JPH05778Y2 - - Google Patents

Info

Publication number
JPH05778Y2
JPH05778Y2 JP1984199555U JP19955584U JPH05778Y2 JP H05778 Y2 JPH05778 Y2 JP H05778Y2 JP 1984199555 U JP1984199555 U JP 1984199555U JP 19955584 U JP19955584 U JP 19955584U JP H05778 Y2 JPH05778 Y2 JP H05778Y2
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
air
evaporators
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1984199555U
Other languages
Japanese (ja)
Other versions
JPS61116985U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984199555U priority Critical patent/JPH05778Y2/ja
Priority to GB08523067A priority patent/GB2167543B/en
Priority to KR1019850007128A priority patent/KR910008696B1/en
Priority to CN85107580A priority patent/CN1003157B/en
Priority to US06/792,606 priority patent/US4644758A/en
Publication of JPS61116985U publication Critical patent/JPS61116985U/ja
Application granted granted Critical
Publication of JPH05778Y2 publication Critical patent/JPH05778Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Freezers Or Refrigerated Showcases (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は別々に冷却又は除霜運転可能な2系統
の蒸発器を有するシヨーケースに関するものであ
る。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a show case having two systems of evaporators that can be operated separately for cooling or defrosting.

(従来の技術) 従来のこの種のシヨーケースの構造を第3図に
示す。同図において、1はシヨーケース本体であ
り、その上面、背面、底面及び側面には断熱パネ
ル10が配置され、それぞれ上壁部10a、背壁
部10b、底壁部10c及び側壁部10dを形成
している。上壁部10a、背壁部10b、底壁部
10cに沿つて風通路11を形成するため、庫内
には内箱12が設けられている。更に上壁部10
a及び底壁部10cの風通路11は上下2層に分
かれている。なお、図示していないが、風通路1
1は背壁部10bにおいて、側壁部10dの方向
に3分割されている。更に、後述する蒸発器及び
ダンパーは3分割された風通路の中央に配置され
る(例えば、実公昭55−10853号)。
(Prior Art) The structure of a conventional show case of this type is shown in FIG. In the figure, reference numeral 1 denotes a case body, and heat insulating panels 10 are arranged on the top, back, bottom, and side surfaces of the main body, forming a top wall 10a, a back wall 10b, a bottom wall 10c, and a side wall 10d, respectively. ing. An inner box 12 is provided inside the refrigerator to form a wind passage 11 along the top wall 10a, back wall 10b, and bottom wall 10c. Furthermore, the upper wall portion 10
The air passages 11 in the bottom wall portion 10c and the bottom wall portion 10c are divided into two layers, upper and lower. Although not shown, the air passage 1
1 is divided into three parts in the direction of the side wall part 10d at the back wall part 10b. Further, an evaporator and a damper, which will be described later, are arranged in the center of the air passage divided into three (for example, Utility Model Publication No. 55-10853).

シヨーケース本体1の前面開口部には吹出口1
4、吸入口15が設けられ、一点鎖線で図示され
るように、冷却されていない風16aが送風機
(図示せず)によつて、吹出口14から吸入口1
5、底壁部10cの下側の風通路11、背壁部1
0bの両側に設けられている風通路(図示せず)
及び上壁部10aの上側の風通路11を通つて循
環している。この冷却されていない風16aの内
側には蒸発器22,23の熱交換によつて冷却さ
れた風16bが、送風機17によつて、実線で示
すように、吹出口14、吸入口15、底壁部10
cの上側の風通路11、背壁部10bの中央に設
けられている風通路13及び上壁部10aの下側
の風通路11を通つて循環している。而して、こ
の2通りの風によつてエアカーテン16が形成さ
れている。また、庫内には図示のように棚板1
8、網板19が設けられて商品を陳列するように
なつている。
The front opening of the case body 1 has an air outlet 1.
4. An inlet 15 is provided, and as shown by the dashed line, uncooled air 16a is sent from the outlet 14 to the inlet 1 by a blower (not shown).
5. Air passage 11 below the bottom wall 10c, back wall 1
Air passages provided on both sides of 0b (not shown)
The air is circulated through the air passage 11 on the upper side of the upper wall portion 10a. Inside this uncooled air 16a, air 16b cooled by heat exchange between the evaporators 22 and 23 is transferred to the air outlet 14, the suction port 15, and the bottom of the air by the blower 17, as shown by the solid line. Wall part 10
It circulates through the air passage 11 on the upper side of c, the air passage 13 provided in the center of the back wall part 10b, and the air passage 11 on the lower side of the upper wall part 10a. Thus, the air curtain 16 is formed by these two types of wind. In addition, there is a shelf board inside the refrigerator as shown in the diagram.
8. A screen board 19 is provided to display products.

上述した背壁部10bの中央に設けられている
風通路13は、仕切板20を背壁部10bと内箱
12との間に平行に設けることによつて、シヨー
ケース本体1の前後方向に2層に分割されて、第
1の風通路20a、第2の風通路20bを形成し
ている。この仕切板20は中心部によつて折曲げ
られて、中心部より下方では第1の風通路20a
を狭くし、中心部より上方では第2の風通路20
bを狭くするように段差を形成している。
The air passage 13 provided at the center of the back wall portion 10b described above is divided into two sections in the front-rear direction of the case body 1 by providing the partition plate 20 in parallel between the back wall portion 10b and the inner box 12. It is divided into layers to form a first air passage 20a and a second air passage 20b. This partition plate 20 is bent at the center, and below the center there is a first air passage 20a.
is narrowed, and a second air passage 20 is formed above the center.
A step is formed to narrow b.

