JPH0578614A - Coating material and method for coating using the same - Google Patents

Coating material and method for coating using the same

Info

Publication number
JPH0578614A
JPH0578614A JP27055791A JP27055791A JPH0578614A JP H0578614 A JPH0578614 A JP H0578614A JP 27055791 A JP27055791 A JP 27055791A JP 27055791 A JP27055791 A JP 27055791A JP H0578614 A JPH0578614 A JP H0578614A
Authority
JP
Japan
Prior art keywords
coating
weight
substrate
carbon atoms
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27055791A
Other languages
Japanese (ja)
Inventor
Osamu Yoshida
統 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP27055791A priority Critical patent/JPH0578614A/en
Publication of JPH0578614A publication Critical patent/JPH0578614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PURPOSE:To obtain the subject material capable of providing transparent cured acrylic product films having a high surface hardness by dissolving a radical copolymer having alkoxysilyl groups in side chains, a metallic alkoxide, etc., in an organic solvent and adding a Lewis acid to the resultant solution. CONSTITUTION:The objective material is obtained by dissolving (A) 1-60wt.% radical polymer [having 50000-300000 number-average molecular weight (expressed in terms of PS)], expressed by formula I [R is H or 1-5C alkyl ; R' is 1-5C alkyl; (l) is 1-3; m/n is (99/1) to (80/20) molar ratio] and having alkoxysilyl groups in side chains and (B) 99-40wt.% of (i) a metallic alkoxide expressed by formula II (R<1> is H, 1-5C alkoxy, phenoxy, phenyl or 1-5C alkyl; R<2> is 1-5C alkyl or phenyl; M is Si, Ti, Sn or Zr; (n) is 1-4) and/or (ii) a metallic chelate compound expressed by formula III (M' is Ti, Sn or Zr; R<3> is 1-5C alkyl; Acac is acetylacetonates) in an organic solvent and adding a Lewis acid to the resultant solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高い表面硬度を有する
透明なアクリル系硬化物膜を得るための材料及びそのコ
−ティング方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for obtaining a transparent acrylic cured film having a high surface hardness and a coating method thereof.

【0002】[0002]

【従来の技術】従来のアクリル系の熱硬化型材料を用い
たコ−ティング方法としては、分子鎖にアルコキシシラ
ンを有する重合体に、酸、塩基、有機金属触媒等を添加
したものが知られている。例えば、特開昭60−675
53号公報、特開昭63−108049号公報、特開平
1−129018号公報には、メタアクリロキシプロピ
ルトリメトキシシラン等のアルコキシシランを側鎖に有
する透明性熱硬化型のコ−ティング用材料が開示されて
いる。
2. Description of the Related Art As a conventional coating method using an acrylic thermosetting material, there is known a method in which an acid, a base, an organometallic catalyst or the like is added to a polymer having an alkoxysilane in its molecular chain. ing. For example, JP-A-60-675
No. 53, JP-A-63-108049 and JP-A-1-129018 disclose a transparent thermosetting coating material having an alkoxysilane such as methacryloxypropyltrimethoxysilane in the side chain. Is disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
従来のアクリル系樹脂材料から得られる膜は、表面硬度
が低いためその耐擦傷性に問題があった。更に、熱硬化
時の硬化ムラよる膜の縮みやそれに基づく熱硬化時の透
明性の低下等の問題があった。
However, the film obtained from the above-mentioned conventional acrylic resin material has a low surface hardness, and thus has a problem in scratch resistance. Furthermore, there are problems such as shrinkage of the film due to uneven curing during heat curing and a decrease in transparency during heat curing.

【0004】[0004]

【課題を解決するための手段】本発明者は上記事情に鑑
み、上記の従来技術の問題点を解決すべく検討を重ねた
結果、硬化ムラのない透明かつ高い表面硬度を有するア
クリル系硬化物膜を得るためのコ−ティング用材料を見
出し、本発明を完成するに至った。
In view of the above circumstances, the present inventor has conducted extensive studies to solve the above-mentioned problems of the prior art, and as a result, an acrylic cured product having no curing unevenness and having a transparent and high surface hardness. The present invention has been completed by finding a coating material for obtaining a film.

【0005】即ち本発明は、下記一般式That is, the present invention has the following general formula

【0006】[0006]

【化4】 (式中、Rは水素または炭素数1〜5のアルキル基、
R’は炭素数1〜5のアルキル基を表し、lは1〜3、
m/nがmol比で99/1〜80/20)で示される
アルコキシシリル基を側鎖に持つラジカル共重合体(数
平均分子量50000〜300000:ポリスチレン換
算)[1]1〜60重量%、下記一般式
[Chemical 4] (In the formula, R is hydrogen or an alkyl group having 1 to 5 carbon atoms,
R'represents an alkyl group having 1 to 5 carbon atoms, l is 1 to 3,
Radical copolymer having an alkoxysilyl group represented by m / n in a molar ratio of 99/1 to 80/20) in the side chain (number average molecular weight 50,000 to 300,000: polystyrene conversion) [1] 1 to 60% by weight, The following general formula

【0007】[0007]

【化5】 (式中、Rは水素、炭素数1〜5のアルコキシ基また
はフェノキシ基、炭素数1〜5のアルキル基またはフェ
ニル基を表し、Rは炭素数1〜5のアルキル基または
フェニル基を表し、MはSi、Ti、SnまたはZr、
nは1〜4の整数を表す)で示される金属アルコキシド
[2]および/または下記一般式
[Chemical 5] (In the formula, R 1 represents hydrogen, an alkoxy group having 1 to 5 carbon atoms or a phenoxy group, an alkyl group having 1 to 5 carbon atoms or a phenyl group, and R 2 represents an alkyl group having 1 to 5 carbon atoms or a phenyl group. , M is Si, Ti, Sn or Zr,
n represents an integer of 1 to 4) and / or a metal alkoxide [2] represented by the following general formula:

【0008】[0008]

【化6】 (M’はTi、SnまたはZrを表し、Rは炭素数1
〜5のアルキル基、Acacはアセチルアセトナ−ト類
を表す)で示される金属キレ−ト化合物[3]99〜4
0重量%を有機溶剤に溶解し、これにルイス酸を添加し
てなるコ−ティング用材料及び、この材料を基材上に塗
布し、加熱硬化し、3次元的に架橋させることにより、
少なくとも1種以上の金属−酸素結合(ただし金属はS
i、Ti、SnまたはZr)を構成し、その金属種が硬
化物全量に対し15重量%以上含まれ、架橋度が70%
以上であるアクリル系透明硬化物膜を形成することを特
徴とするコ−ティング方法に関する。
[Chemical 6] (M ′ represents Ti, Sn or Zr, R 3 has 1 carbon atom
~ 5 alkyl group, Acac represents acetylacetonate) [3] 99-4
A coating material prepared by dissolving 0% by weight in an organic solvent and adding a Lewis acid thereto, and applying this material on a substrate, heat-curing it and three-dimensionally crosslinking it,
At least one metal-oxygen bond (provided that the metal is S
i, Ti, Sn or Zr), the metal species of which is 15% by weight or more based on the total amount of the cured product, and the degree of crosslinking is 70%.
The present invention relates to a coating method characterized by forming an acrylic transparent cured product film.

【0009】本発明で用いられるアルコキシシリル基を
側鎖に持つラジカル共重合体[1]とは、好ましくはア
クリル酸、アクリル酸メチル、アクリル酸エチル、メタ
クリル酸、メタクリル酸メチル、メタクリル酸エチルか
ら選ばれる少なくとも1種以上の化合物と、好ましくは
3−メタクリロキシプロピルトリメトキシシラン、3−
メタクリロキシプロピルトリエトキシシラン、3−メタ
クリロキシプロピルトリブトキシシラン、3−メタクリ
ロキシプロピルプロポキシシラン、3−メタクリロキシ
プロピルイソプロポキシシラン、2−メタクリロキシエ
チルトリメトキシシラン、2−メタクリロキシエチルト
リエトキシシラン、2−メタクリロキシエチルトリブト
キシシラン、メタクリロキシメチルトリメトキシシラ
ン、メタクリロキシメチルトリエトキシシラン、メタク
リロキシメチルトリブトキシシラン、3−アクリロキシ
プロピルトリメトキシシラン、3−アクリロキシプロピ
ルトリエトキシシラン、3−アクリロキシプロピルトリ
ブトキシシラン、2−アクリロキシエチルトリメトキシ
シラン、2−アクリロキシエチルトリエトキシシラン、
2−アクリロキシエチルトリプロポキシシラン、2−ア
クリロキシエチルトリブトキシシラン、アクリロキシメ
チルトリメトキシシラン、アクリロキシメチルトリエト
キシシラン、アクリロキシメチルトリブトキシシランか
ら選ばれる少なくとも1種以上の化合物とからなるラジ
カル共重合体であり、その組成は、mol比で99:1
〜80:20の範囲のものが好ましい。
The radical copolymer [1] having an alkoxysilyl group in the side chain used in the present invention is preferably acrylic acid, methyl acrylate, ethyl acrylate, methacrylic acid, methyl methacrylate or ethyl methacrylate. At least one compound selected, and preferably 3-methacryloxypropyltrimethoxysilane, 3-
Methacryloxypropyltriethoxysilane, 3-methacryloxypropyltributoxysilane, 3-methacryloxypropylpropoxysilane, 3-methacryloxypropylisopropoxysilane, 2-methacryloxyethyltrimethoxysilane, 2-methacryloxyethyltriethoxysilane , 2-methacryloxyethyltributoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, methacryloxymethyltributoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3 -Acryloxypropyltributoxysilane, 2-acryloxyethyltrimethoxysilane, 2-acryloxyethyltriethoxysilane,
At least one compound selected from 2-acryloxyethyltripropoxysilane, 2-acryloxyethyltributoxysilane, acryloxymethyltrimethoxysilane, acryloxymethyltriethoxysilane, and acryloxymethyltributoxysilane. It is a radical copolymer, the composition of which is a molar ratio of 99: 1.
It is preferably in the range of 80:20.

