JPH0577748B2 - - Google Patents

Info

Publication number
JPH0577748B2
JPH0577748B2 JP59006116A JP611684A JPH0577748B2 JP H0577748 B2 JPH0577748 B2 JP H0577748B2 JP 59006116 A JP59006116 A JP 59006116A JP 611684 A JP611684 A JP 611684A JP H0577748 B2 JPH0577748 B2 JP H0577748B2
Authority
JP
Japan
Prior art keywords
substrate
plating method
selective plating
fluid
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59006116A
Other languages
Japanese (ja)
Other versions
JPS60149782A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP611684A priority Critical patent/JPS60149782A/en
Priority to US06/691,877 priority patent/US4639378A/en
Priority to EP85100466A priority patent/EP0151413A3/en
Publication of JPS60149782A publication Critical patent/JPS60149782A/en
Priority to US06/882,498 priority patent/US4822633A/en
Publication of JPH0577748B2 publication Critical patent/JPH0577748B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/185Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method by making a catalytic pattern by photo-imaging
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】 本発明は、合成樹脂基板やシリコンその他の磁
器基板、或いは金属酸化物等の如き半導電性乃至
は絶縁性等の不良導電性体の表面に、マスキング
等を施すことなく部分的又は選択的にメツキし
て、種々の複雑かつ微細な金属析出パターンを製
作する方法、特に製作速度及び能率を向上させた
製作方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to applying masking or the like to the surface of a synthetic resin substrate, a silicone or other ceramic substrate, or a semiconductive or insulative poorly conductive material such as a metal oxide. The present invention relates to a method of manufacturing various complex and fine metal deposition patterns by partially or selectively plating without any process, and particularly to a manufacturing method with improved manufacturing speed and efficiency.

斯種のメツキ方法として電気メツキを用いたも
のに、例えば特開昭55−148797号公報に記載され
た選択的電気メツキ法がある。この公報によれ
ば、電解物質中に陰極を設け、上記電解物質中に
上記陰極から離して陽極を設け、上記陰極の表面
の選択的にメツキすべき領域を加熱するためにエ
ネルギ・ビーム(レーザ等の電磁放射線)を上記
領域に当て、上記陽極との間に電圧を印加し、上
記ビーム・スポツトに所定メツキ・パターンを描
かせるようにビーム・スポツトと陰極とを相対的
に移動させつつメツキをすると言う先行技術が開
示されている。しかしながらこの先行技術によれ
ば、0.2乃至0.4μの厚さを有する幅10μのNiライン
メツキを形成するのに、アルゴン・レーザを集束
して直径20μのビームとし、スポツトでの強度を
2×105W/cm2としてNi蒸着陰極と陽極との間に
1.5Vの直流メツキ電位を印加した場合、陰極に
対する実効露光時間を20ミリ秒とすることが必要
で、光源のメツキライン進路速度は1mm/sec(≒
60mm/min)というものである。そしてこのこと
は、上記レーザに於てビーム・スポツトの直径を
上記の半分以下としてスポツトでの電力強度を4
倍にし、機械的チヨツピングによりパルス化した
0.3ミリ秒の光パルスを繰り返し照射しつつ上述
と同一の条件でメツキした場合、厚さ6μで直径
30μのメツキ・スポツトを造るのに1秒を要する
ことからも明らかなように高速とは言い難く、寧
ろ低速度であり、上記先行技術文献が適用分野と
して挙げるICやLSI等の各種電子デバイス及びプ
リント基板等には、特別な場合等以外には到底適
用できないものであつた。
An example of this type of plating method using electroplating is the selective electroplating method described in JP-A-55-148797. According to this publication, a cathode is provided in an electrolytic material, an anode is provided in the electrolytic material at a distance from the cathode, and an energy beam (laser) is used to heat the areas of the surface of the cathode that are to be selectively plated. Electromagnetic radiation (e.g., electromagnetic radiation such as Prior art has been disclosed that does the following. However, according to this prior art, to form a 10μ wide Ni line plating with a thickness of 0.2 to 0.4μ, the argon laser is focused into a beam with a diameter of 20μ and the intensity at the spot is 2×10 5 . Between Ni evaporated cathode and anode as W/ cm2
When applying a DC plating potential of 1.5 V, the effective exposure time to the cathode must be 20 milliseconds, and the plating line traveling speed of the light source is 1 mm/sec (≒
60mm/min). And this means that in the above laser, the power intensity at the spot can be reduced to 4 by setting the beam spot diameter to less than half of the above value.
doubled and pulsed by mechanical chopping.
When plated under the same conditions as above while repeatedly irradiating 0.3 millisecond light pulses, the diameter was 6 μm thick.
As is clear from the fact that it takes 1 second to make a 30μ plating spot, it is far from being fast, but rather slow, and is suitable for various electronic devices such as ICs and LSIs that the above-mentioned prior art documents apply to. It could not be applied to printed circuit boards or the like except in special cases.