第1の風通路20aの上方には図示のように仕
切板20と、内箱12に設けられている取付板2
1との間に第1の蒸発器22が冷媒の入側22a
を上に向け、その出側22bを下に向けて配置、
固定されている。また、第2の風通路20bの下
方には、仕切板20と背壁部10bとの間に第2
の蒸発器23が冷媒の入側23aを上に向け、そ
の出側23bを下に向けて配置、固定されてい
る。
Above the first air passage 20a, there is a partition plate 20 and a mounting plate 2 provided on the inner box 12 as shown in the figure.
1, the first evaporator 22 is connected to the refrigerant inlet side 22a.
is placed facing upward and its exit side 22b facing downward,
Fixed. Further, below the second air passage 20b, a second
The evaporator 23 is arranged and fixed with its refrigerant inlet side 23a facing upward and its outlet side 23b facing downward.

更に、仕切板20の上端には第1の風通路20
a及び第2の風通路20bを開閉制御するダンパ
ー24cを収納したダンパーユニツト24が取付
けられ、このダンパーユニツト24の上方には、
風を図中、実線矢印で示すように循環させるため
の送風機17が設けられている。
Furthermore, a first air passage 20 is provided at the upper end of the partition plate 20.
A damper unit 24 housing a damper 24c for controlling the opening and closing of the first and second air passages 20b and 20b is installed, and above this damper unit 24,
A blower 17 is provided for circulating air as shown by solid arrows in the figure.

次に、第4図について従来の冷媒回路を説明す
る。圧縮機25の出側25aは凝縮器26に接続
され、この凝縮器26の出側は3つの端子を有
し、各端子にはそれぞれ電磁弁27a,27b,
27cが接続されている。更に、図中左側の電磁
弁27aは第1の蒸発器22の入側22aに接続
され、右側の電磁弁27cは第2の蒸発器23の
入側23aに接続されている。電磁弁27a,2
7b間及び電磁弁27b,27c間にはそれぞれ
左方向、右方向に向かう逆止弁28a,28bが
設けられ、電磁弁27aと逆止弁28aとの間、
電磁弁27cと逆止弁28bとの間にはそれぞれ
膨脹弁29a,29bが設けられている。第1の
及び第2の蒸発器22,23の出側22b,23
bにはそれぞれ電磁弁27d,27eが接続さ
れ、この電磁弁27d,27eは圧縮機25の入
側25bに接続されている。また、第1及び第2
の蒸発器22,23の出側22b,23bは、互
いに対向する一対の逆止弁28c,28dを通し
て接続され、この逆止弁28c,28dとの間に
は電磁弁27bが接続されている。
Next, a conventional refrigerant circuit will be explained with reference to FIG. An outlet side 25a of the compressor 25 is connected to a condenser 26, and the outlet side of the condenser 26 has three terminals, and each terminal is provided with a solenoid valve 27a, 27b,
27c is connected. Further, the solenoid valve 27a on the left side of the figure is connected to the inlet side 22a of the first evaporator 22, and the solenoid valve 27c on the right side is connected to the inlet side 23a of the second evaporator 23. Solenoid valve 27a, 2
7b and between the solenoid valves 27b and 27c, check valves 28a and 28b facing leftward and rightward, respectively, are provided, and between the solenoid valve 27a and the check valve 28a,
Expansion valves 29a and 29b are provided between the electromagnetic valve 27c and the check valve 28b, respectively. Outlet sides 22b, 23 of the first and second evaporators 22, 23
Solenoid valves 27d and 27e are connected to the inlet side 25b of the compressor 25, respectively. Also, the first and second
The outlet sides 22b, 23b of the evaporators 22, 23 are connected through a pair of mutually opposing check valves 28c, 28d, and a solenoid valve 27b is connected between the check valves 28c, 28d.

次にこの冷媒回路の運転モードについて説明す
る。
Next, the operation mode of this refrigerant circuit will be explained.

まず、電磁弁27b,27c,27dをオフと
し、電磁弁27a,27eをオンとした場合に
は、圧縮機25を出た冷媒は凝縮器26、電磁弁
27aを通り、蒸発器22の除霜を行い、逆止弁
28c,28b、膨脹弁29bを通つて蒸発器2
3で冷却を行い、電磁弁27eを通つて、圧縮機
25へ戻る。従つて、蒸発器22は除霜され、蒸
発器23は冷却運転を行なつていることになる
(第1のモード)。
First, when the solenoid valves 27b, 27c, and 27d are turned off and the solenoid valves 27a and 27e are turned on, the refrigerant exiting the compressor 25 passes through the condenser 26 and the solenoid valve 27a, and defrosts the evaporator 22. and the evaporator 2 through the check valves 28c, 28b and the expansion valve 29b.
3, and returns to the compressor 25 through the electromagnetic valve 27e. Therefore, the evaporator 22 is defrosted, and the evaporator 23 is in a cooling operation (first mode).

次に、電磁弁27a,27b,27eをオフと
し、電磁弁27c,27dをオンとすると、圧縮
機25を出た冷媒は凝縮器26、電磁弁27cを
通つて、蒸発器23に至る。そして蒸発器23の
除霜を行い、逆止弁28d,28a、膨脹弁29
aを経て蒸発器22で冷却を行い電磁弁27dを
通つて圧縮機25に戻る。従つて、蒸発器22は
冷却運転を行い、蒸発器23は除霜されているこ
とになる(第2のモード)。
Next, when the solenoid valves 27a, 27b, and 27e are turned off and the solenoid valves 27c and 27d are turned on, the refrigerant leaving the compressor 25 passes through the condenser 26 and the solenoid valve 27c, and reaches the evaporator 23. Then, the evaporator 23 is defrosted, and the check valves 28d and 28a and the expansion valve 29 are
It is cooled by the evaporator 22 through the solenoid valve 27d and returned to the compressor 25. Therefore, the evaporator 22 performs a cooling operation, and the evaporator 23 is defrosted (second mode).