【0010】このような共重合体[1]は、公知の重合
開始剤を用いて公知の合成方法に従って得ることができ
るが、溶液ラジカル重合法によるものが好ましい。重合
に際しては、ベンゼン、トルエン、キシレンなどの芳香
族系炭化水素、ヘキサン、ヘプタン、シクロヘキサン等
の脂肪族系炭化水素、酢酸エチル、エチレングリコ−ル
モノエチルエ−テルアセテ−ト等のエステル系、アセト
ン、メチルエチルケトン、メチルイソブチルケトン、シ
クロヘキサノン等のケトン系、メタノ−ル、エタノ−
ル、イソプロパノ−ル、n−ブタノ−ル、イソブタノ−
ル、ジグリム、エチレングリコ−ルモノエチルエ−テル
等のアルコ−ル系あるいはエ−テル系溶剤を用いること
ができる。
Such a copolymer [1] can be obtained by a known synthesis method using a known polymerization initiator, but a solution radical polymerization method is preferable. In the polymerization, benzene, toluene, aromatic hydrocarbons such as xylene, hexane, heptane, aliphatic hydrocarbons such as cyclohexane, ethyl acetate, ester-based ethylene glycol monoethyl ether acetate, acetone, methyl ethyl ketone, Methyl isobutyl ketone, ketone system such as cyclohexanone, methanol, ethanol
, Isopropanol, n-butanol, isobutanol
An alcohol-based or ether-based solvent such as alcohol, diglyme or ethylene glycol monoethyl ether can be used.

【0011】共重合体[1]の数平均分子量は、ゲルパ
−ミエ−ションクロマトグラフィ−(GPC)により、
ポリスチレン換算で50000〜300000のものが
好ましいが、より好ましくは100000〜20000
0である。
The number average molecular weight of the copolymer [1] is determined by gel permeation chromatography (GPC).
The polystyrene conversion is preferably 50,000 to 300,000, more preferably 100,000 to 20,000.
It is 0.

【0012】また重合時の、モノマ−濃度は0.5〜5
mmol/mlが好ましいが、より好ましくは0.8〜
1.5mmol/mlである。
The monomer concentration during the polymerization is 0.5 to 5
mmol / ml is preferred, but more preferably 0.8-
It is 1.5 mmol / ml.

【0013】重合温度は60〜80℃が好ましいが、よ
り好ましくは65〜75℃である。重合時間は、4〜8
時間程度であるが、より好ましくは6〜7時間である。
The polymerization temperature is preferably 60 to 80 ° C, more preferably 65 to 75 ° C. Polymerization time is 4-8
Although it is about an hour, it is more preferably 6 to 7 hours.

【0014】このようにして得られた共重合体[1]の
有機溶液中に、以下に示す化合物[2]及び[3]の少
なくとも1種以上(以下架橋剤と呼ぶ)を加えてルイス
酸等の架橋促進剤存在下にて反応させると、硬化時に少
なくとも1種以上の金属−酸素結合(金属はSi、T
i、SnまたはZr)による3次元的な編み目が形成さ
れ、得られるコ−ト膜は透明性を維持しながら架橋して
ゆき、表面硬度を従来のものと比べ著しく向上させるこ
とができる。
At least one of the following compounds [2] and [3] (hereinafter referred to as a cross-linking agent) is added to the organic solution of the copolymer [1] thus obtained to obtain a Lewis acid. When the reaction is carried out in the presence of a crosslinking accelerator such as, for example, at least one metal-oxygen bond (metal is Si, T
A three-dimensional stitch is formed by i, Sn or Zr), and the obtained coat film is crosslinked while maintaining transparency, and the surface hardness can be remarkably improved as compared with the conventional one.

【0015】用いられる架橋剤[2]としては、テトラ
メトキシシラン、テトラエトキシシラン、テトラフェノ
キシシラン、メチルトリメトキシシラン、エチルトリメ
トキシシラン、エチルトリメトキシシラン、エチルトリ
フェノキシシラン、フェニルトリメトキシシラン、フェ
ニルトリエトキシシラン、フェニルトリフェノキシシラ
ン等のアルコキシシラン類、テトラブチルチタネ−ト、
テトライソプロピルチタネ−ト等のチタン酸エステル
類、錫メトキシド、錫エトキシド等の錫アルコキシド
類、ジルコニウムエトキシド、ジルコニウムイソプロポ
キシド、ジルコニウムブトキシド等のジルコニウムアル
コキシド等が挙げられる。また、架橋剤[3]として
は、チタニウムアルコキシビスアセチルアセトナ−ト、
錫アセチルアセトナ−ト二臭化物、ジルコニウムアセチ
ルアセトナ−ト等のキレ−ト化合物が挙げられる。架橋
時に用いられるこれら架橋剤は1種類単独あるいは2種
類以上を組み合わせて用いても良い。
As the cross-linking agent [2] used, tetramethoxysilane, tetraethoxysilane, tetraphenoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, ethyltrimethoxysilane, ethyltriphenoxysilane, phenyltrimethoxysilane, Alkoxysilanes such as phenyltriethoxysilane and phenyltriphenoxysilane, tetrabutyl titanate,
Examples thereof include titanic acid esters such as tetraisopropyl titanate, tin alkoxides such as tin methoxide and tin ethoxide, zirconium alkoxides such as zirconium ethoxide, zirconium isopropoxide and zirconium butoxide. Further, as the cross-linking agent [3], titanium alkoxybis acetylacetonate,
Examples thereof include chelate compounds such as tin acetylacetonate dibromide and zirconium acetylacetonate. These crosslinking agents used for crosslinking may be used alone or in combination of two or more.

【0016】共重合体[1]に対し用いられる架橋剤の
含有量は、得られる膜の総重量に対して金属の含有量が
15重量%以上となるようにすることが好ましい。その
場合、共重合体[1]に対し加えられる架橋剤の量は、
40〜99重量%が好ましい。加えられる架橋剤の量が
40重量%未満の時は、膜の硬度の向上はほとんどな
く、また99重量%より多い時は、得られる膜の硬度は
頭打ちとなる。特に、その添加量が50〜60重量%の
時、その表面硬度は著しく向上する。更に、硬化時の膜
の縮み現象は見られない。
The content of the crosslinking agent used in the copolymer [1] is preferably such that the metal content is 15% by weight or more based on the total weight of the obtained film. In that case, the amount of the crosslinking agent added to the copolymer [1] is
40 to 99% by weight is preferable. When the amount of the cross-linking agent added is less than 40% by weight, there is almost no improvement in the hardness of the film, and when it is more than 99% by weight, the hardness of the obtained film reaches the ceiling. Particularly, when the addition amount is 50 to 60% by weight, the surface hardness is remarkably improved. Furthermore, the shrinkage phenomenon of the film during curing is not seen.

【0017】また架橋剤の量は、得られる膜中の金属の
含有量が15〜60重量%の範囲であれば、任意に変化
させることが出来、透明性を保持することが出来る。
Further, the amount of the cross-linking agent can be arbitrarily changed and the transparency can be maintained as long as the content of the metal in the obtained film is in the range of 15 to 60% by weight.

【0018】有機溶剤の量は、共重合体[1]、架橋剤
[2]及び/又は[3]の混合物の濃度が、0.1〜3
0g/mlとなるように添加するのが好ましい。
The amount of the organic solvent is such that the concentration of the mixture of the copolymer [1], the cross-linking agent [2] and / or [3] is 0.1-3.
It is preferable to add it so as to be 0 g / ml.

【0019】なお、膜の形成に至るプロセスは既知のゾ
ルゲル法を用いることにより容易に達成できる。
The process leading to the formation of the film can be easily achieved by using the known sol-gel method.