また、特開昭55−148757号公報には、非感光性
のメツキ浴を準備する工程、該メツキ浴に被メツ
キ対象物を接触させる工程、該接触面を局部的に
加熱してメツキを促進するに十分な強度のエネル
ギ・ビーム(レーザ等の電磁放射線)を上記接触
面に当てる工程とを有し、上記ビーム・スポツト
に所定メツキ・パターンを描かせるようにビー
ム・スポツトと被メツキ対象物とを相対的に移動
させつつ選択的にメツキ(電気を用いない無電解
又は化学メツキ)をすると言う先行技術が開示さ
れている。そして、その先行技術のメツキ法によ
れば、Niを蒸着した被メツキ対象物に対しての
メツキ速度を前記第1の先行技術の条件(メツキ
厚さ0.2〜0.4μ、メツキ幅10μ)により換算すると
メツキ速度は大凡0.5〜3.6mm/sec(≒30〜216mm/
min)であつて、上記第1の先行技術のものより
倍程度速い条件の場合があると言うに過ぎず、目
的とする集積回路等への適用は矢張り特別な場合
等以外は、メツキ速度が低速なため適用不可と思
惟される。
Furthermore, JP-A-55-148757 discloses a step of preparing a non-photosensitive plating bath, a step of bringing the object to be plated into contact with the plating bath, and a step of locally heating the contact surface to promote plating. applying an energy beam (electromagnetic radiation such as a laser) of sufficient intensity to the contact surface, the beam spot and the object to be plated so as to draw a predetermined plating pattern on the beam spot; A prior art technique has been disclosed in which selective plating (electroless or chemical plating that does not use electricity) is performed while relatively moving the material and the material. According to the plating method of the prior art, the plating speed for the plated object coated with Ni is converted using the conditions of the first prior art (plating thickness 0.2 to 0.4μ, plating width 10μ). Then, the plating speed is approximately 0.5 to 3.6 mm/sec (≒30 to 216 mm/
It is only to say that there are cases where the plating speed is twice as fast as that of the first prior art mentioned above, and it is difficult to apply it to the target integrated circuit etc. except in special cases. is considered to be inapplicable due to its slow speed.

また、各種の電子デバイスやプリント板等の基
板は、通常、絶縁体乃至は半導体であるから、金
属導電性表面領域内に所定パターン等の選択メツ
キを行なうものである上記第1及び第2の先行技
術文献に記載のものは、本発明に於ける被メツキ
対象物の基板には何等かの工夫なしには適用でき
ず、上記先行技術に記載の選択メツキ後に、該メ
ツキがされなかつたNi蒸着膜部分を、好ましく
は選択的に除去する処置等をしなければ、絶縁性
基板上に金属又は合金の導電性のパターンを有す
るものを製作することができない。
In addition, since various electronic devices and substrates such as printed boards are usually insulators or semiconductors, the first and second methods described above involve selectively plating a predetermined pattern in the metal conductive surface area. What is described in the prior art documents cannot be applied to the substrate to be plated in the present invention without some kind of ingenuity. Unless the deposited film portion is preferably selectively removed, it is not possible to fabricate a device having a conductive pattern of metal or alloy on an insulating substrate.

本発明はかかる点に鑑みて提案されたものであ
り、高速メツキが可能となり、かつ絶縁性基板に
対するメツキが行なえる選択的メツキ方法を提供
することを目的とする。
The present invention has been proposed in view of these points, and an object of the present invention is to provide a selective plating method that enables high-speed plating and also allows plating of insulating substrates.

この目的を達成するため、本発明の選択的メツ
キ方法は、パラジウム化合物を含有する流体を絶
縁性基板の表面に接触させた状態で、上記基板表
面の所定部分にエネルギ・ビームを照射して該照
射部分にパラジウムを被着させた後、上記基板を
洗浄して残存する上記流体を除去して、次いで、
上記基板表面を所定の化学メツキ液に接触させて
上記照射部分に被着したパラジウムを核として化
学メツキにより金属を析出させることを特徴とす
る。
To achieve this objective, the selective plating method of the present invention involves applying an energy beam to a predetermined portion of an insulating substrate surface while a fluid containing a palladium compound is in contact with the surface of the insulating substrate. After depositing palladium on the irradiated area, the substrate is cleaned to remove the remaining fluid, and then
The method is characterized in that the surface of the substrate is brought into contact with a predetermined chemical plating solution, and metal is deposited by chemical plating using palladium deposited on the irradiated portion as a core.

そして、基板表面の所定パターン部分にメツキ
核となるパラジウムを被着させる工程が高速度に
行なわれ、その後の工程で被着パターン全体に対
して従来から慣用されている化学メツキを行なえ
は良いため、全体の工程として基板表面の所定部
分への選択的なメツキが高速度に能率良く行なえ
る。
The process of depositing palladium, which serves as a plating nucleus, on a predetermined pattern on the substrate surface is carried out at high speed, and in the subsequent process, conventional chemical plating can be applied to the entire deposited pattern. As a whole process, selective plating on predetermined portions of the substrate surface can be performed efficiently and at high speed.

本発明では、化学メツキを行なう際に、メツキ
金属の析出核となる物質としてパラジウムを用い
る。又、パラジウムの他に更に錫を併用しても良
く、これらの塩化物等の化合物が液体あるいはペ
ースト状の流体中に含有されて使用される。ま
た、上記化学メツキを行なう物質は一般的にはニ
ツケル、銅、金等である。すなわち本発明は、化
学メツキを行なうものであるが、化学メツキの金
属析出の段階でエネルギ・ビームを用いるのでは
なく、化学メツキの前処理の段階でエネルギ・ビ
ームを用いるもので、エネルギ・ビームの照射に
より、化学メツキの際の析出核の被着形成を析出
効率良く、かつ所定パターン形成と共に高速で行
なわれるようにしたことにより、爾後は所定パタ
ーンの析出核に対して一度に化学メツキにより金
属析出をさせれば良いのであるから、全体として
化学メツキによる選択的メツキが高速で行なわれ
るようになつたものである。
In the present invention, when chemical plating is performed, palladium is used as a substance that serves as a precipitation nucleus of the plating metal. In addition to palladium, tin may also be used in combination, and compounds such as chlorides of these are used as contained in a liquid or paste-like fluid. Further, the substance used for the chemical plating is generally nickel, copper, gold, or the like. That is, the present invention performs chemical plating, but instead of using an energy beam in the metal deposition stage of chemical plating, it uses an energy beam in the pretreatment stage of chemical plating. By irradiating the precipitate, the formation of precipitate nuclei during chemical plating can be performed with high deposition efficiency and at high speed together with the formation of a predetermined pattern. Since it is sufficient to deposit metal, selective plating by chemical plating has come to be performed at high speed as a whole.