更にまた、電磁弁27a,27cをオフとし、
電磁弁27b,27d,27eをオンとすれば、
圧縮機25を出た冷媒は凝縮器26、電磁弁27
bを経て、2つに分かれ、一方は逆止弁28a、
膨脹弁29aを通つて、蒸発器22で熱交換(冷
却)を行い、電磁弁27dを経て、圧縮機25へ
戻る。他方は逆止弁28b、膨脹弁29bを通つ
て、蒸発器23で熱交換(冷却)を行い、電磁弁
27eを経て、圧縮機25へ戻る。従つて、蒸発
器22,23の両方が冷却動作を行なうことにな
る(第3のモード)。
Furthermore, the solenoid valves 27a and 27c are turned off,
If the solenoid valves 27b, 27d, and 27e are turned on,
The refrigerant that has exited the compressor 25 is sent to a condenser 26 and a solenoid valve 27.
b, it is divided into two parts, one is a check valve 28a,
It passes through the expansion valve 29a, undergoes heat exchange (cooling) in the evaporator 22, and returns to the compressor 25 via the electromagnetic valve 27d. The other one passes through the check valve 28b and the expansion valve 29b, undergoes heat exchange (cooling) in the evaporator 23, and returns to the compressor 25 via the electromagnetic valve 27e. Therefore, both evaporators 22 and 23 perform a cooling operation (third mode).

前記モードは第1→第3→第2→第3→第1→
第3→……の順に繰返し行なわれるが、第1から
第3へ移行する時、又は第2から第3へ移行する
時には、蒸発器22又は23内が液冷媒で一杯に
なつているため、そのまま電磁弁27d又は27
eを開くと圧縮機25の入側25bに液冷媒が流
入し壊れる恐れがある。そこで、実際には第1の
モードから第3のモードに移る際は、電磁弁27
aをオフし電磁弁27eのみをオンさせたままと
し、蒸発器22内の液冷媒を気化させ(第4のモ
ード)、また、第2のモードから第3のモードに
移る際は、電磁弁27cをオフし電磁弁27dの
みをオンさせたままとし、蒸発器23内の液冷媒
を気化させ(第5のモード)た後、第3のモード
に移行させる如くなつている。
The mode is 1st → 3rd → 2nd → 3rd → 1st →
The process is repeated in the order of 3rd →..., but when moving from the 1st to the 3rd, or from the 2nd to the 3rd, the evaporator 22 or 23 is already full of liquid refrigerant. Just use the solenoid valve 27d or 27
If e is opened, liquid refrigerant may flow into the inlet side 25b of the compressor 25 and breakage may occur. Therefore, when moving from the first mode to the third mode, the solenoid valve 27
a is turned off and only the solenoid valve 27e is left on to vaporize the liquid refrigerant in the evaporator 22 (fourth mode). 27c is turned off and only the solenoid valve 27d is left on, and after the liquid refrigerant in the evaporator 23 is vaporized (fifth mode), the mode is shifted to the third mode.

次に第3図及び第5図について、ダンパーユニ
ツトを説明する。ダンパーユニツト24は、上下
に開口したハウジング24a内にダンパー軸24
bを有し、このダンパー軸24bにはダンパー2
4cが取付けられている。そしてダンパー24c
はダンパー軸24bを回転させることにより、第
5図においてA,B,Cで示す位置で停止、固定
することができるようになつている。而して、該
ダンパー24cは、蒸発器22が除霜運転を行
い、蒸発器23が冷却運転を行なつている場合、
即ち前記第1のモード(第4のモードを含む。)
においては位置Aに保持され、風通路20bのみ
を開き、また、蒸発器22が冷却運転を行い、蒸
発器23が除霜運転を行なう場合、即ち第2のモ
ード(第5のモードを含む。)においては位置B
に保持され、風通路20aのみを開き、更に蒸発
器22,23の両者が冷却運転を行なう場合、即
ち第3のモードにおいては位置Cに保持され、風
通路20a,20bの両者を開くよう制御され
る。従つて、このシヨーケースは連続して冷却さ
れる。
Next, the damper unit will be explained with reference to FIGS. 3 and 5. The damper unit 24 has a damper shaft 24 in a housing 24a that is open vertically.
b, and the damper 2 is attached to this damper shaft 24b.
4c is installed. and damper 24c
By rotating the damper shaft 24b, the damper can be stopped and fixed at the positions indicated by A, B, and C in FIG. Therefore, when the evaporator 22 is performing a defrosting operation and the evaporator 23 is performing a cooling operation, the damper 24c
That is, the first mode (including the fourth mode)
In the case where the evaporator 22 is held at position A, only the air passage 20b is opened, and the evaporator 22 performs a cooling operation and the evaporator 23 performs a defrosting operation, that is, the second mode (including the fifth mode). ) at position B
When the evaporators 22 and 23 perform a cooling operation, that is, in the third mode, the evaporators 22 and 23 are held at position C and controlled to open both the air passages 20a and 20b. be done. This case is therefore continuously cooled.

(考案が解決しようとする問題点) ところで、前述したシヨーケースでは蒸発器2
2,23内における冷媒の流れは、蒸発器の上方
より流れ込んで下方から流れ出るため、次のよう
な問題点があつた。
(Problem that the invention attempts to solve) By the way, in the case mentioned above, the evaporator 2
The flow of refrigerant in the evaporators 2 and 23 occurs from above the evaporator and flows out from below, resulting in the following problems.