【0020】即ち、共重合体[1]、架橋剤[2]及び
/又は[3]から構成される有機混合溶液にルイス酸を
加え、室温において撹拌することにより20〜30分で
安定なゾル溶液が得られる。さらに溶液を種々の基材上
にスピンコ−ト(あるいはディップコ−ト)し、大気下
で加熱することにより、ゾル−ゲル転移を経て、透明か
つ極めて表面硬度の高い膜が得られる。当該コ−ティン
グ法に用いられる基材の種類としては、プラスチック、
木材、金属、ガラス等の無機及び有機材料などが挙げら
れる。
That is, a Lewis acid is added to an organic mixed solution composed of the copolymer [1], the cross-linking agent [2] and / or [3] and stirred at room temperature to obtain a stable sol in 20 to 30 minutes. A solution is obtained. Further, the solution is spin-coated (or dip-coated) on various substrates and heated in the atmosphere, and a transparent and extremely high surface hardness film is obtained through the sol-gel transition. The type of base material used in the coating method is plastic,
Inorganic and organic materials such as wood, metal and glass can be used.

【0021】架橋硬化させるのに可能な温度範囲は、5
0〜190℃であるが、より好ましくは80〜130℃
である。硬化に要する時間は、1〜2時間程度で良く、
硬化温度が高いほどその所要時間は短縮される。この時
の膜の架橋密度は、常に70%以上となることが必須で
ある。硬化時に用いられるルイス酸としては、塩酸、硫
酸、硝酸、燐酸、蟻酸、酢酸等のプロトン酸が好まし
い。
The temperature range for cross-linking and hardening is 5
0 to 190 ° C, more preferably 80 to 130 ° C
Is. The time required for curing is about 1 to 2 hours,
The higher the curing temperature, the shorter the time required. At this time, it is essential that the crosslink density of the film is always 70% or more. As the Lewis acid used at the time of curing, a protic acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid or acetic acid is preferable.

【0022】このように均一な状態で熱架橋反応し、3
次元編み目化して得られた膜は完全な相溶状態であり、
高い透明性を示す。更に、それぞれの重合体の特性と組
成比から予測されるより優れた特性を示す。
In this way, the thermal crosslinking reaction is carried out in a uniform state, and 3
The film obtained by dimensional stitching is in a completely compatible state,
Shows high transparency. Furthermore, it shows the properties superior to those predicted from the properties and composition ratio of each polymer.

【0023】[0023]

【発明の効果】以上述べたように、本発明によれば無機
及び有機材料の高硬度透明塗装を可能にするものであ
る。
As described above, according to the present invention, high hardness transparent coating of inorganic and organic materials is possible.

【0024】[0024]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明するが、本発明はこれらの実施例によって限定
されるものではない。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0025】なお、膜の形成は、上記のゾル溶液をPM
MA基板上にスピンコ−ティングを施し、熱架橋を行う
ことにより行った。被膜の表面硬度は、JIS−K54
01記載の鉛筆硬度試験に従って評価した(コ−ト前の
PMMA基板の表面硬度は3Hと評価した)。
The film is formed by using the above sol solution with PM.
Spin coating was performed on the MA substrate and thermal crosslinking was performed. The surface hardness of the coating is JIS-K54.
It was evaluated according to the pencil hardness test described in 01 (the surface hardness of the PMMA substrate before coating was evaluated as 3H).

【0026】被膜の厚さは、走査型電子顕微鏡を用いて
破断面から計測した。被膜中に含まれる架橋剤の重量
は、被膜を基板から剥し1000℃で焼成後、焼成残渣
の原子吸光から算出した。
The thickness of the coating was measured from the fracture surface using a scanning electron microscope. The weight of the crosslinking agent contained in the coating was calculated from the atomic absorption of the firing residue after the coating was peeled from the substrate and baked at 1000 ° C.

【0027】膜の透明性は、300〜900nmのUV
−VIS吸収から判断した。また、被膜の架橋度は、ケ
イ素NMRの吸収より計算した。
The transparency of the film is determined by UV of 300 to 900 nm.
-Judging from VIS absorption. The degree of crosslinking of the film was calculated from the absorption of silicon NMR.

【0028】実施例1 メタクリル酸メチル(8.56g、85.5mmo
l)、3−メタクリロキシプロピルトリメトキシシラン
(1.12g、4.5mmol)、アゾビスイソブチロ
ニトリル(AIBN)(15mg、90μmol)、ジ
グリム(80ml)を封管に入れて脱気した。次にその
封管を振とうさせながら70℃で6時間、恒温槽で反応
させた。
Example 1 Methyl methacrylate (8.56 g, 85.5 mmo)
l), 3-methacryloxypropyltrimethoxysilane (1.12 g, 4.5 mmol), azobisisobutyronitrile (AIBN) (15 mg, 90 μmol), and diglyme (80 ml) were placed in a sealed tube and deaerated. Then, the sealed tube was shaken and reacted at 70 ° C. for 6 hours in a constant temperature bath.

【0029】反応終了後、封管を開け、反応溶液10m
lを50mlのフラスコに移し、大気下にて撹拌しなが
ら、ジグリム(10ml)及びテトラエトキシシラン
(50.34g、0.24mol)を加えた後、0.1
N塩酸(5ml)を滴下した。30分後、0.1mlの
反応溶液をPMMA(縦50mm×横50mm×厚さ2
mm)基板上にスピンコ−トを行ない、次にこの基板を
オ−ブンに移し、130℃で1時間加熱したところ、基
板上に透明な薄い被膜が生成した。
After the reaction was completed, the sealed tube was opened and the reaction solution was 10 m.
1 was transferred to a 50 ml flask, diglyme (10 ml) and tetraethoxysilane (50.34 g, 0.24 mol) were added with stirring under the atmosphere, and then 0.1
N hydrochloric acid (5 ml) was added dropwise. After 30 minutes, 0.1 ml of the reaction solution was added to PMMA (length 50 mm x width 50 mm x thickness 2
(mm) The substrate was spin-coated and then transferred to an oven and heated at 130 ° C. for 1 hour to form a transparent thin film on the substrate.

【0030】また、硬化前の反応溶液中に存在するメタ
クリル共重合体の数平均分子量をGPCを用いて測定し
たところ、150000であった。
The number average molecular weight of the methacrylic copolymer present in the reaction solution before curing was measured by GPC and found to be 150,000.

【0031】コ−ト前とコ−ト後のUV−VIS吸収
は、300〜900nmの波長域において最大0.3%
の光線透過率の減少にとどまり、コ−トによる基板の透
明性はほとんど損なわれていなかった。
The UV-VIS absorption before and after coating is 0.3% at maximum in the wavelength range of 300 to 900 nm.
However, the transparency of the substrate due to the coating was hardly impaired.

【0032】走査型電子顕微鏡で被膜の破断面を見ると
2μm程度であり、表面硬度は7Hを示した。被膜を焼
成し灰分を原子吸光分析にかけたところ、仕込み時に加
えられた架橋剤は、ほぼ全量が架橋反応に消費されてい
た。被膜の総重量中に含まれるSiは26.4重量%で
あった。被膜の固体 Si−NMR(97.3MHz;ポ
リジメチルシロキサン基準)スペクトルから、4本の吸
収ピ−クがδ−48.7ppm、δ−57.2ppm、
δ−66.2ppm、δ−75.2ppmと読み取れ、
それぞれの吸収ピ−ク強度比は、0.01:9.99:
72:18であった。これらの吸収の帰属を表1に示
す。
When the fracture surface of the coating is observed with a scanning electron microscope,
The surface hardness was about 2 μm and the surface hardness was 7H. Baking coating
The resulting ash was subjected to atomic absorption spectrometry and
Almost all of the obtained crosslinking agent was consumed in the crosslinking reaction.
It was Si contained in the total weight of the coating is 26.4% by weight.
there were. Coating solid Si-NMR (97.3 MHz; Po
From the spectrum of (ridimethylsiloxane)
The collection peak is δ-48.7ppm, δ-57.2ppm,
It can be read as δ-66.2 ppm and δ-75.2 ppm,
Each absorption peak intensity ratio is 0.01: 9.99:
It was 72:18. Table 1 shows the attribution of these absorptions.
You

【0033】[0033]

【表1】 これらのピ−クの帰属及び吸収強度から、この被膜の架
橋度は、0.01×1/4+9.99×2/4+72×
3/4+18×4/4=77%であることがわかった。
[Table 1] From the attribution of these peaks and the absorption intensity, the degree of crosslinking of this coating is 0.01 × 1/4 + 9.99 × 2/4 + 72 ×
It was found that 3/4 + 18 × 4/4 = 77%.

【0034】実施例2 メタクリル酸メチル(8.56g、85.5mmo
l)、3−メタクリロキシプロピルトリメトキシシラン
(1.12g、4.5mmol)、AIBN(15m
g、90μmol)、ジグリム(80ml)を封管に入
れて脱気した。次にその封管を振とうさせながら70℃
で6時間、恒温槽で反応させた。
Example 2 Methyl methacrylate (8.56 g, 85.5 mmo)
l), 3-methacryloxypropyltrimethoxysilane (1.12 g, 4.5 mmol), AIBN (15 m
g, 90 μmol) and diglyme (80 ml) were placed in a sealed tube and degassed. Next, shake the sealed tube at 70 ° C.
The reaction was carried out in a constant temperature bath for 6 hours.