以下本発明の詳細を第1図に示す実施例により
説明する。第1図Aに示すように、NC装置1に
より位置制御されるXYテーブル2に選択的メツ
キを施こすべき基板3をセツトする。なお、該基
板3は、例えば第2図Aに示すように、ガラス繊
維3Aの表面をエポキシ樹脂3Bによりコーテイ
ングしたものであり、セツトの前に中性洗剤で洗
浄し、水で中性洗剤を良く洗い落とし、その後電
気炉並びに天火で乾燥させたものである。該基板
3の表面に対してノズル4から塩化パラジウム溶
液5を50ml/minで噴霧すると同時に、変調器を
含むレーザ装置6より凸レンズ7により直径1mm
に集束させた1.5×103W/cm2のレーザ・ビーム8
を照射することにより、基板3の表面にNC装置
1により発生される数値に基づく線幅1mmの析出
パラジウムによる画線が描かれる。第2図B,C
は塩化パラジウム溶液5の存在下でレーザ・ビー
ム8を照射することにより基板3の表面に凹状の
活性化点(線)3aを生じてこの活性化点3aに
残留する塩化パラジウム溶液5に続けてレーザ・
ビームが照射されることにより、パラジウムによ
る析出核9が形成される様子を示している。勿
論、これ等の作用は極短時間の内に殆んど同時進
行的に行なわれ、場合によつて溶液5中の塩化パ
ラジウムの分解が活性点3aの形成よりも先行す
る場合もあり、また、活性点3aは廻りの表面に
対してそれ程判然とした活性を有する部分でなく
ても、当該部分の溶液5のみがレーザ・ビームで
加熱されている訳であるから、結局レーザ・ビー
ムのエネルギが所定値以上であれば、当該部分に
パラジウムの析出核が形成されることになる。
The details of the present invention will be explained below with reference to the embodiment shown in FIG. As shown in FIG. 1A, a substrate 3 to be selectively plated is set on an XY table 2 whose position is controlled by an NC device 1. Note that, as shown in FIG. 2A, for example, the substrate 3 is made by coating the surface of glass fiber 3A with epoxy resin 3B, and before setting it, it is washed with a neutral detergent and washed with water. It was washed thoroughly and then dried in an electric furnace or an open fire. At the same time, a palladium chloride solution 5 is sprayed onto the surface of the substrate 3 from a nozzle 4 at a rate of 50 ml/min, and at the same time, a laser device 6 including a modulator uses a convex lens 7 to spray a palladium chloride solution 5 with a diameter of 1 mm.
A laser beam of 1.5×10 3 W/cm 2 focused at 8
By irradiating the substrate 3 with , a line of precipitated palladium is drawn on the surface of the substrate 3 with a line width of 1 mm based on the numerical value generated by the NC device 1. Figure 2 B, C
By irradiating the laser beam 8 in the presence of the palladium chloride solution 5, a concave activation point (line) 3a is created on the surface of the substrate 3, and the palladium chloride solution 5 remaining at the activation point 3a is continuously laser·
It shows how precipitation nuclei 9 of palladium are formed by beam irradiation. Of course, these actions occur almost simultaneously within a very short time, and in some cases, the decomposition of palladium chloride in the solution 5 may precede the formation of the active sites 3a, and Even though the active point 3a is not a part that has obvious activity against the surrounding surface, since only the solution 5 in that part is heated by the laser beam, the energy of the laser beam is If is equal to or greater than a predetermined value, a palladium precipitation nucleus will be formed in that portion.

ここでレーザー・ビームを含むエネルギ・ビー
ムによる活性化について説明すると、エネルギ・
ビームを合成樹脂等の高分子、酸化物等のセラミ
ツクス、金属等の表面に局部的に照射すると、照
射された部分に温度上昇を生じ、或いは表面の吸
着物(薄い分子層の酸化物、水、塵芥、油脂等)
が飛び出し、エネルギ的或いは化学的に清浄な表
面が出現する。固体の物質におけるこの清浄化さ
れた最外面の表面原子は前記吸着物で覆われた部
分に比較して電子構造的に極めて不安定ないわば
「尻丸出し」の状態にあると言つて良く、この状
態を解消しようとして分子、原子をくつつけたい
と常に指向する一種の興奮状態を形成しており、
エネルギ的に表面下の原子に比較して高い状態に
ある。このような局部的に活性な状態を、エネル
ギ・ビームの照射によつて希望する場所に形成す
る訳である。
To explain activation by energy beams including laser beams, energy
When a beam is locally irradiated onto the surface of polymers such as synthetic resins, ceramics such as oxides, metals, etc., a temperature rise occurs in the irradiated area, or adsorbents on the surface (thin molecular layers of oxides, water, etc.) , dust, oil, etc.)
pops out, and an energetically or chemically clean surface appears. It can be said that the surface atoms of this cleaned outermost surface of a solid substance are in a state where the electronic structure is extremely unstable compared to the part covered with the adsorbate, so to speak. It forms a kind of excited state in which molecules and atoms are constantly trying to stick together in an attempt to resolve the state.
They are in a high energy state compared to atoms below the surface. Such a locally activated state is created at a desired location by irradiation with an energy beam.

ここで使用した塩化パラジウム溶液5としては
下記の組成のものを使用した。
The palladium chloride solution 5 used here had the following composition.