() 除霜中の蒸発器の上部は流入した液冷媒
により直ちに温度が上がり、霜も解けてしまう
が、下部は上部で熱の奪われた冷媒が流れて来
るため、霜を解かすのに非常に時間がかかる。
() During defrosting, the temperature of the upper part of the evaporator immediately rises due to the liquid refrigerant flowing in, and the frost is melted, but the lower part is difficult to thaw the frost because the refrigerant that has lost heat in the upper part flows into the evaporator. It takes a lot of time.

() 除霜中、霜が解けてしまうと、蒸発器の
温度は液冷媒の温度と同じ位まで上昇し、蒸発
器の周囲の空気を暖める。しかしながら、実際
に暖まるのは霜が早く解ける蒸発器の上部の空
気であるため、この暖まつた空気は蒸発器の下
部の霜には触れることなく、上昇気流となつて
蒸発器とダンパーユニツトとの空間に溜つてし
まい、冷媒の熱を有効に利用できない。
() During defrosting, when the frost melts, the temperature of the evaporator rises to the same level as the temperature of the liquid refrigerant, warming the air around the evaporator. However, what actually heats up is the air at the top of the evaporator, where the frost melts quickly, so this warm air does not touch the frost at the bottom of the evaporator, but instead becomes an upward airflow that connects the evaporator and damper unit. The heat of the refrigerant cannot be used effectively.

() 特にダンパーの気密や断熱が悪い時、前
述した蒸発器とダンパーユニツトとの空間に溜
つた、暖められた空気が該ダンパーを通じて、
他方の蒸発器により冷却された空気の温度を上
げてしまう。
() Especially when the airtightness or insulation of the damper is poor, the warm air accumulated in the space between the evaporator and the damper unit mentioned above passes through the damper.
This increases the temperature of the air cooled by the other evaporator.

一方、前記シヨーケースにおいて、冷媒を蒸発
器22,23の下部より流し込んで上部より流れ
出すようにすれば、前述した問題点(),(),
()は解決するが、この場合、一方の蒸発器が
液冷媒で満たされないと、他方の蒸発器(冷却
側)に液冷媒が供給されないため、冷媒封入量は
非常に多量のものが必要となり、少ないと冷媒不
良となつてしまう。また、冷媒量が充分であつて
も除霜中の蒸発器が液冷媒で満たされるには時間
がかかり、その間は冷却側の蒸発器へ供給される
冷媒量が激減するため、冷凍機の低圧カツトが動
作し冷却不良となる恐れがあつた。
On the other hand, in the case, if the refrigerant is made to flow from the lower part of the evaporators 22 and 23 and flow out from the upper part, the above-mentioned problems (), (),
() is solved, but in this case, unless one evaporator is filled with liquid refrigerant, liquid refrigerant will not be supplied to the other evaporator (cooling side), so a very large amount of refrigerant is required. If the amount is too low, the refrigerant will become defective. In addition, even if the amount of refrigerant is sufficient, it takes time for the evaporator to be filled with liquid refrigerant during defrosting, and during that time, the amount of refrigerant supplied to the evaporator on the cooling side is drastically reduced, resulting in low pressure in the refrigerator. There was a risk that the cut would operate and cause cooling failure.

本考案は前記問題点を解決し、除霜時間を短縮
するとともに除霜中の蒸発器による庫内温度の上
昇を低減し、冷却効率を高めたシヨーケースを提
供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a show case that shortens the defrosting time, reduces the rise in internal temperature caused by the evaporator during defrosting, and improves cooling efficiency.

(問題点を解決するための手段) 前記問題点を解決するため、本考案ではケース
本体内の風通路に配置された2系統の蒸発器を含
み、凝縮器からの冷媒をそのまま第1の蒸発器に
送り除霜運転し、その冷媒を膨脹弁を通して第2
の蒸発器に送り冷却運転する第1のモード、凝縮
器からの冷媒をそのまま第2の蒸発器に送り除霜
運転し、その冷媒を膨脹弁を通して第1の蒸発器
に送り冷却運転する第2のモード、並びに凝縮器
からの冷媒を膨脹弁を通して第1及び第2の蒸発
器に送り冷却運転する第3のモードの少なくとも
3つの運転モードを有する冷媒回路を備えたシヨ
ーケースにおいて、第1及び第2の蒸発器とし
て、それぞれ独立した冷媒の入口と出口とをその
上部と下部とに有する上下2層の部分からなり且
つ上層に比べて下層の容積が小さい蒸発器を用
い、凝縮器からの冷媒を先ず前記蒸発器の下層に
その上部の入口から下部の出口に向つて送り、こ
の後、上層にその上部の入口から下部の出口に向
つて送るようになした。
(Means for solving the problem) In order to solve the above problem, the present invention includes two systems of evaporators arranged in the air passage inside the case body, and the refrigerant from the condenser is directly transferred to the first evaporator. The refrigerant is sent to the second tank and operated for defrosting, and the refrigerant is passed through the expansion valve to the
In the first mode, the refrigerant from the condenser is sent directly to the second evaporator for cooling operation, and in the second mode, the refrigerant is sent to the first evaporator through the expansion valve for cooling operation. and a third mode in which refrigerant from the condenser is sent to the first and second evaporators for cooling operation through an expansion valve. As the second evaporator, an evaporator is used, which consists of two layers, upper and lower, each having an independent refrigerant inlet and outlet at the upper and lower parts, and in which the volume of the lower layer is smaller than that of the upper layer, and the refrigerant from the condenser is was first fed into the lower layer of the evaporator from the upper inlet to the lower outlet, and then into the upper layer from the upper inlet to the lower outlet.