【0035】反応終了後、封管を開け、反応溶液10m
lを50mlのフラスコに移し、大気下にて撹拌しなが
ら、ジグリム(10ml)及びテトラエトキシシラン
(32.76g、0.16mol)及びテトラプロポキ
シチタン(0.67g、2.3mmol)を加えた後、
0.1N塩酸(5ml)を滴下した。30分後、0.1
mlの反応溶液をPMMA(縦50mm×横50mm×
厚さ2mm)の基板上にスピンコ−トした。次にこの基
板をオ−ブンに移し、130℃で1時間加熱したところ
PMMA基板上に透明な薄い被膜が生成した。
After completion of the reaction, the sealed tube is opened and the reaction solution is 10 m.
After transferring 1 to a 50 ml flask and adding diglyme (10 ml), tetraethoxysilane (32.76 g, 0.16 mol) and tetrapropoxytitanium (0.67 g, 2.3 mmol) with stirring under air. ,
0.1N hydrochloric acid (5 ml) was added dropwise. 30 minutes later, 0.1
ml reaction solution to PMMA (length 50 mm x width 50 mm x
It was spin-coated on a substrate having a thickness of 2 mm. Next, this substrate was transferred to an oven and heated at 130 ° C. for 1 hour to form a transparent thin film on the PMMA substrate.

【0036】コ−ト前とコ−ト後のUV−VIS吸収
は、300〜900nmの波長域において最大0.3%
の光線透過率の減少にとどまり、コ−トによる基板の透
明性はほとんど損なわれていなかった。
The UV-VIS absorption before and after coating is 0.3% at maximum in the wavelength range of 300 to 900 nm.
However, the transparency of the substrate due to the coating was hardly impaired.

【0037】走査型電子顕微鏡で被膜の破断面を見ると
2μm程度であり、表面硬度は7Hを示した。被膜を焼
成し灰分を原子吸光分析にかけたところ、仕込み時に加
えられた架橋剤は、ほぼ全量が架橋反応に消費されてい
た。被膜の総重量中に含まれる金属種の含有量は23重
量%(被膜中に含まれる金属酸化物として計算)であっ
た。被膜の固体29Si−NMR(97.3MHz;ポ
リジメチルシロキサン基準)スペクトルから、4本の吸
収ピ−クがδ−48.7ppm、δ−57.2ppm、
δ−66.2ppm、δ−75.2ppmと読み取れ、
それぞれの吸収ピ−ク強度比は、0:8:70:22で
あった。用いたテトラプロポキシチタンの量はテトラア
ルコキシシランの量の1/100程度であり無視でき
る。よって架橋度は、実施例1の場合と同様にSi−
NMRの吸収から、8×2/4+70×3/4+22×
4/4=78.5%であることがわかった。
When the fracture surface of the coating film was observed with a scanning electron microscope, it was about 2 μm, and the surface hardness was 7H. When the coating was baked and the ash was subjected to atomic absorption spectrometry, the crosslinking agent added at the time of preparation was almost entirely consumed in the crosslinking reaction. The content of the metal species contained in the total weight of the coating was 23% by weight (calculated as the metal oxide contained in the coating). From the solid-state 29 Si-NMR (97.3 MHz; polydimethylsiloxane standard) spectrum of the coating, the four absorption peaks were δ-48.7 ppm, δ-57.2 ppm,
It can be read as δ-66.2 ppm and δ-75.2 ppm,
The absorption peak intensity ratio was 0: 8: 70: 22. The amount of tetrapropoxytitanium used is about 1/100 of the amount of tetraalkoxysilane and can be ignored. Therefore, the degree of crosslinking is 9 Si-as in the case of Example 1.
From NMR absorption, 8 × 2/4 + 70 × 3/4 + 22 ×
It was found that 4/4 = 78.5%.

【0038】実施例3 メタクリル酸メチル(8.56g、85.5mmo
l)、3−メタクリロキシプロピルトリメトキシシラン
(1.12g、4.5mmol)、AIBN(15m
g、90μmol)、ジグリム(80ml)を封管に入
れて脱気した。次にその封管を振とうさせながら70℃
で6時間、恒温槽で反応させた。
Example 3 Methyl methacrylate (8.56 g, 85.5 mmo)
l), 3-methacryloxypropyltrimethoxysilane (1.12 g, 4.5 mmol), AIBN (15 m
g, 90 μmol) and diglyme (80 ml) were placed in a sealed tube and degassed. Next, shake the sealed tube at 70 ° C.
The reaction was carried out in a constant temperature bath for 6 hours.

【0039】反応終了後、封管を開け、反応溶液10m
lを50mlのフラスコに移し、大気下にて撹拌しなが
ら、ジグリム(10ml)及びテトラエトキシシラン
(32.55g、0.15mol)、テトラプロポキシ
チタン(0.67g、2.3mmol)及びジルコニウ
ムアセチルアセトナ−ト(0.39g、0.81mmo
l)を加えた後、0.1N塩酸(5ml)を滴下した。
30分後、0.1mlの反応溶液をPMMA(縦50m
m×横50mm×厚さ2mm)基板上にスピンコ−トし
た。次にこの基板をオ−ブンに移し、130℃で1時間
加熱したところ基板上に透明な薄い被膜が生成した。
After the reaction was completed, the sealed tube was opened and the reaction solution was 10 m.
1 was transferred to a 50 ml flask and stirred under air with diglyme (10 ml) and tetraethoxysilane (32.55 g, 0.15 mol), tetrapropoxy titanium (0.67 g, 2.3 mmol) and zirconium acetylacetate. Nart (0.39g, 0.81mmo
l) was added, and 0.1N hydrochloric acid (5 ml) was added dropwise.
After 30 minutes, 0.1 ml of the reaction solution was added to PMMA (50 m in length).
m × width 50 mm × thickness 2 mm) spin-coated on a substrate. Next, this substrate was transferred to an oven and heated at 130 ° C. for 1 hour to form a transparent thin film on the substrate.

【0040】コ−ト前とコ−ト後のUV−VIS吸収
は、300〜900nmの波長域において最大0.3%
の光線透過率の減少にとどまり、コ−トによる基板の透
明性はほとんど損なわれていなかった。
The UV-VIS absorption before and after coating is 0.3% at maximum in the wavelength range of 300 to 900 nm.
However, the transparency of the substrate due to the coating was hardly impaired.

【0041】走査型電子顕微鏡で被膜の破断面を見ると
2μm程度であり、表面硬度は7Hを示した。被膜を焼
成し灰分を原子吸光分析にかけたところ、仕込み時に加
えられた架橋剤は、ほぼ全量が架橋反応に消費されてい
た。被膜の総重量中に含まれる金属種の含有量は22.
5重量%(被膜中に含まれる金属酸化物として計算)で
あった。被膜の固体Si−NMR(97.3MHz;
ポリジメチルシロキサン基準)スペクトルから、4本の
吸収ピ−クがδ−48.7ppm、δ−57.2pp
m、δ−66.2ppm、δ−75.2ppmと読み取
れ、それぞれの吸収ピ−ク強度比は、0:3:72:2
5であった。用いたテトラプロポキシチタン及びジルコ
ニウムアセチルアセトナ−トの量はテトラアルコキシシ
ランの量の1/100程度であり無視できる。よって架
橋度は、実施例1の場合と同様に29Si−NMRの吸
収から求めることができ、3×2/4+72×3/4+
25×4/4=80.5%であることがわかった。
When the fracture surface of the coating film was observed with a scanning electron microscope, it was about 2 μm and the surface hardness was 7H. When the coating was baked and the ash was subjected to atomic absorption spectrometry, the crosslinking agent added at the time of preparation was almost entirely consumed in the crosslinking reaction. The content of metal species contained in the total weight of the coating is 22.
It was 5% by weight (calculated as the metal oxide contained in the coating). Solid-state 2 Si-NMR (97.3 MHz;
From the polydimethylsiloxane standard spectrum, the four absorption peaks were δ-48.7 ppm, δ-57.2 pp.
m, δ-66.2 ppm, δ-75.2 ppm, and the respective absorption peak intensity ratios were 0: 3: 72: 2.
It was 5. The amounts of tetrapropoxytitanium and zirconium acetylacetonate used are about 1/100 of the amount of tetraalkoxysilane and can be ignored. Therefore, the degree of cross-linking can be determined from the absorption of 29 Si-NMR as in the case of Example 1, and can be 3 × 2/4 + 72 × 3/4 +.
It was found that 25 × 4/4 = 80.5%.