PdCl2 0.25〜12.5g/ 36%HCl 2.5〜125ml/ C3H8O3 0〜200ml/ C2H5OH ベース なお、上記HClはPdCl2をエタノール
(C2H5OH)に溶解させるために、また、グリセ
リン(C3H8O3)は溶液の粘性を高め、溶液5が
基板3に湿潤する効果を持たせるためにそれぞれ
添加したものであり、ベースとしてエタノールを
用いたのは、これが上記エポキシ樹脂でコーテイ
ングした基板3をエツチングする効果を持ち、ま
た蒸発熱が小さいため、レーザ・パワーを小さく
する効果を合わせ持つからである。ベースとして
は、この他にアセトンや水等を用いることができ
る。
PdCl 2 0.25-12.5 g / 36% HCl 2.5-125 ml / C 3 H 8 O 3 0-200 ml / C 2 H 5 OH base Note that the above HCl is used to dissolve PdCl 2 in ethanol (C 2 H 5 OH). In addition, glycerin (C 3 H 8 O 3 ) was added to increase the viscosity of the solution and to make the solution 5 wet the substrate 3, and ethanol was used as the base. This is because this has the effect of etching the substrate 3 coated with the epoxy resin, and since the heat of evaporation is small, it also has the effect of reducing the laser power. In addition to this, acetone, water, etc. can be used as the base.

上記のようにして析出核9を形成させた後、第
1図Bに示すようにノズル10から10%塩酸水溶
液を噴霧または噴射し、基板3の表面に流下させ
て付着している塩化パラジウム溶液を洗い流し、
水で塩酸溶液を洗い流した後、次いで第1図Cに
示すように該基板3を銅あるいはニツケル無電解
メツキ溶液11中に浸漬して無電解メツキ(化学
メツキ)を行なう。この無電解メツキにおいて
は、第2図Dに示すように、上記パラジウムでな
る析出核9上に銅またはニツケル14が析出する
ことになる。
After forming the precipitation nuclei 9 as described above, a 10% hydrochloric acid aqueous solution is sprayed or injected from the nozzle 10 as shown in FIG. Wash off,
After washing away the hydrochloric acid solution with water, the substrate 3 is then immersed in a copper or nickel electroless plating solution 11 to perform electroless plating (chemical plating) as shown in FIG. 1C. In this electroless plating, as shown in FIG. 2D, copper or nickel 14 is deposited on the precipitation nuclei 9 made of palladium.

ここで、本実施例において無電解メツキに使用
した銅メツキ液は水中に下記の量の物質を含むも
のである。
Here, the copper plating solution used for electroless plating in this example contains the following amount of substance in water.

硫酸銅 7g/ ロツシエル塩 20g/ 炭酸ナトリウム 2g/ 水酸化ナトリウム 5g/ ホルムアルデヒド40%水溶液 25ml/ また、ニツケルメツキ液としては下記の組成の
ものを使用した。
Copper sulfate 7 g / Rothsiel's salt 20 g / Sodium carbonate 2 g / Sodium hydroxide 5 g / Formaldehyde 40% aqueous solution 25 ml / The Nickelmeck liquid had the following composition.

塩化ニツケル 45g/ 次亜リン酸ナトリウム 11g/ クエン酸ナトリウム 100g/ 塩化アンモニウム 50g/ その後、第1図Dに示すように、ノズル12に
より基板3に水を流下させて洗浄し、メツキ厚が
さらに必要な場合には第1図Eのように電気メツ
キ液13中に基板3浸漬して電気メツキを行な
う。この電気メツキは同じ金属のみならず、例え
ば銀や金等のような異なる金属について行なつて
もよい。
Nickel chloride 45g / Sodium hypophosphite 11g / Sodium citrate 100g / Ammonium chloride 50g / Then, as shown in Figure 1D, the substrate 3 is cleaned by flowing water through the nozzle 12 to increase the plating thickness. In such a case, as shown in FIG. 1E, the substrate 3 is immersed in an electroplating liquid 13 to perform electroplating. This electroplating may be carried out not only on the same metal but also on different metals such as silver, gold, etc.

上述のようにレーザ・ビームを用いてパラジウ
ム析出を行なつた場合、最高約220m/min(3.67
m/sec)の無電解メツキ用のパラジウム析出ラ
イン進路速度を得ることができた。基板3にパラ
ジウムによるパターンを描いた後は、無電解メツ
キによるメツキであるが、これは能率アツプの上
で問題となることはない。なぜならば、この無電
解メツキは析出核を寄り所として高速に進行する
上、多数の基板3をメツキ槽に浸漬しておくこと
によつてメツキを進行させることができるからで
ある。
When palladium is deposited using a laser beam as described above, the maximum speed is approximately 220 m/min (3.67 m/min).
It was possible to obtain a palladium deposition line speed for electroless plating of (m/sec). After drawing the palladium pattern on the substrate 3, it is plated by electroless plating, but this does not pose a problem in improving efficiency. This is because electroless plating proceeds at high speed using precipitation nuclei as a stop, and plating can proceed by immersing a large number of substrates 3 in a plating bath.

ここで、上記塩化パラジウム溶液の代わりに、
硝酸アンモニウムおよび亜硝酸ナトリウムを含む
アンモニア水中にPd(NH32(NO22を0.04M含有
させたPH8.5、45℃の溶液を用いた場合にもほぼ
同様の結果を得た。
Here, instead of the above palladium chloride solution,
Almost the same results were obtained when a solution containing 0.04 M of Pd(NH 3 ) 2 (NO 2 ) 2 in ammonia water containing ammonium nitrate and sodium nitrite at pH 8.5 and 45° C. was used.