(作用) 前記構成によれば、除霜時には先に蒸発器の下
部から液冷媒によつて暖められ除霜されるため、
除霜後の蒸発器の下部によつて暖められた空気が
蒸発器の上部へ向けて上昇し、これによつて蒸発
器の上部の除霜が促進され、除霜時における液冷
媒の熱の有効利用を図ることができ、除霜時間を
短縮することができ、また、前記蒸発器の下部に
よつて暖められた空気は蒸発器の上部を暖める際
にその熱を奪われ温度が低くなるため、必要以上
に除霜中の蒸発器上部の空気の温度を上昇させる
ことがなく、かつ他方の蒸発器で冷却された空気
の温度を上昇させることがなく、従つて庫内温度
への影響を少なくすることができ、冷却効率を高
めることができ、さらにまた、冷媒は各蒸発器の
上層及び下層においてその上部の入口から下部の
出口に向つて、即ち上方から下方に流されるた
め、除霜側の蒸発器の下層が冷媒で一杯になれ
ば、冷却側の蒸発器にも供給されるようになり、
また、各蒸発器は上層に比べて下層の容積が小さ
いため、該下層が冷媒で一杯になるまでの時間も
短くて済み、従つて、冷却不良を引起こすことが
なく、また、封入する冷媒量も従来と比べて特に
増やす必要がない。
(Function) According to the above configuration, when defrosting, the lower part of the evaporator is first warmed and defrosted by the liquid refrigerant.
After defrosting, the air warmed by the lower part of the evaporator rises toward the upper part of the evaporator, which promotes defrosting of the upper part of the evaporator and reduces the heat of the liquid refrigerant during defrosting. Effective utilization can be achieved, defrosting time can be shortened, and the air warmed by the lower part of the evaporator loses its heat when heating the upper part of the evaporator, resulting in a lower temperature. Therefore, the temperature of the air above the evaporator during defrosting will not be increased more than necessary, and the temperature of the air cooled by the other evaporator will not be increased, which will affect the internal temperature. Furthermore, since the refrigerant flows from the upper inlet to the lower outlet in the upper and lower layers of each evaporator, that is, from the upper part to the lower part, the refrigerant is removed. Once the lower layer of the evaporator on the frost side is full of refrigerant, it will also be supplied to the evaporator on the cooling side.
In addition, since the volume of the lower layer of each evaporator is smaller than that of the upper layer, the time required for the lower layer to fill with refrigerant is shortened, so there is no possibility of cooling failure. There is no need to particularly increase the amount compared to the conventional method.

(実施例) 第1図及び第2図は本考案の一実施例を示すも
ので、図中、従来例と同一構成部分は同一符号を
もつて表わす。即ち、1はシヨーケース本体、1
1,13は風通路、20a,20bは第1及び第
2の冷気の風通路、24はダンパーユニツト、2
5は圧縮機、26は凝縮器、27a〜27eは電
磁弁、28a〜28dは逆止弁、29a,29b
は膨脹弁、30,40は第1及び第2の蒸発器で
ある。
(Embodiment) FIGS. 1 and 2 show an embodiment of the present invention, and in the figures, the same components as those of the conventional example are denoted by the same reference numerals. That is, 1 is the show case body, 1
1 and 13 are air passages; 20a and 20b are first and second cold air air passages; 24 is a damper unit;
5 is a compressor, 26 is a condenser, 27a to 27e are electromagnetic valves, 28a to 28d are check valves, 29a, 29b
is an expansion valve, and 30 and 40 are first and second evaporators.

蒸発器30は、それぞれ独立した冷媒用パイ
プ、即ち冷媒の入口及び出口を有する上層31及
び下層32とからなつている。上層31は下層3
2に比べて容積が大きく、従つて冷媒用パイプの
長さも長く構成されている。下層32の上部の入
口32aは電磁弁27aに接続され、下部の出口
32bは上層31の上部の入口31aに接続さ
れ、更にその下部の出口31bは電磁弁27dに
接続されている。また、蒸発器40もそれぞれ独
立した冷媒用パイプ、即ち冷媒の入口及び出口を
有する上層41及び下層42とからなつている。
上層41は下層42に比べて容積が大きく、従つ
て冷媒用パイプの長さも長く構成されている。下
層42の上部の入口42aは電磁弁27cに接続
され、下部の出口42bは上層41の上部の入口
41aに接続され、更にその下部の出口41bは
電磁弁27eに接続されている。
The evaporator 30 consists of an upper layer 31 and a lower layer 32 each having independent refrigerant pipes, ie, refrigerant inlets and outlets. Upper layer 31 is lower layer 3
Compared to No. 2, the volume is larger, and the length of the refrigerant pipe is therefore longer. The upper inlet 32a of the lower layer 32 is connected to the solenoid valve 27a, the lower outlet 32b is connected to the upper inlet 31a of the upper layer 31, and the lower outlet 31b is connected to the solenoid valve 27d. The evaporator 40 also includes an upper layer 41 and a lower layer 42 each having independent refrigerant pipes, that is, an inlet and an outlet for the refrigerant.
The upper layer 41 has a larger volume than the lower layer 42, and therefore the length of the refrigerant pipe is also longer. The upper inlet 42a of the lower layer 42 is connected to the solenoid valve 27c, the lower outlet 42b is connected to the upper inlet 41a of the upper layer 41, and the lower outlet 41b is connected to the solenoid valve 27e.

前記蒸発器30は風通路20aの上方に上層3
1を上にして配置、固定され、また、蒸発器40
は風通路20bの下方に上層41を上にして配
置、固定されている。
The evaporator 30 has an upper layer 3 above the air passage 20a.
1 is placed and fixed, and the evaporator 40
is arranged and fixed below the air passage 20b with the upper layer 41 facing upward.