【0042】実施例4 メタクリル酸メチル(8.56g、85.5mmo
l)、3−アクリロキシプロピルトリメトキシシラン
(1.05g、4.5mmol)、AIBN(15m
g、90μmol)、ジグリム(80ml)を封管に入
れて脱気した。次にその封管を振とうさせながら70℃
で6時間、恒温槽で反応させた。
Example 4 Methyl methacrylate (8.56 g, 85.5 mmo)
l), 3-acryloxypropyltrimethoxysilane (1.05 g, 4.5 mmol), AIBN (15 m
g, 90 μmol) and diglyme (80 ml) were placed in a sealed tube and degassed. Next, shake the sealed tube at 70 ° C.
The reaction was carried out in a constant temperature bath for 6 hours.

【0043】反応終了後、封管を開け、反応溶液10m
lを50mlのフラスコに移し、大気下にて撹拌しなが
ら、ジグリム(10ml)及びテトラエトキシシラン
(50.34g、0.24mol)を加えた後、0.1
N塩酸(5ml)を滴下した。30分後、0.1mlの
反応溶液をPMMA(縦50mm×横50mm×厚さ2
mm)の基板上にスピンコ−トした。次に基板をオ−ブ
ンに移し、130℃で1時間加熱したところ、基板上に
透明な薄い被膜が生成した。
After the reaction is completed, the sealed tube is opened and the reaction solution is 10 m.
1 was transferred to a 50 ml flask, diglyme (10 ml) and tetraethoxysilane (50.34 g, 0.24 mol) were added with stirring under the atmosphere, and then 0.1
N hydrochloric acid (5 ml) was added dropwise. After 30 minutes, 0.1 ml of the reaction solution was added to PMMA (length 50 mm x width 50 mm x thickness 2
(mm) substrate was spin-coated. Next, the substrate was transferred to an oven and heated at 130 ° C. for 1 hour, whereby a transparent thin film was formed on the substrate.

【0044】また、硬化前の反応溶液中に存在するメタ
クリル共重合体の数平均分子量をGPCを用いて測定し
たところ、150000であった。
The number average molecular weight of the methacrylic copolymer present in the reaction solution before curing was measured by GPC and found to be 150,000.

【0045】コ−ト前とコ−ト後のUV−VIS吸収
は、300〜900nmの波長域において最大0.3%
の光線透過率の減少にとどまり、コ−トによる基板の透
明性はほとんど損なわれていなかった。
The UV-VIS absorption before and after coating is 0.3% at maximum in the wavelength range of 300 to 900 nm.
However, the transparency of the substrate due to the coating was hardly impaired.

【0046】走査型電子顕微鏡で被膜の破断面を見ると
2μm程度であり、表面硬度は7Hを示した。被膜を焼
成し灰分を原子吸光分析にかけたところ、仕込み時に加
えられた架橋剤は、ほぼ全量が架橋反応に消費されてい
た。被膜の総重量中に含まれる金属種は28重量%であ
った。被膜の固体29Si−NMR(97.3MHz;
ポリジメチルシロキサン基準)スペクトルから、4本の
吸収ピ−クがδ−48.7ppm、δ−57.2pp
m、δ−66.2ppm、δ−75.2ppmと読み取
れ、それぞれの吸収ピ−ク強度比は、0.01:9.9
9:73:17であった。
When the fracture surface of the coating film was observed with a scanning electron microscope, it was about 2 μm and the surface hardness was 7H. When the coating was baked and the ash was subjected to atomic absorption spectrometry, the crosslinking agent added at the time of preparation was almost entirely consumed in the crosslinking reaction. The metal species contained in the total weight of the coating was 28% by weight. Solid-state 29 Si-NMR (97.3 MHz;
From the polydimethylsiloxane standard spectrum, the four absorption peaks were δ-48.7 ppm, δ-57.2 pp.
m, δ-66.2 ppm, δ-75.2 ppm, and the respective absorption peak intensity ratios were 0.01: 9.9.
It was 9:73:17.

【0047】これらのピ−クの帰属及び吸収強度から、
この被膜の架橋度は、0.01×1/4+9.99×2
/4+73×3/4+17×4/4=75.8% であることがわかった。
From the attribution and absorption intensity of these peaks,
The degree of cross-linking of this film is 0.01 × 1/4 + 9.99 × 2
It was found that /4+73×3/4+17×4/4=75.8%.

【0048】実施例5 アクリル酸メチル(7.36g、85.5mmol)、
3−メタクリロキシプロピルトリメトキシシラン(1.
12g、4.5mmol)、AIBN(15mg、90
μmol)、ジグリム(80ml)を封管に入れて脱気
した。次にその封管を振とうさせながら70℃で6時
間、恒温槽で反応させた。
Example 5 Methyl acrylate (7.36 g, 85.5 mmol),
3-methacryloxypropyltrimethoxysilane (1.
12 g, 4.5 mmol), AIBN (15 mg, 90
μmol) and diglyme (80 ml) were placed in a sealed tube and degassed. Then, the sealed tube was shaken and reacted at 70 ° C. for 6 hours in a constant temperature bath.

【0049】反応終了後、封管を開け、反応溶液10m
lを50mlのフラスコに移し、大気下にて撹拌しなが
ら、ジグリム(10ml)及びテトラエトキシシラン
(50.34g、0.24mol)を加えた後、0.1
N塩酸(5ml)を滴下した。30分後、0.1mlの
反応溶液をPMMA(縦50mm×横50mm×厚さ2
mm)の基板上にスピンコ−トした。次にこのPMMA
基板をオ−ブンに移し、130℃で1時間加熱したとこ
ろ、PMMA基板上に透明な薄い被膜が生成した。
After completion of the reaction, the sealed tube was opened and the reaction solution was 10 m.
1 was transferred to a 50 ml flask, diglyme (10 ml) and tetraethoxysilane (50.34 g, 0.24 mol) were added with stirring under the atmosphere, and then 0.1
N hydrochloric acid (5 ml) was added dropwise. After 30 minutes, 0.1 ml of the reaction solution was added to PMMA (length 50 mm x width 50 mm x thickness 2
(mm) substrate was spin-coated. Next this PMMA
When the substrate was transferred to an oven and heated at 130 ° C. for 1 hour, a transparent thin film was formed on the PMMA substrate.

【0050】また、硬化前の反応溶液中に存在するメタ
クリル共重合体の数平均分子量をGPCを用いて測定し
たところ、150000であった。
The number average molecular weight of the methacrylic copolymer present in the reaction solution before curing was measured by GPC and found to be 150,000.

【0051】コ−ト前とコ−ト後のUV−VIS吸収
は、300〜900nmの波長域において最大0.3%
の光線透過率の減少にとどまり、コ−トによる基板の透
明性はほとんど損なわれていなかった。
The UV-VIS absorption before and after coating is 0.3% at maximum in the wavelength range of 300 to 900 nm.
However, the transparency of the substrate due to the coating was hardly impaired.

【0052】走査型電子顕微鏡で被膜の破断面を見ると
2μm程度であり、表面硬度は7Hを示した。被膜を焼
成し灰分を原子吸光分析にかけたところ、仕込み時に加
えられた架橋剤は、ほぼ全量が架橋反応に消費されてい
た。被膜の総重量中に含まれる金属種は28.5重量%
であった。被膜の固体Si−NMR(97.3MH
z;ポリジメチルシロキサン基準)スペクトルから、4
本の吸収ピ−クがδ−48.7ppm、δ−57.2p
pm、δ−66.2ppm、δ−75.2ppmと読み
取れ、それぞれの吸収ピ−ク強度比は、0:10:7
2:18であった。これらのピ−クの帰属及び吸収強度
から、この被膜の架橋度は、 10×2/4+72×3/4+18×4/4=77% であることがわかった。
When the fracture surface of the coating was observed with a scanning electron microscope, it was about 2 μm, and the surface hardness was 7H. When the coating was baked and the ash was subjected to atomic absorption spectrometry, the crosslinking agent added at the time of preparation was almost entirely consumed in the crosslinking reaction. The metal species contained in the total weight of the coating is 28.5% by weight.
Met. Solid state 9 Si-NMR (97.3 MH) of the film
z; polydimethylsiloxane standard) from spectrum 4
Book absorption peak is δ-48.7ppm, δ-57.2p
pm, δ-66.2 ppm, δ-75.2 ppm, and the respective absorption peak intensity ratios are 0: 10: 7.
It was 2:18. From the assignment of these peaks and the absorption intensity, it was found that the degree of crosslinking of this film was 10 × 2/4 + 72 × 3/4 + 18 × 4/4 = 77%.

【0053】実施例6 メタクリル酸(7.36g、85.5mmol)、3−
メタクリロキシプロピルトリメトキシシラン(1.12
g、4.5mmol)、AIBN(15mg、90μm
ol)、ジグリム(80ml)を封管に入れて脱気し
た。次にその封管を振とうさせながら70℃で6時間、
恒温槽で反応させた。
Example 6 Methacrylic acid (7.36 g, 85.5 mmol), 3-
Methacryloxypropyltrimethoxysilane (1.12
g, 4.5 mmol), AIBN (15 mg, 90 μm)
ol) and diglyme (80 ml) were placed in a sealed tube and degassed. Then, shake the sealed tube at 70 ° C for 6 hours,
The reaction was carried out in a constant temperature bath.