また、パラジウム化合物を含有する流体とし
て、水中に0.1%の塩化パラジウムと0.3%の塩化
水素とを加えた溶液を使用し、第3図に示すよう
に何らかの供給口15からパラジウム化合物を含
む溶液5を基板3の表面に0.1〜1mmの液層がで
きるように1c.c./secの流量で層状に流下させる
ようにし、出力ビームの直径が0.6cm、出力10W、
波長10.6μのCO2レーザを用いると、44cm/minの
析出ライン進路速度(走査速度)でパラジウム析
出を行なわせることが可能であつた。従つて、1
分間にパラジウムを析出できる面積は、 0.6×44=26.4cm2/min となる。ここでビームを0.06cm(0.6mm)に縮つ
たとすれば、 26.4÷0.06=440cm/min の走査速度を実現することが可能である。同じビ
ーム直径でレーザ出力を10倍、即ち100Wとする
と、走査速度はレーザ出力に比例する関係から、
走査速度も最大で10倍、すなわち4400cm/min
(44m/min)となり、秒速に換算すると約0.7
m/secとなる。なお上記走査速度は前記塩化パ
ラジウム溶液の温度や供給量にも比例する。
Further, as a fluid containing a palladium compound, a solution containing 0.1% palladium chloride and 0.3% hydrogen chloride in water is used, and as shown in FIG. is caused to flow down in a layered manner at a flow rate of 1 c.c./sec so that a liquid layer of 0.1 to 1 mm is formed on the surface of the substrate 3, the diameter of the output beam is 0.6 cm, the output is 10 W,
Using a CO 2 laser with a wavelength of 10.6μ, it was possible to deposit palladium at a deposition line speed (scanning speed) of 44 cm/min. Therefore, 1
The area where palladium can be deposited per minute is 0.6×44=26.4cm 2 /min. If the beam is shrunk to 0.06cm (0.6mm), it is possible to achieve a scanning speed of 26.4÷0.06=440cm/min. If we increase the laser power by 10 times, or 100W, with the same beam diameter, the scanning speed is proportional to the laser power, so
Scanning speed is also up to 10 times faster, i.e. 4400cm/min
(44m/min), which is approximately 0.7 when converted to speed per second.
m/sec. Note that the scanning speed is also proportional to the temperature and supply amount of the palladium chloride solution.

第1図の実施例においては、塩化パラジウム溶
液を基板に対して噴霧することにより供給するよ
うにしたが、パラジウム化合物を含む流体は液体
ではなくペースト状をなすものであつても良く、
その場合には第4図に示すようにペースト状のパ
ラジウム化合物を含む流体5をホツパ16から塗
布用ローラ17を介して基板3の表面に塗布する
等の塗布機構が採用できる。
In the embodiment shown in FIG. 1, the palladium chloride solution is supplied by spraying onto the substrate, but the fluid containing the palladium compound may be in the form of a paste rather than a liquid.
In that case, as shown in FIG. 4, a coating mechanism may be employed in which a fluid 5 containing a paste-like palladium compound is coated onto the surface of the substrate 3 from a hopper 16 via a coating roller 17.

第5図は本発明の他の実施例であり、本実施例
は、パラジウムの析出を促進するために、超音波
発生装置18から基板3に対して例えば10〜50k
Hzの超音波を当てながら上記溶液5を基板表面に
供給しつつレーザ・ビーム8を照射するものであ
り、本実施例によれば、第1図の実施例と同様の
溶液5の組成、供給量、レーザ・ビーム強度等の
条件下で約2倍の析出速度を得ることができ、前
記パターン形成のための走査速度(析出ライン進
路速度)を、それだけ速くすることができた。ま
た、超音波を基板3に当てることにより、レー
ザ・ビーム出力を1/4にしても同じ析出速度を得
ることができた。
FIG. 5 shows another embodiment of the present invention. In this embodiment, the ultrasonic wave generator 18 is applied to the substrate 3 at a temperature of 10 to 50 km, for example, in order to promote the precipitation of palladium.
The laser beam 8 is irradiated while supplying the solution 5 to the substrate surface while applying Hz ultrasonic waves. According to this embodiment, the composition and supply of the solution 5 are the same as in the embodiment shown in FIG. Under conditions such as volume and laser beam intensity, it was possible to obtain about twice the deposition rate, and the scanning speed (deposition line path speed) for forming the pattern could be increased accordingly. Furthermore, by applying ultrasonic waves to the substrate 3, the same deposition rate could be obtained even if the laser beam output was reduced to 1/4.