次に動作について説明すると、第1の運転モー
ドにおいて、電磁弁27aを通つた液冷媒は入口
32aから蒸発器30の下層32に入り、まず該
下層32を暖めて除霜し、その後、出口32bか
ら入口31aを通して上層31に入り、これを暖
めて除霜し、出口31bから逆止弁28c,28
b,膨脹弁29bを介して蒸発器40の下層4
2、更に上層41に送られ、これを冷却する。
Next, to explain the operation, in the first operation mode, the liquid refrigerant that has passed through the solenoid valve 27a enters the lower layer 32 of the evaporator 30 from the inlet 32a, first warms and defrosts the lower layer 32, and then exits 32b It enters the upper layer 31 through the inlet 31a, warms it and defrosts it, and connects the check valves 28c, 28 through the outlet 31b.
b, the lower layer 4 of the evaporator 40 via the expansion valve 29b
2. It is further sent to the upper layer 41 and cooled.

また、第2の運転モードにおいて、電磁弁27
cを通つた液冷媒は入口42aから蒸発器40の
下層42に入り、まず該下層42を暖めて除霜
し、その後、出口42bから入口41aを通して
上層41に入り、これを暖めて除霜し、出口41
bから逆止弁28d、28a、膨脹弁29aを介
して蒸発器30の下層32、更に上層31に送ら
れ、これを冷却する。
In addition, in the second operation mode, the solenoid valve 27
The liquid refrigerant that has passed through c enters the lower layer 42 of the evaporator 40 from the inlet 42a, first warms and defrosts the lower layer 42, and then enters the upper layer 41 from the outlet 42b through the inlet 41a, warms and defrosts it. , exit 41
b is sent to the lower layer 32 and further to the upper layer 31 of the evaporator 30 via the check valves 28d and 28a and the expansion valve 29a, where it is cooled.

第3の運転モードにおいて、電磁弁27bを通
つた冷媒は、逆止弁28a、膨脹弁29aを通し
て下層32に送られ、一方、逆止弁28b、膨脹
弁29bを通して下層42に送られ、更に上層3
1,41に送られ、蒸発器30,40が冷却され
る。
In the third operation mode, the refrigerant that has passed through the electromagnetic valve 27b is sent to the lower layer 32 through the check valve 28a and the expansion valve 29a, and on the other hand, is sent to the lower layer 42 through the check valve 28b and the expansion valve 29b, and then to the upper layer. 3
1 and 41, and the evaporators 30 and 40 are cooled.

前記実施例によれば、液冷媒は除霜時に、先に
蒸発器、例えば30,又は40の下層32,42
に送られ、暖められるので、従来、解けにくかつ
た蒸発器下部の霜を短時間で取除くことができ
る。また、先に除霜された蒸発器の下層32,4
2の周囲の空気の方が早く暖められるが、この下
層32,42により暖められた空気は蒸発器の上
部、即ち上層31,41の周囲に上昇するため、
該上層31,41の除霜を促進することができ、
即ち冷媒の熱を有効に利用することができる。ま
た、この下層32,42で暖められた空気は上昇
し、その空気の熱は上層31,41の霜を解かす
際に奪われ温度が低くなるため、蒸発器30,4
0上部の空気の温度が低くなり、他方の蒸発器4
0,30による冷気や庫内の温度への影響を少な
くでき、冷却効率を高めることができる。また、
冷媒は上層31,41及び下層32,42におい
て、従来と同様に上方から下方に流されるため、
除霜側の蒸発器30,40の下層32,42が冷
媒で一杯になれば、冷却側の蒸発器40,30に
も供給されるようになり、また、蒸発器30,4
0は上層31,41に比べて下層32,42の容
積が小さいため、該下層32,42が冷媒で一杯
になるまでの時間も短くて済み、従つて、冷却不
良を引起こすことがなく、また、封入する冷媒量
も従来と比べて特に増やす必要がない。
According to the embodiment, the liquid refrigerant is first transferred to the lower layer 32, 42 of the evaporator, e.g. 30 or 40, during defrosting.
The frost at the bottom of the evaporator, which was previously difficult to melt, can be removed in a short time. In addition, the lower layers 32, 4 of the evaporator which were previously defrosted
The air around 2 is heated faster, but the air warmed by the lower layers 32 and 42 rises to the top of the evaporator, that is, around the upper layers 31 and 41.
defrosting of the upper layers 31, 41 can be promoted;
That is, the heat of the refrigerant can be used effectively. Also, the air warmed in the lower layers 32, 42 rises, and the heat of the air is taken away when the upper layers 31, 41 are defrosted, resulting in a lower temperature.
0 The temperature of the air above becomes lower, and the other evaporator 4
It is possible to reduce the influence of 0.0, 30 on the cold air and the temperature inside the refrigerator, and improve the cooling efficiency. Also,
Since the refrigerant flows from the top to the bottom in the upper layers 31, 41 and the lower layers 32, 42, as in the conventional case,
When the lower layers 32, 42 of the evaporators 30, 40 on the defrosting side are filled with refrigerant, the refrigerant is also supplied to the evaporators 40, 30 on the cooling side, and
0, the volume of the lower layers 32, 42 is smaller than that of the upper layers 31, 41, so the time required for the lower layers 32, 42 to become full of refrigerant is short, and therefore there is no possibility of cooling failure. Further, there is no need to particularly increase the amount of refrigerant to be sealed compared to the conventional case.