【0054】反応終了後、封管を開け、反応溶液10m
lを50mlのフラスコに移し、大気下にて撹拌しなが
ら、ジグリム(10ml)及びテトラエトキシシラン
(50.34g、0.24mol)を加えた後、0.1
N塩酸(5ml)を滴下した。30分後、0.1mlの
反応溶液をPMMA(縦50mm×横50mm×厚さ2
mm)の基板上にスピンコ−トした。次にこのPMMA
基板をオ−ブンに移し、130℃で1時間加熱したとこ
ろ、PMMA基板上に透明な薄い被膜が生成した。
After completion of the reaction, the sealed tube was opened and the reaction solution was 10 m.
1 was transferred to a 50 ml flask, diglyme (10 ml) and tetraethoxysilane (50.34 g, 0.24 mol) were added with stirring under the atmosphere, and then 0.1
N hydrochloric acid (5 ml) was added dropwise. After 30 minutes, 0.1 ml of the reaction solution was added to PMMA (length 50 mm x width 50 mm x thickness 2
(mm) substrate was spin-coated. Next this PMMA
When the substrate was transferred to an oven and heated at 130 ° C. for 1 hour, a transparent thin film was formed on the PMMA substrate.

【0055】また、硬化前の反応溶液中に存在するメタ
クリル共重合体の数平均分子量をGPCを用いて測定し
たところ、180000であった。
The number average molecular weight of the methacrylic copolymer present in the reaction solution before curing was measured by GPC and found to be 180,000.

【0056】コ−ト前とコ−ト後のUV−VIS吸収
は、300〜900nmの波長域において最大0.3%
の光線透過率の減少にとどまり、コ−トによる基板の透
明性はほとんど損なわれていなかった。
The UV-VIS absorption before and after coating is 0.3% at maximum in the wavelength range of 300 to 900 nm.
However, the transparency of the substrate due to the coating was hardly impaired.

【0057】走査型電子顕微鏡で被膜の破断面を見ると
2μm程度であり、表面硬度は7Hを示した。被膜を焼
成し灰分を原子吸光分析にかけたところ、仕込み時に加
えられた架橋剤は、ほぼ全量が架橋反応に消費されてい
た。被膜の総重量中に含まれる金属種は24.8重量%
であった。被膜の固体29Si−NMR(97.3MH
z;ポリジメチルシロキサン基準)スペクトルから、4
本の吸収ピ−クがδ−48.7ppm、δ−57.2p
pm、δ−66.2ppm、δ−75.2ppmと読み
取れ、それぞれの吸収ピ−ク強度比は、0:10:7
2:18であった。これらのピ−クの帰属及び吸収強度
から、この被膜の架橋度は、 10×2/4+72×3/4+18×4/4=77% であることがわかった。
When the fracture surface of the coating film was observed with a scanning electron microscope, it was about 2 μm, and the surface hardness was 7H. When the coating was baked and the ash was subjected to atomic absorption spectrometry, the crosslinking agent added at the time of preparation was almost entirely consumed in the crosslinking reaction. The metal species contained in the total weight of the coating is 24.8% by weight.
Met. Solid state 29 Si-NMR (97.3 MH) of the coating
z; polydimethylsiloxane standard) from spectrum 4
Book absorption peak is δ-48.7ppm, δ-57.2p
pm, δ-66.2 ppm, δ-75.2 ppm, and the respective absorption peak intensity ratios are 0: 10: 7.
It was 2:18. From the assignment of these peaks and the absorption intensity, it was found that the degree of crosslinking of this film was 10 × 2/4 + 72 × 3/4 + 18 × 4/4 = 77%.

【0058】実施例7 メタクリル酸エチル(9.74g、85.5mmo
l)、3−アクリロキシプロピルトリメトキシシラン
(1.05g、4.5mmol)、AIBN(15m
g、90μmol)、ジグリム(80ml)を封管に入
れて脱気した。次にその封管を振とうさせながら70℃
で6時間、恒温槽で反応させた。
Example 7 Ethyl methacrylate (9.74 g, 85.5 mmo)
l), 3-acryloxypropyltrimethoxysilane (1.05 g, 4.5 mmol), AIBN (15 m
g, 90 μmol) and diglyme (80 ml) were placed in a sealed tube and degassed. Next, shake the sealed tube at 70 ° C.
The reaction was carried out in a constant temperature bath for 6 hours.

【0059】反応終了後、封管を開け、反応溶液10m
lを50mlのフラスコに移し、大気下にて撹拌しなが
ら、ジグリム(10ml)及びテトラエトキシシラン
(50.34g、0.24mol)を加えた後、0.1
N塩酸(5ml)を滴下した。30分後、0.1mlの
反応溶液をPMMA(縦50mm×横50mm×厚さ2
mm)の基板上にスピンコ−トした。次にこのPMMA
基板をオ−ブンに移し、130℃で1時間加熱したとこ
ろ、PMMA基板上に透明な薄い被膜が生成した。
After the reaction was completed, the sealed tube was opened and the reaction solution was 10 m.
1 was transferred to a 50 ml flask, diglyme (10 ml) and tetraethoxysilane (50.34 g, 0.24 mol) were added with stirring under the atmosphere, and then 0.1
N hydrochloric acid (5 ml) was added dropwise. After 30 minutes, 0.1 ml of the reaction solution was added to PMMA (length 50 mm x width 50 mm x thickness 2
(mm) substrate was spin-coated. Next this PMMA
When the substrate was transferred to an oven and heated at 130 ° C. for 1 hour, a transparent thin film was formed on the PMMA substrate.

【0060】また、硬化前の反応溶液中に存在するメタ
クリル共重合体の数平均分子量をGPCを用いて測定し
たところ、150000であった。
The number average molecular weight of the methacrylic copolymer present in the reaction solution before curing was measured by GPC and found to be 150,000.

【0061】コ−ト前とコ−ト後のUV−VIS吸収
は、300〜900nmの波長域において最大0.3%
の光線透過率の減少にとどまり、コ−トによる基板の透
明性はほとんど損なわれていなかった。
The UV-VIS absorption before and after coating is 0.3% at maximum in the wavelength range of 300 to 900 nm.
However, the transparency of the substrate due to the coating was hardly impaired.

【0062】走査型電子顕微鏡で被膜の破断面を見ると
2μm程度であり、表面硬度は7Hを示した。被膜を焼
成し灰分を原子吸光分析にかけたところ、仕込み時に加
えられた架橋剤は、ほぼ全量が架橋反応に消費されてい
た。被膜の総重量中に含まれる金属種は21重量%であ
った。被膜の固体Si−NMR(97.3MHz;ポ
リジメチルシロキサン基準)スペクトルから、4本の吸
収ピ−クがδ−48.7ppm、δ−57.2ppm、
δ−66.2ppm、δ−75.2ppmと読み取れ、
それぞれの吸収ピ−ク強度比は、0:10:68:22
であった。
When the fracture surface of the coating film was observed with a scanning electron microscope, it was about 2 μm, and the surface hardness was 7H. When the coating was baked and the ash was subjected to atomic absorption spectrometry, the crosslinking agent added at the time of preparation was almost entirely consumed in the crosslinking reaction. The metal species contained in the total weight of the coating was 21% by weight. From the solid-state 2 Si-NMR (97.3 MHz; polydimethylsiloxane standard) spectrum of the coating, four absorption peaks were δ-48.7 ppm, δ-57.2 ppm,
It can be read as δ-66.2 ppm and δ-75.2 ppm,
The absorption peak intensity ratio is 0: 10: 68: 22.
Met.

【0063】これらのピ−クの帰属及び吸収強度から、
この被膜の架橋度は、 10×2/4+68×3/4+22×4/4=78% であることがわかった。
From the attribution and absorption intensity of these peaks,
It was found that the degree of crosslinking of this coating was 10 × 2/4 + 68 × 3/4 + 22 × 4/4 = 78%.

【0064】実施例8 アクリル酸(6.15g、85.5mmol)、2−ア
クリロキシエチルトリブトキシシラン(1.467g、
4.5mmol)、AIBN(15mg、90μmo
l)、ジグリム(80ml)を封管に入れて脱気した。
次にその封管を振とうさせながら70℃、6h恒温槽で
反応させた。
Example 8 Acrylic acid (6.15 g, 85.5 mmol), 2-acryloxyethyltributoxysilane (1.467 g,
4.5 mmol), AIBN (15 mg, 90 μmo)
l) and diglyme (80 ml) were placed in a sealed tube and degassed.
Next, the sealed tube was allowed to react in a constant temperature bath at 70 ° C. for 6 hours while shaking.

