a plurality of centering rods distributed at equal intervals in the circumferential direction may be used, and these centering rods may be simultaneously driven by a drive ring provided outside the mold assembly. can. Further, the drive means for the movable platen is composed of an arcuate rack formed on the outer periphery of the locking portion 27 and a worm that passes through the platen and is screwed into the platen, and the worm is rotated in forward and reverse directions by a motor. The movable platen may also be rotated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は成形キヤビテイー中での溶融樹脂の挙
動を示すモデルの概念図。第2図は屈折率nz
nx,nyを説明するための図。第3図は本発明方法
を実施するための金型組立体の概念的縦断面図
で、第4図の−線による断面図。第4図は第
3図の−線による横断面図。 図中符号、20……可動プラテン、21,22
……軸受、23……空気ベアリング用溝、25…
…シリンダー、26……ピストンロツド、27…
…係止部、28……収容部、30……心出しリン
グ、31……環状溝。
FIG. 1 is a conceptual diagram of a model showing the behavior of molten resin in a molding cavity. Figure 2 shows the refractive index n z ,
Diagram for explaining n x and n y . FIG. 3 is a conceptual longitudinal cross-sectional view of a mold assembly for carrying out the method of the present invention, and is a cross-sectional view taken along the line - in FIG. FIG. 4 is a cross-sectional view taken along the - line in FIG. 3. Code in the figure: 20...Movable platen, 21, 22
... Bearing, 23 ... Air bearing groove, 25 ...
...Cylinder, 26...Piston rod, 27...
...Locking portion, 28... Accommodating portion, 30... Centering ring, 31... Annular groove.

Claims (1)

【特許請求の範囲】 1 光デイスク用基板を成形をするための一対の
割型によつて形成される偏平円盤状のキヤビテイ
ー中に溶融樹脂を射出して成形される透明な光デ
イスク用基板の射出成形方法において、 溶融樹脂が成形キヤビテイー中に流入を開始す
る時点から溶融樹脂が実質的に固化する時点まで
の間の少なくとも一部の時間において、割型の少
なくとも一方を両割型の当接面に沿つて45°以下
の角度だけ相対変位させることを特徴とする射出
成形方法。
[Scope of Claims] 1. A transparent optical disk substrate molded by injecting molten resin into a flat disc-shaped cavity formed by a pair of split molds for molding the optical disk substrate. In an injection molding method, at least one of the split molds is brought into contact with the split molds for at least a portion of the time from the time when the molten resin starts flowing into the mold cavity until the time when the molten resin substantially solidifies. An injection molding method characterized by relative displacement along a surface by an angle of 45° or less.
JP8018786A 1986-04-09 1986-04-09 Injection molding of plastic base plate for optical disk Granted JPS62246708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8018786A JPS62246708A (en) 1986-04-09 1986-04-09 Injection molding of plastic base plate for optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8018786A JPS62246708A (en) 1986-04-09 1986-04-09 Injection molding of plastic base plate for optical disk

Publications (2)

Publication Number Publication Date
JPS62246708A JPS62246708A (en) 1987-10-27
JPH0579008B2 true JPH0579008B2 (en) 1993-11-01

Family

ID=13711369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8018786A Granted JPS62246708A (en) 1986-04-09 1986-04-09 Injection molding of plastic base plate for optical disk

Country Status (1)

Country Link
JP (1) JPS62246708A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1012107C2 (en) * 1999-05-19 2000-11-23 Axxicon Moulds Eindhoven Bv Injection moulding process for making optical data discs comprises rotating mould tool sections relative to each other in a plane at right angles to the tool closure direction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168535A (en) * 1982-03-29 1983-10-04 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of forming polymer
JPS6082314A (en) * 1983-10-11 1985-05-10 Ishida Koki Seisakusho:Kk Manufacture of disk
JPS6097820A (en) * 1983-11-01 1985-05-31 Ishida Koki Seisakusho:Kk Manufacture of disc

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168535A (en) * 1982-03-29 1983-10-04 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of forming polymer
JPS6082314A (en) * 1983-10-11 1985-05-10 Ishida Koki Seisakusho:Kk Manufacture of disk
JPS6097820A (en) * 1983-11-01 1985-05-31 Ishida Koki Seisakusho:Kk Manufacture of disc

Also Published As

Publication number Publication date
JPS62246708A (en) 1987-10-27

Similar Documents

Publication Publication Date Title
EP0235800B1 (en) Plastic substrate for optical disk and process for producing the same
JPH078514B2 (en) Injection molding method for plastic substrates for optical disks
JPS63135211A (en) Injection molding method for disc
US5683630A (en) Process for making optical disk substrates
EP0280028B1 (en) An optical information disc
KR100239809B1 (en) Magnetic optical disc
JPH0579008B2 (en)
JPH0579011B2 (en)
US6703100B2 (en) Disk-like recording medium and method for producing the same
JP2001246643A (en) Recording medium, injection mold, injection molding machine and molding method
JPH0579010B2 (en)
JPH0579009B2 (en)
JP3095763B2 (en) Disc substrate molding stamper and disk substrate molding method
JPH0564570B2 (en)
JP2000030310A (en) Optical disk substrate molding device
JPH11306594A (en) Disk-formed recording medium and recording and/or reproducing device therefor
JP3158394B2 (en) Mold for recording disk molding
JP2000322781A (en) Mold device and production of disk substrate
JP2001225360A (en) Method and apparatus for molding disk substrate
JP2002127193A (en) Optical disk substrate molding die, and molding method for optical disk substrate
JPH05282702A (en) Substrate of information signal recording medium
KR20030009843A (en) Stucture of Cylindrical Optical Pick-up Disk and Manufacturing Method Thereof
JPH03119534A (en) Information recording carrier, production thereof and forming mold thereof
JP2000061994A (en) Manufacture of optical disk substrate
JPS6174150A (en) Manufacture of optical disc replica