(考案の効果) 以上説明したように本考案によれば、ケース本
体内の風通路に配置された2系統の蒸発器を含
み、凝縮器からの冷媒をそのまま第1の蒸発器に
送り除霜運転し、その冷媒を膨脹弁を通して第2
の蒸発器に送り冷却運転する第1のモード、凝縮
器からの冷媒をそのまま第2の蒸発器に送り除霜
運転し、その冷媒を膨脹弁を通して第1の蒸発器
に送り冷却運転する第2のモード、並びに凝縮器
からの冷媒を膨脹弁を通して第1及び第2の蒸発
器に送り冷却運転する第3のモードの少なくとも
3つの運転モードを有する冷媒回路を備えたシヨ
ーケースにおいて、第1及び第2の蒸発器とし
て、それぞれ独立した冷媒の入口と出口とをその
上部と下部とに有する上下2層の部分からなり且
つ上層に比べて下層の容積が小さい蒸発器を用
い、凝縮器らの冷媒を先ず前記蒸発器の下層にそ
の上部の入口から下部の出口に向つて送り、この
後、上層にその上部の入口から下部の出口に向つ
て送るようになしたため、除霜時には先に蒸発器
の下部から液冷媒によつて暖められ除霜され、除
霜後の蒸発器の下部によつて暖められた空気が蒸
発器の上部へ向けて上昇し、これによつて蒸発器
の上部の除霜が促進され、除霜時における液冷媒
の熱の有効利用を図ることができ、除霜時間を短
縮することができ、また、前記蒸発器の下部によ
つて暖められた空気は蒸発器の上部を暖める際に
その熱を奪われ温度が低くなるため、必要以上に
除霜中の蒸発器の温度を上昇させることがなく、
かつ他方の蒸発器で冷却された空気の温度を上昇
させることがなく、従つて庫内温度への影響を少
なくすることができ、冷却効率を高めることがで
き、さらにまた、冷媒は各蒸発器の上層及び下層
においてその上部の入口から下部の出口に向つ
て、即ち上方から下方に流されるため、除霜側の
蒸発器の下層が冷媒で一杯になれば、冷却側の蒸
発器にも供給されるようになり、また、各蒸発器
は上層に比べて下層の容積が小さいため、該下層
が冷媒で一杯になるまでの時間も短くて済み、従
つて、冷却不良を引起こすことがなく、また、封
入する冷媒量も従来と比べて特に増やす必要がな
い等の利点がある。
(Effect of the invention) As explained above, the invention includes two systems of evaporators arranged in the air passage inside the case body, and the refrigerant from the condenser is directly sent to the first evaporator for defrosting. The refrigerant is passed through the expansion valve to the second
In the first mode, the refrigerant from the condenser is sent directly to the second evaporator for cooling operation, and in the second mode, the refrigerant is sent to the first evaporator through the expansion valve for cooling operation. and a third mode in which refrigerant from the condenser is sent to the first and second evaporators for cooling operation through an expansion valve. As the second evaporator, an evaporator is used, which consists of two upper and lower layers each having an independent refrigerant inlet and outlet at the upper and lower parts, and in which the volume of the lower layer is smaller than that of the upper layer, and the refrigerant of the condenser etc. is first sent to the lower layer of the evaporator from the upper inlet to the lower outlet, and then to the upper layer from the upper inlet to the lower outlet. Therefore, when defrosting, the evaporator is The air is warmed and defrosted by the liquid refrigerant from the lower part of the evaporator, and the air warmed by the lower part of the evaporator after defrosting rises to the upper part of the evaporator. Frost is promoted, the heat of the liquid refrigerant can be effectively used during defrosting, the defrosting time can be shortened, and the air warmed by the lower part of the evaporator is heated by the evaporator. When heating the upper part, the heat is taken away and the temperature becomes lower, so there is no need to raise the temperature of the evaporator during defrosting more than necessary.
In addition, the temperature of the air cooled by the other evaporator does not increase, so the influence on the internal temperature can be reduced, and the cooling efficiency can be increased. In the upper and lower layers, the refrigerant flows from the upper inlet to the lower outlet, that is, from the top to the bottom, so when the lower layer of the evaporator on the defrosting side is full of refrigerant, it is also supplied to the evaporator on the cooling side. In addition, since the volume of the lower layer of each evaporator is smaller than that of the upper layer, it takes less time for the lower layer to fill up with refrigerant, thus preventing cooling failure. Further, there are advantages such as there is no need to particularly increase the amount of refrigerant to be sealed compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の説明に供するもので、第1図及
び第2図は本考案のシヨーケースの一実施例を示
し、第1図は側部断面図、第2図は冷媒回路の概
略構成図、第3図乃至第5図は従来のシヨーケー
スの一例を示し、第3図は側部断面図、第4図は
冷媒回路の概略構成図、第5図はダンパーユニツ
トの拡大断面図である。 1……シヨーケース本体、11,13……風通
路、20a,20b……冷気の風通路、24……
ダンパーユニツト、24c……ダンパー、25…
…圧縮機、26……凝縮器、27a〜27e……
電磁弁、28a……28d……逆止弁、29a,
29b……膨脹弁、30,40……蒸発器、3
1,41……上層、32,42……下層、31
a,32a,41a,42a……入口、31b,
32b,41b,42b……出口。
The drawings are for explaining the present invention, and FIGS. 1 and 2 show an embodiment of the show case of the present invention, FIG. 1 is a side sectional view, and FIG. 2 is a schematic configuration diagram of a refrigerant circuit. 3 to 5 show an example of a conventional show case, with FIG. 3 being a sectional side view, FIG. 4 being a schematic configuration diagram of a refrigerant circuit, and FIG. 5 being an enlarged sectional view of a damper unit. 1...Sho case body, 11, 13...Air passage, 20a, 20b...Cold air air passage, 24...
Damper unit, 24c... Damper, 25...
...Compressor, 26...Condenser, 27a-27e...
Solenoid valve, 28a...28d...Check valve, 29a,
29b...Expansion valve, 30,40...Evaporator, 3
1,41...upper layer, 32,42...lower layer, 31
a, 32a, 41a, 42a...entrance, 31b,
32b, 41b, 42b...Exit.