【0065】反応終了後、封管を開け、反応溶液10m
lを50mlのフラスコに移し、大気下にて撹拌しなが
ら、ジグリム(10ml)及びテトラエトキシシラン
(50.34g、0.24mol)を加えた後、0.1
N塩酸(5ml)を滴下した。30分後、0.1mlの
反応溶液をPMMA(縦50mm×横50mm×厚さ2
mm)の基板上にスピンコ−トした。次にこのPMMA
基板をオ−ブンに移し、130℃で1時間加熱したとこ
ろ、PMMA基板上に透明な薄い被膜が生成した。
After completion of the reaction, the sealed tube is opened and the reaction solution is 10 m.
1 was transferred to a 50 ml flask, diglyme (10 ml) and tetraethoxysilane (50.34 g, 0.24 mol) were added with stirring under the atmosphere, and then 0.1
N hydrochloric acid (5 ml) was added dropwise. After 30 minutes, 0.1 ml of the reaction solution was added to PMMA (length 50 mm x width 50 mm x thickness 2
(mm) substrate was spin-coated. Next this PMMA
When the substrate was transferred to an oven and heated at 130 ° C. for 1 hour, a transparent thin film was formed on the PMMA substrate.

【0066】また、硬化前の反応溶液中に存在するメタ
クリル共重合体の数平均分子量をGPCを用いて測定し
たところ、180000であった。
The number average molecular weight of the methacrylic copolymer present in the reaction solution before curing was measured by GPC and found to be 180,000.

【0067】コ−ト前とコ−ト後のUV−VIS吸収
は、300〜900nmの波長域において最大0.3%
の光線透過率の減少にとどまり、コ−トによる基板の透
明性はど損なわれていなかった。
The UV-VIS absorption before and after coating is 0.3% at maximum in the wavelength range of 300 to 900 nm.
However, the transparency of the substrate due to the coating was not impaired.

【0068】走査型電子顕微鏡で被膜の破断面を見ると
2μm程度であり表面硬度は、7Hを示した。被膜を焼
成し灰分を原子吸光分析にかけたところ、仕込み時に加
えられた架橋剤は、ほぼ全量が架橋反応に消費されてい
た。被膜の総重量中に含まれる金属種は30.2重量%
であった。被膜の固体29Si−NMR(97.3MH
z;ポリジメチルシロキサン基準)スペクトルから、4
本の吸収ピ−クがδ−48.7ppm、δ−57.2p
pm、δ−66.2ppm、δ−75.2ppmと読み
取れ、それぞれの吸収ピ−ク強度比は、0.01:9.
99:50:40であった。これらのピ−クの帰属及び
吸収強度から、この被膜の架橋度は、 0.01×1/4+9.99×2/4+50×3/4+
40×4/4=83% であることがわかった。
When the fracture surface of the coating film was observed with a scanning electron microscope, it was about 2 μm, and the surface hardness was 7H. When the coating was baked and the ash was subjected to atomic absorption spectrometry, the crosslinking agent added at the time of preparation was almost entirely consumed in the crosslinking reaction. 30.2% by weight of metal species contained in the total weight of the coating
Met. Solid state 29 Si-NMR (97.3 MH) of the coating
z; polydimethylsiloxane standard) from spectrum 4
Book absorption peak is δ-48.7ppm, δ-57.2p
pm, δ-66.2 ppm, δ-75.2 ppm, and the respective absorption peak intensity ratios are 0.01: 9.
It was 99:50:40. From the attribution of these peaks and the absorption intensity, the degree of crosslinking of this coating is 0.01 × 1/4 + 9.99 × 2/4 + 50 × 3/4 +
It was found that 40 × 4/4 = 83%.

【0069】比較例1 メタクリル酸メチル(8.56g、85.5mmo
l)、3−メタクリロキシプロピルトリメトキシシラン
(1.12g、4.5mmol)、AIBN(15m
g、90μmol)、ジグリム(80ml)を封管に入
れて脱気した。次にその封管を振とうさせながら70℃
で6時間、恒温槽で反応させた。
Comparative Example 1 Methyl methacrylate (8.56 g, 85.5 mmo)
l), 3-methacryloxypropyltrimethoxysilane (1.12 g, 4.5 mmol), AIBN (15 m
g, 90 μmol) and diglyme (80 ml) were placed in a sealed tube and degassed. Next, shake the sealed tube at 70 ° C.
The reaction was carried out in a constant temperature bath for 6 hours.

【0070】反応終了後、封管を開け、反応溶液10m
lを50mlのフラスコに移し、大気下にて撹拌しなが
ら、ジグリム(10ml)を加えた後、0.1N塩酸
(5ml)を滴下した。30分後、0.1mlの反応溶
液をPMMA(縦50mm×横50mm×厚さ2mm)
の基板上にスピンコ−トした。次にこのPMMA基板を
オ−ブンに移し、130℃で1時間加熱したところ、P
MMA基板上に透明な薄い被膜が生成した。
After completion of the reaction, the sealed tube was opened and the reaction solution was 10 m.
1 g was transferred to a 50 ml flask, diglyme (10 ml) was added thereto with stirring under the atmosphere, and then 0.1 N hydrochloric acid (5 ml) was added dropwise. After 30 minutes, 0.1 ml of the reaction solution was added to PMMA (length 50 mm x width 50 mm x thickness 2 mm).
Was spin-coated on the substrate. Next, this PMMA substrate was transferred to an oven and heated at 130 ° C. for 1 hour.
A clear thin film formed on the MMA substrate.

【0071】コ−ト前とコ−ト後のUV−VIS吸収
は、300〜900nmの波長域において最大0.3%
の光線透過率の減少にとどまり、コ−トによる基板の透
明性はど損なわれていなかった。
The UV-VIS absorption before and after coating is 0.3% at maximum in the wavelength range of 300 to 900 nm.
However, the transparency of the substrate due to the coating was not impaired.

【0072】走査型電子顕微鏡で被膜の破断面を見ると
2μm程度であり、表面硬度は3Hを示した。被膜を焼
成し灰分を原子吸光分析にかけたところ、被膜の総重量
中に含まれる金属種は1.2重量%であった。
When the fracture surface of the coating film was observed with a scanning electron microscope, it was about 2 μm, and the surface hardness was 3H. When the coating was baked and the ash was subjected to atomic absorption spectrometry, the metal species contained in the total weight of the coating was 1.2% by weight.

【0073】前記の実施例との比較により、共重合体
[1]に金属アルコキシド等の架橋剤を加えた時のコ−
ト膜の硬度の向上に与える効果は顕著であった。
By comparison with the above examples, the copolymer [1] obtained by adding a crosslinking agent such as a metal alkoxide was used.
The effect of improving the hardness of the coating film was remarkable.

【0074】被膜の固体29Si−NMR(97.3M
Hz;ポリジメチルシロキサン基準)スペクトルから、
4本の吸収ピ−クがδ−48.7ppm、δ−57.2
ppm、δ−66.2ppm、δ−75.2ppmと読
み取れ、それぞれの吸収ピ−ク強度比は、15:23:
42:20であった。これらのピ−クの帰属及び吸収強
度から、この被膜の架橋度は、 15×1/4+23×2/4+42×3/4+20×4
/4=67% であることがわかった。
Solid state 29 Si-NMR (97.3 M) of the coating
Hz; polydimethylsiloxane standard) spectrum,
The four absorption peaks were δ-48.7 ppm and δ-57.2.
ppm, δ-66.2 ppm, δ-75.2 ppm, and the respective absorption peak intensity ratios are 15:23:
It was 42:20. From the assignment of these peaks and the absorption intensity, the degree of crosslinking of this coating was 15 × 1/4 + 23 × 2/4 + 42 × 3/4 + 20 × 4.
It was found that / 4 = 67%.

【0075】比較例2 メタクリル酸(7.36g、85.5mmol)、3−
メタクリロキシプロピルトリメトキシシラン(1.12
g、4.5mmol)、AIBN(15mg、90μm
ol)、ジグリム(80ml)を封管に入れて脱気し
た。次にその封管を振とうさせながら70℃で6時間、
恒温槽で反応させた。
Comparative Example 2 Methacrylic acid (7.36 g, 85.5 mmol), 3-
Methacryloxypropyltrimethoxysilane (1.12
g, 4.5 mmol), AIBN (15 mg, 90 μm)
ol) and diglyme (80 ml) were placed in a sealed tube and degassed. Then, shake the sealed tube at 70 ° C for 6 hours,
The reaction was carried out in a constant temperature bath.

【0076】反応終了後、封管を開け、反応溶液10m
lを50mlのフラスコに移し、大気下にて撹拌しなが
ら、ジグリム(10ml)を加えた後、0.1N塩酸
(5ml)を滴下した。30分後、0.1mlの反応溶
液をPMMA(縦50mm×横50mm×厚さ2mm)
の基板上にスピンコ−トした。次にスピンコ−トされた
PMMA基板をオ−ブンに移し、130℃で1時間加熱
したところ、PMMA基板上に透明な薄い被膜が生成し
た。
After the reaction was completed, the sealed tube was opened and the reaction solution was 10 m.
1 g was transferred to a 50 ml flask, diglyme (10 ml) was added thereto with stirring under the atmosphere, and then 0.1 N hydrochloric acid (5 ml) was added dropwise. After 30 minutes, 0.1 ml of the reaction solution was added to PMMA (length 50 mm x width 50 mm x thickness 2 mm).
Was spin-coated on the substrate. Next, the spin-coated PMMA substrate was transferred to an oven and heated at 130 ° C. for 1 hour, and a transparent thin film was formed on the PMMA substrate.