第6図は本発明の他の実施例であり、本実施例
は、基板20として、帯状をなす可撓性を有する
合成樹脂材を用いるか、帯状基材に基板を貼り付
けることにより、連続処理ができるようにしたも
のである。第6図において、供給リール21から
繰り出される適宜の洗浄処理が為されている基板
20は、活性化処理槽22内のパラジウム化合物
溶液5に浸漬され、該処理槽22内に設けられた
ローラ23にガイドされ、レーザ装置6から凸レ
ンズ7で集束させたレーザ・ビーム8が照射され
て活性化処理、すなわち予め定められた画線にそ
つて金属パラジウムの析出を行なわせ、その後槽
外のガイドローラ24,25間でノズル26から
噴出する水により水洗し、次にガイドローラ2
7,28でガイドして化学メツキ槽29中のニツ
ケルや銅の無電解メツキ液11に浸漬して無電解
メツキを行なわせる。この場合イオン制御槽30
と化学メツキ槽29との間でメツキ液11を循環
させ、ニツケルあるいは銅イオンの濃度が一定に
なるように陽極にニツケルあるいは銅31を接続
して電解する。次に槽外のガイドローラ32,3
3間でノズル26から噴出する水により水洗し、
次にガイドローラ34,35でガイドして電気メ
ツキ槽36中のニツケルや銅、金銀等の電気メツ
キ液13に浸漬し、接触ローラ37を介して基板
20上の上記化学メツキ層を陰極に接続して電気
メツキを行なわせる。次にガイドローラ38を介
して引上た部分でノズル39等から噴出する温風
等により乾燥させた後に巻取りリール40に巻取
る等の手段によりまとめる。なお、本実施例で用
いた活性化処理用のパラジウム化合物溶液5は、 KCl 3.3g PdCl2 2g 36%HCl 25ml を水1に溶解したものである。又、塩化パラジ
ウム溶液の他に更に、 SnCl2・H2O 25.2g KCl 2.5g 36%HCl 25ml を水1に溶解した塩化錫溶液を混合して併用し
ても良い。また、活性化処理の場合に、増感剤と
してAgNO3を1.5g加えた所、約20%析出速度を
上げることができた。
FIG. 6 shows another embodiment of the present invention. In this embodiment, a band-shaped flexible synthetic resin material is used as the substrate 20, or by pasting the substrate on a band-shaped base material, a continuous This allows for processing. In FIG. 6, a substrate 20 that has been subjected to an appropriate cleaning process and is fed out from a supply reel 21 is immersed in a palladium compound solution 5 in an activation treatment tank 22, and a roller 23 provided in the treatment tank 22 is immersed in a palladium compound solution 5. A laser beam 8 focused by a convex lens 7 is irradiated from a laser device 6 to perform an activation process, that is, to deposit metal palladium along a predetermined image line, and then a guide roller outside the tank is guided. 24 and 25 with water jetted from the nozzle 26, and then the guide roller 2
7 and 28 and immersed in the electroless plating solution 11 of nickel or copper in the chemical plating bath 29 to perform electroless plating. In this case, the ion control tank 30
The plating solution 11 is circulated between the plating tank 29 and the chemical plating tank 29, and electrolysis is performed by connecting nickel or copper 31 to the anode so that the concentration of nickel or copper ions is constant. Next, guide rollers 32, 3 outside the tank
Washing with water jetted from the nozzle 26 for 3 minutes,
Next, the substrate 20 is guided by guide rollers 34 and 35 and immersed in an electroplating liquid 13 made of nickel, copper, gold and silver, etc. in an electroplating bath 36, and the chemically plated layer on the substrate 20 is connected to the cathode via a contact roller 37. and perform electroplating. Next, the portion pulled up via the guide roller 38 is dried by hot air etc. jetted from the nozzle 39 etc., and then collected by means such as winding up on a winding reel 40. The palladium compound solution 5 for activation treatment used in this example was obtained by dissolving 3.3 g of KCl, 2 g of PdCl 2 and 25 ml of 36% HCl in 1 water. In addition to the palladium chloride solution, a tin chloride solution prepared by dissolving 25.2 g of SnCl 2 .H 2 O, 2.5 g of KCl, and 25 ml of 36% HCl in 1 part of water may be mixed and used in combination. Furthermore, in the case of activation treatment, when 1.5 g of AgNO 3 was added as a sensitizer, the precipitation rate could be increased by about 20%.

また、上記無電解メツキ液として、ニツケルを
含むものとしては、 クエン酸ナトリウム 0.2M ホウ酸 0.5M 次亜鉛酸ナトリウム 0.2M 硫酸ニツケル 0.1M を含むPH8、70℃の溶液を用い、銅を含むものと
しては、 ホルムアルデヒド 0.3M 硫酸銅 0.1M を含むPH11、25℃の溶液を用いた。
In addition, the electroless plating solution containing nickel is a solution containing sodium citrate 0.2M boric acid 0.5M sodium subzincate 0.2M nickel sulfate 0.1M at pH 8 and 70℃, and containing copper. A solution containing 0.3M formaldehyde and 0.1M copper sulfate at pH 11 and 25°C was used.

上記のような連続処理とすれば、自動的に作業
を行なう事ができ、省力化が容易となる。
If the above-mentioned continuous processing is performed, the work can be performed automatically and labor saving becomes easy.

本発明を実施する場合、基板3,20として
は、ABS、ポリプロピレン、エポキシ、ポリエ
ステル、フエノール、ポリフエニレンオキシド、
ポリビニル、ウレタン、アクリル等の合成樹脂や
シリコン、ガラス、アルミナ等の磁器等を用いる
ことができる。また、エネルギ・ビームとして
は、100MHz以上の電磁波を用いることができる。
When carrying out the present invention, the substrates 3 and 20 include ABS, polypropylene, epoxy, polyester, phenol, polyphenylene oxide,
Synthetic resins such as polyvinyl, urethane, acrylic, silicone, glass, porcelain such as alumina, etc. can be used. Further, as the energy beam, electromagnetic waves of 100 MHz or more can be used.