Claims (1)

【実用新案登録請求の範囲】 ケース本体内の風通路に配置された2系統の蒸
発器を含み、凝縮器からの冷媒をそのまま第1の
蒸発器に送り除霜運転し、その冷媒を膨脹弁を通
して第2の蒸発器に送り冷却運転する第1のモー
ド、凝縮器からの冷媒をそのまま第2の蒸発器に
送り除霜運転し、その冷媒を膨脹弁を通して第1
の蒸発器に送り冷却運転する第2のモード、並び
に凝縮器からの冷媒を膨脹弁を通して第1及び第
2の蒸発器に送り冷却運転する第3のモードの少
なくとも3つの運転モードを有する冷媒回路を備
えたシヨーケースにおいて、 第1及び第2の蒸発器として、それぞれ独立し
た冷媒の入口と出口とをその上部と下部とに有す
る上下2層の部分からなり且つ上層に比べて下層
の容積が小さい蒸発器を用い、 凝縮器からの冷媒を先ず前記蒸発器の下層にそ
の上部の入口から下部の出口に向つて送り、この
後、上層にその上部の入口から下部の出口に向つ
て送るようになしたことを特徴とするシヨーケー
ス。
[Claim for Utility Model Registration] It includes two systems of evaporators arranged in the air passage inside the case body, and the refrigerant from the condenser is directly sent to the first evaporator for defrosting operation, and the refrigerant is transferred to the expansion valve. In the first mode, the refrigerant from the condenser is directly sent to the second evaporator for defrosting operation, and the refrigerant is passed through the expansion valve to the second evaporator for cooling operation.
A refrigerant circuit having at least three operating modes: a second mode in which the refrigerant is sent to the first and second evaporators for cooling operation; and a third mode in which the refrigerant from the condenser is sent to the first and second evaporators through the expansion valve for cooling operation. In a show case equipped with a first and second evaporator, the first and second evaporators are made up of two layers, upper and lower, each having an independent refrigerant inlet and outlet at the upper and lower parts, and the volume of the lower layer is smaller than that of the upper layer. Using an evaporator, the refrigerant from the condenser is first sent to the lower layer of the evaporator from its upper inlet to its lower outlet, and then to the upper layer from its upper inlet to its lower outlet. A show case featuring what has been done.
JP1984199555U 1984-11-16 1984-12-28 Expired - Lifetime JPH05778Y2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1984199555U JPH05778Y2 (en) 1984-12-28 1984-12-28
GB08523067A GB2167543B (en) 1984-11-26 1985-09-18 Refrigerated display cabinet
KR1019850007128A KR910008696B1 (en) 1984-11-16 1985-09-27 Refrigerated display case
CN85107580A CN1003157B (en) 1984-11-26 1985-10-17 Refrigerated display cabinet
US06/792,606 US4644758A (en) 1984-11-26 1985-10-29 Refrigerated display cabinet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984199555U JPH05778Y2 (en) 1984-12-28 1984-12-28

Publications (2)

Publication Number Publication Date
JPS61116985U JPS61116985U (en) 1986-07-23
JPH05778Y2 true JPH05778Y2 (en) 1993-01-11

Family

ID=30759585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984199555U Expired - Lifetime JPH05778Y2 (en) 1984-11-16 1984-12-28

Country Status (1)

Country Link
JP (1) JPH05778Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6699254B2 (en) * 2016-03-10 2020-05-27 富士電機株式会社 Cooling system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510853U (en) * 1978-06-30 1980-01-24
JPS5854347A (en) * 1981-09-28 1983-03-31 Konishiroku Photo Ind Co Ltd Electrophotographic receptor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510853U (en) * 1978-06-30 1980-01-24
JPS5854347A (en) * 1981-09-28 1983-03-31 Konishiroku Photo Ind Co Ltd Electrophotographic receptor

Also Published As

Publication number Publication date
JPS61116985U (en) 1986-07-23

Similar Documents

Publication Publication Date Title
US4741171A (en) Refrigerated display cabinet
GB2201499A (en) Refrigerating circuit utilizing cold accumulation material
JPH0331666A (en) Heat pump type air conditioner
EP4083547A1 (en) Refrigerator
JPH0454157B2 (en)
JP3452781B2 (en) refrigerator
JP3696064B2 (en) refrigerator
JPS61128079A (en) Showcase
JPH05778Y2 (en)
JPH0537336Y2 (en)
JPH08254385A (en) Defrosting system for freezing/refrigerating showcase
JP6729269B2 (en) Refrigerator and its control method
JPH0224071Y2 (en)
JP2835267B2 (en) refrigerator
JP6998509B2 (en) refrigerator
JPH07318229A (en) Defrosting method of refrigerating and cold storage showcase
JPH0517580Y2 (en)
JPH0517577Y2 (en)
CN218672721U (en) Refrigerating system and refrigerating equipment
JPH0517578Y2 (en)
JPH07294089A (en) Frosting reducer for refrigerator
JPH07286770A (en) Freezing refrigerator
JP3495956B2 (en) refrigerator
KR100377744B1 (en) A chest-type refrigerator used for Kimchi
JPH0519738Y2 (en)