【0077】コ−ト前とコ−ト後のUV−VIS吸収
は、300〜900nmの波長域において最大0.3%
の光線透過率の減少にとどまり、コ−トによる基板の透
明性はど損なわれていなかった。
The UV-VIS absorption before and after coating is 0.3% at maximum in the wavelength range of 300 to 900 nm.
However, the transparency of the substrate due to the coating was not impaired.

【0078】走査型電子顕微鏡で被膜の破断面を見ると
2μm程度であり、表面硬度は3Hを示した。被膜を焼
成し灰分を原子吸光分析にかけたところ、被膜の総重量
中に含まれる金属種は0.95重量%であった。
When the fracture surface of the coating film was observed with a scanning electron microscope, it was about 2 μm, and the surface hardness was 3H. When the coating was baked and the ash was subjected to atomic absorption spectrometry, the metal species contained in the total weight of the coating was 0.95% by weight.

【0079】前記の実施例との比較により、共重合体
[1]に金属アルコキシド等の架橋剤を加えた時のコ−
ト膜の硬度の向上に与える効果は顕著であった。
By comparison with the above examples, the copolymer [1] obtained by adding a crosslinking agent such as a metal alkoxide to the copolymer [1] was used.
The effect of improving the hardness of the coating film was remarkable.

【0080】被膜の固体29Si−NMR(97.3M
Hz;ポリジメチルシロキサン基準)スペクトルから、
4本の吸収ピ−クがδ−48.7ppm、δ−57.2
ppm、δ−66.2ppm、δ−75.2ppmと読
み取れ、それぞれの吸収ピ−ク強度比は、20:21:
35:24であった。これらのピ−クの帰属及び吸収強
度から、この被膜の架橋度は、 20×1/4+21×2/4+35×3/4+24×4
/4=65.8% であることがわかった。
Solid state 29 Si-NMR (97.3 M) of the coating
Hz; polydimethylsiloxane standard) spectrum,
The four absorption peaks were δ-48.7 ppm and δ-57.2.
ppm, δ-66.2 ppm, δ-75.2 ppm, and the respective absorption peak intensity ratios are 20:21:
It was 35:24. From the attribution of these peaks and the absorption intensity, the degree of cross-linking of this coating was 20 × 1/4 + 21 × 2/4 + 35 × 3/4 + 24 × 4.
It was found that /4=65.8%.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】下記一般式 【化1】 (式中、Rは水素または炭素数1〜5のアルキル基、
R’は炭素数1〜5のアルキル基を表し、lは1〜3、
m/nがmol比で99/1〜80/20)で示される
アルコキシシリル基を側鎖に持つラジカル共重合体(数
平均分子量50000〜300000:ポリスチレン換
算)[1]1〜60重量%、下記一般式 【化2】 (式中、Rは水素、炭素数1〜5のアルコキシ基また
はフェノキシ基、炭素数1〜5のアルキル基またはフェ
ニル基を表し、Rは炭素数1〜5のアルキル基または
フェニル基を表し、MはSi、Ti、SnまたはZr、
nは1〜4の整数を表す)で示される金属アルコキシド
[2]および/または下記一般式 【化3】 (M’はTi、SnまたはZrを表し、Rは炭素数1
〜5のアルキル基、Acacはアセチルアセトナ−ト類
を表す)で示される金属キレ−ト化合物[3]99〜4
0重量%を有機溶剤に溶解し、これにルイス酸を添加し
てなるコ−ティング用材料。
1. The following general formula: (In the formula, R is hydrogen or an alkyl group having 1 to 5 carbon atoms,
R'represents an alkyl group having 1 to 5 carbon atoms, l is 1 to 3,
Radical copolymer having an alkoxysilyl group represented by m / n in a molar ratio of 99/1 to 80/20) in the side chain (number average molecular weight 50,000 to 300,000: polystyrene conversion) [1] 1 to 60% by weight, The following general formula: (In the formula, R 1 represents hydrogen, an alkoxy group having 1 to 5 carbon atoms or a phenoxy group, an alkyl group having 1 to 5 carbon atoms or a phenyl group, and R 2 represents an alkyl group having 1 to 5 carbon atoms or a phenyl group. , M is Si, Ti, Sn or Zr,
n represents an integer of 1 to 4) and / or a metal alkoxide [2] represented by the following general formula: (M ′ represents Ti, Sn or Zr, R 3 has 1 carbon atom
~ 5 alkyl group, Acac represents acetylacetonate) [3] 99-4
A coating material prepared by dissolving 0% by weight in an organic solvent and adding a Lewis acid thereto.
【請求項2】請求項1に記載のコ−ティング用材料を基
材上に塗布し、加熱硬化させることにより、架橋部位が
少なくとも1種以上の金属−酸素結合(ただし、金属は
Si、Ti、SnまたはZr)を構成し、その金属種が
コ−ト膜の全量に対し15重量%以上含まれ、架橋度が
70%以上である3次元的に架橋しているケイ素基を側
鎖に有する(メタ)アクリル酸系透明硬化物膜を形成す
ることを特徴とするコ−ティング方法。
2. The coating material according to claim 1 is applied onto a substrate and cured by heating to form a metal-oxygen bond having at least one kind of crosslinking site (where the metal is Si or Ti). , Sn or Zr), the metal species of which is 15% by weight or more with respect to the total amount of the coating film, and the degree of crosslinking is 70% or more. A coating method, which comprises forming the (meth) acrylic acid-based transparent cured product film.
JP27055791A 1991-09-24 1991-09-24 Coating material and method for coating using the same Pending JPH0578614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27055791A JPH0578614A (en) 1991-09-24 1991-09-24 Coating material and method for coating using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27055791A JPH0578614A (en) 1991-09-24 1991-09-24 Coating material and method for coating using the same

Publications (1)

Publication Number Publication Date
JPH0578614A true JPH0578614A (en) 1993-03-30

Family

ID=17487833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27055791A Pending JPH0578614A (en) 1991-09-24 1991-09-24 Coating material and method for coating using the same

Country Status (1)

Country Link
JP (1) JPH0578614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041033A (en) * 2001-07-31 2003-02-13 Takiron Co Ltd Hard coated molded product
US6602552B1 (en) * 2000-11-14 2003-08-05 Basf Corporation Low temperature cure coating composition and method therefore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602552B1 (en) * 2000-11-14 2003-08-05 Basf Corporation Low temperature cure coating composition and method therefore
JP2003041033A (en) * 2001-07-31 2003-02-13 Takiron Co Ltd Hard coated molded product

Similar Documents

Publication Publication Date Title
JP3306442B2 (en) Coating composition based on fluorine-containing inorganic condensation polymer, method for producing the same and method of using the same
JP5492000B2 (en) Transparent siloxane resin composition for optics
JPH10279886A (en) Coating composition, hydrophilic film and article coated with hydrophilic film
EP1116760A2 (en) Coated articles
JPH0820646A (en) Production of hydrolyzable functional group-containing organic polysiloxane and curable resin composition
TW201739774A (en) Copolymer and resin composition, packaging film and package structure including the same
JP2002212503A (en) Film-forming composition, method for producing the composition, method for forming porous film, and the porous film
KR102088691B1 (en) Composition for coating a glass film and method for fabricating a glass coating film
JPH0160162B2 (en)
JP2004510015A (en) Coating composition
JPH0578614A (en) Coating material and method for coating using the same
KR20030041992A (en) Coating compositions
JPH0578426A (en) Acrylic transparent hot cured product
JP3320647B2 (en) Antimicrobial agent for silicon-based paint, antimicrobial silicon-based paint composition, coating film thereof, and antibacterial substrate coated with the coating film
JPH11349644A (en) Polyorganosiloxane copolymer composition
JP3586912B2 (en) Coating liquid and method for producing the same
JPH0578615A (en) Acrylic primer and its usage
JP5481610B2 (en) Coating composition, method for producing transparent protective film using coating composition, and organic glass having transparent protective film
JPH11130962A (en) Silicone-resin-containing emulsion composition, article with cured film formed therefrom, and production thereof
JP2000169710A (en) Silicone resin-containing emulsion composition and article having cured coating film of this composition
JPH09110984A (en) Cured silicate product and its production
JP3996687B2 (en) Curable resin composition for paint
JPH059358A (en) Production of thermally cured acrylic material
JP3740714B2 (en) Siloxane compound, method for producing the same, and curable composition
JPH04161435A (en) Curable silicone resin composition for glass fiber and cured product thereof