以上述べたように、本発明によれば、化学メツ
キの金属析出の段階でエネルギ・ビームを用いる
のではなく、化学メツキの前処理の段階に於て、
パラジウム化合物を含有する流体を絶縁性基板の
表面に接触させた状態で、上記基板表面の所定部
分にエネルギ・ビームを照射して、該照射部位に
パラジウムを被着させるようにしたことにより、
化学メツキを行なう際にメツキ金属の析出核とな
る物質(パラジウム)の所定パターン形状の析出
が極めて高速で行なわれるので、絶縁性板に対し
て所定パターン等の選択的メツキを高速で行なう
ことができる。また、本発明によれば、化学メツ
キ用の核析出の溶液及び無電解メツキ液の使用損
耗量は、所定パターン等の選択的メツキ量に対応
するものであるから、無駄がなく、極めて経済的
である。
As described above, according to the present invention, an energy beam is not used in the metal deposition stage of chemical plating, but in the pretreatment stage of chemical plating.
By irradiating a predetermined portion of the substrate surface with an energy beam while a fluid containing a palladium compound is in contact with the surface of the insulating substrate, palladium is deposited on the irradiated portion,
When chemical plating is performed, the substance (palladium) that becomes the precipitation nucleus of the plating metal is deposited in a predetermined pattern shape at an extremely high speed, so it is possible to perform selective plating in a predetermined pattern on an insulating plate at high speed. can. Further, according to the present invention, the amount of wear and tear of the nuclear precipitation solution for chemical plating and the electroless plating solution corresponds to the amount of selective plating of a predetermined pattern, etc., so there is no waste and it is extremely economical. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す工程図、第2
図は本発明の方法を実施した場合の原理図、第3
図ないし第5図は本発明の活性化処理の別の例を
示す図、第6図は本発明の他の実施例を示す工程
図である。 1……NC装置、2……XYテーブル、3,2
0……基板、4……ノズル、5……塩化パラジウ
ム溶液、6……レーザ装置、7……凸レンズ、8
……レーザ・ビーム、9……析出核、10,12
……ノズル、11……化学メツキ液、13……電
気メツキ液、14……ニツケルまたは銅、18…
…超音波発生装置。
Figure 1 is a process diagram showing one embodiment of the present invention, Figure 2 is a process diagram showing an embodiment of the present invention.
The figure is a diagram of the principle when implementing the method of the present invention.
5 through 5 are diagrams showing another example of the activation process of the present invention, and FIG. 6 is a process chart showing another embodiment of the present invention. 1...NC device, 2...XY table, 3,2
0... Substrate, 4... Nozzle, 5... Palladium chloride solution, 6... Laser device, 7... Convex lens, 8
...Laser beam, 9...Precipitation nucleus, 10,12
... Nozzle, 11 ... Chemical plating liquid, 13 ... Electroplating liquid, 14 ... Nickel or copper, 18 ...
...Ultrasonic generator.

Claims (1)

【特許請求の範囲】 1 パラジウム化合物を含有する流体を絶縁性基
板の表面に接触させた状態で、上記基板表面の所
定部分にエネルギ・ビームを照射して該照射部分
にパラジウムを被着させた後、上記基板を洗浄し
て残存する上記流体を除去し、次いで、上記基板
表面を所定の化学メツキ液に接触させて上記照射
部分に被着したパラジウムを核として化学メツキ
により金属を析出させることを特徴とする選択的
メツキ方法。 2 上記エネルギ・ビームが、レーザ・ビームで
ある特許請求の範囲第1項記載の選択的メツキ方
法。 3 上記パラジウム化合物が、塩化パラジウムで
ある特許請求の範囲第1項記載の選択的メツキ方
法。 4 上記パラジウム化合物を含有する流体が、パ
ラジウム化合物の水溶液である特許請求の範囲第
1項記載の選択的メツキ方法。 5 上記流体が、ペースト状物である特許請求の
範囲第1項記載の選択的メツキ方法。 6 上記流体の基板表面への接触が、上記流体を
基板表面に沿つて層状に流すことにより行なわれ
る特許請求の範囲第1項記載の選択的メツキ方
法。 7 上記流体の基板表面への接触が、上記流体を
基板表面へ層状に塗着することにより行なわれる
特許請求の範囲第1項記載の選択的メツキ方法。 8 上記流体の基板表面への接触が、上記流体を
基板表面へ噴霧することにより行なわれる特許請
求の範囲第1項記載の選択的メツキ方法。 9 上記エネルギ・ビームの照射を基板表面に行
なう際に、超音波により基板を振動させる特許請
求の範囲第1項記載の選択的メツキ方法。 10 上記絶縁性基板が長尺帯状板から成り、上
記化学メツキが長さ方向に順次行なわれるもので
ある特許請求の範囲第1項記載の選択的メツキ方
法。 11 上記絶縁性基板が、合成樹脂である特許請
求の範囲第1項記載の選択的メツキ方法。 12 上記絶縁性基板が、磁器である特許請求の
範囲第1項記載の選択的メツキ方法。 13 上記化学メツキが、ニツケルメツキである
特許請求の範囲第1項記載の選択的メツキ方法。 14 上記化学メツキが、銅メツキである特許請
求の範囲第1項記載の選択的メツキ方法。 15 上記エネルギ・ビームの基板表面の所定部
分への照射が、ビームと基板との相対的な数値制
御移動により行なわれるものである特許請求の範
囲第1項記載の選択的メツキ方法。 16 上記化学メツキにより金属を析出させた基
板に更に電気メツキが行なわれる特許請求の範囲
第1項記載の選択的メツキ方法。
[Claims] 1. With a fluid containing a palladium compound in contact with the surface of an insulating substrate, a predetermined portion of the substrate surface is irradiated with an energy beam to deposit palladium on the irradiated portion. After that, the substrate is cleaned to remove the remaining fluid, and then the surface of the substrate is brought into contact with a predetermined chemical plating solution to deposit metal by chemical plating using the palladium deposited on the irradiated portion as a nucleus. A selective plating method characterized by: 2. The selective plating method according to claim 1, wherein the energy beam is a laser beam. 3. The selective plating method according to claim 1, wherein the palladium compound is palladium chloride. 4. The selective plating method according to claim 1, wherein the fluid containing the palladium compound is an aqueous solution of the palladium compound. 5. The selective plating method according to claim 1, wherein the fluid is a paste-like material. 6. The selective plating method according to claim 1, wherein the fluid contacts the substrate surface by flowing the fluid in a layered manner along the substrate surface. 7. The selective plating method according to claim 1, wherein the contact of the fluid to the substrate surface is performed by applying the fluid to the substrate surface in a layered manner. 8. The selective plating method according to claim 1, wherein the fluid contacts the substrate surface by spraying the fluid onto the substrate surface. 9. The selective plating method according to claim 1, wherein the substrate is vibrated by ultrasonic waves when the substrate surface is irradiated with the energy beam. 10. The selective plating method according to claim 1, wherein the insulating substrate is made of a long strip plate, and the chemical plating is performed sequentially in the length direction. 11. The selective plating method according to claim 1, wherein the insulating substrate is made of synthetic resin. 12. The selective plating method according to claim 1, wherein the insulating substrate is made of porcelain. 13. The selective plating method according to claim 1, wherein the chemical plating is nickel plating. 14. The selective plating method according to claim 1, wherein the chemical plating is copper plating. 15. The selective plating method according to claim 1, wherein the irradiation of the energy beam onto a predetermined portion of the substrate surface is performed by relative numerically controlled movement of the beam and the substrate. 16. The selective plating method according to claim 1, wherein electroplating is further performed on the substrate on which metal has been deposited by the chemical plating.
JP611684A 1984-01-17 1984-01-17 Selective plating method Granted JPS60149782A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP611684A JPS60149782A (en) 1984-01-17 1984-01-17 Selective plating method
US06/691,877 US4639378A (en) 1984-01-17 1985-01-16 Auto-selective metal deposition on dielectric surfaces
EP85100466A EP0151413A3 (en) 1984-01-17 1985-01-17 Auto-selective metal deposition on dielectric surfaces
US06/882,498 US4822633A (en) 1984-01-17 1986-07-07 Auto-selective metal deposition on dielectric surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP611684A JPS60149782A (en) 1984-01-17 1984-01-17 Selective plating method

Publications (2)

Publication Number Publication Date
JPS60149782A JPS60149782A (en) 1985-08-07
JPH0577748B2 true JPH0577748B2 (en) 1993-10-27

Family

ID=11629529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP611684A Granted JPS60149782A (en) 1984-01-17 1984-01-17 Selective plating method

Country Status (1)

Country Link
JP (1) JPS60149782A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143580A (en) * 1984-12-14 1986-07-01 Furukawa Electric Co Ltd:The Partial chemical plating method of non-metallic member
DE102007010872A1 (en) * 2007-03-06 2008-09-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the precision machining of substrates and their use
US20170191165A1 (en) * 2015-03-24 2017-07-06 Om Sangyo Co., Ltd. Method for producing plated article
LT6518B (en) * 2016-09-13 2018-04-25 Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras Method for formation of electro-conductive traces on polymeric article surface
JP2018101798A (en) * 2018-02-13 2018-06-28 株式会社ニコン Wet processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920030A (en) * 1972-06-15 1974-02-22
JPS515626A (en) * 1974-07-04 1976-01-17 Matsushita Electric Ind Co Ltd RYURYOSEIGYOKI
JPS5362176A (en) * 1976-11-15 1978-06-03 Nippon Telegraph & Telephone Method of forming printed circuit
JPS5562156A (en) * 1978-10-27 1980-05-10 Schering Ag Manufacture of metal pattern on electric insulating supporter by photochemical method
JPS55148797A (en) * 1979-05-08 1980-11-19 Ibm Selective electroplating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920030A (en) * 1972-06-15 1974-02-22
JPS515626A (en) * 1974-07-04 1976-01-17 Matsushita Electric Ind Co Ltd RYURYOSEIGYOKI
JPS5362176A (en) * 1976-11-15 1978-06-03 Nippon Telegraph & Telephone Method of forming printed circuit
JPS5562156A (en) * 1978-10-27 1980-05-10 Schering Ag Manufacture of metal pattern on electric insulating supporter by photochemical method
JPS55148797A (en) * 1979-05-08 1980-11-19 Ibm Selective electroplating method

Also Published As

Publication number Publication date
JPS60149782A (en) 1985-08-07

Similar Documents

Publication Publication Date Title
US4822633A (en) Auto-selective metal deposition on dielectric surfaces
US3772056A (en) Sensitized substrates for chemical metallization
JP3153682B2 (en) Circuit board manufacturing method
US4659587A (en) Electroless plating process and process for producing multilayer wiring board
US4981715A (en) Method of patterning electroless plated metal on a polymer substrate
EP0109920B1 (en) Process for cleaning holes in printed circuit boards with permanganate and basic solutions
US3772078A (en) Process for the formation of real images and products produced thereby
US4349583A (en) Laser enhanced maskless method for plating and simultaneous plating and etching of patterns
US3925578A (en) Sensitized substrates for chemical metallization
JP5703214B2 (en) Method for performing in-line metal coating electrolessly by spraying on substrate as front surface treatment, and apparatus for realizing the method
US3628999A (en) Plated through hole printed circuit boards
US8529738B2 (en) In situ plating and etching of materials covered with a surface film
US3959547A (en) Process for the formation of real images and products produced thereby
US4165394A (en) Method of preparation of a substrate made of plastic material for its subsequent metallization
US20110042201A1 (en) In situ Plating And Soldering Of Materials Covered With A Surface Film
US5260108A (en) Selective seeding of Pd by excimer laser radiation through the liquid
US5084299A (en) Method for patterning electroless plated metal on a polymer substrate
US5059449A (en) Method of selectively providing a metal from the liquid phase on a substrate by means of a laser
US3791340A (en) Method of depositing a metal pattern on a surface
JP2005022956A (en) Metallization of ceramic
JPH07506770A (en) Method of manufacturing porous foil
JPH07180089A (en) Method and constitution for electric plating
JPH0577748B2 (en)
PT788728E (en) PROCESS FOR THE COATING OF ELECTRICALLY NOT CONDUCTIVE SURFACES WITH METALLIC STRUCTURES LINKED BETWEEN
JPH0534428B2 (en)