JPH0534428B2 - - Google Patents

Info

Publication number
JPH0534428B2
JPH0534428B2 JP59006117A JP611784A JPH0534428B2 JP H0534428 B2 JPH0534428 B2 JP H0534428B2 JP 59006117 A JP59006117 A JP 59006117A JP 611784 A JP611784 A JP 611784A JP H0534428 B2 JPH0534428 B2 JP H0534428B2
Authority
JP
Japan
Prior art keywords
substrate
plating method
fluid
plating
selective plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59006117A
Other languages
Japanese (ja)
Other versions
JPS60149783A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP611784A priority Critical patent/JPS60149783A/en
Priority to US06/691,877 priority patent/US4639378A/en
Priority to EP85100466A priority patent/EP0151413A3/en
Publication of JPS60149783A publication Critical patent/JPS60149783A/en
Priority to US06/882,498 priority patent/US4822633A/en
Publication of JPH0534428B2 publication Critical patent/JPH0534428B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/185Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method by making a catalytic pattern by photo-imaging

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】 本発明は、合成樹脂基板やシリコンその他の磁
器基板、或いは金属酸化物等の如き半導電性乃至
は絶縁性等の不良導電性体の表面に、マスキング
等を施すことなく部分的又は選択的にメツキし
て、種々の複雑かつ微細な金属析出パターンを製
作する方法、特に製作速度及び能率を向上させた
製作方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to applying masking or the like to the surface of a synthetic resin substrate, a silicone or other ceramic substrate, or a semiconductive or insulative poorly conductive material such as a metal oxide. The present invention relates to a method of manufacturing various complex and fine metal deposition patterns by partially or selectively plating without any process, and particularly to a manufacturing method with improved manufacturing speed and efficiency.

斯種のメツキ方法として電気メツキを用いたも
のに、例えば特開昭55−148797号公報に記載され
た選択的電気メツキ法がある。この公報によれ
ば、電解物質中に陰極を設け、上記電解物質中に
上記陰極から離して陽極を設け、上記陰極の表面
の選択的にメツキにすべき領域を加熱するために
エネルギ・ビーム(レーザ等の電磁放射線)を上
記領域に当て、上記陽極との間に電圧を印加し、
上記ビーム・スポツトに所定メツキ・パターンを
描かせるようにビーム・スポツトと陰極とを相対
的に移動させつつメツキをすると言う先行技術が
開示されている。しかしながらこの先行技術によ
れば、0.2乃至0.4μの厚さを有する幅10μのNiライ
ンメツキを形成するのに、アルゴン・レーザを集
束して直径20μのビームとし、スポツトでの強度
を2×105W/cm2としてNi蒸着陰極と陽極との間
に1.5Vの直流メツキ電位を印加した場合、陰極
に対する実効露光時間を20ミリ秒とすることが必
要で、光源のメツキライン進路速度は1mm/sec
(≒60mm/min)というものである。そしてこの
ことは、上記レーザに於てビーム・スポツトの直
径を上記の半分以下としてスポツトでの電力強度
を4倍にし、機械的チヨツパによりパルス化した
0.3ミリ秒の光パルスを繰り返し照射しつつ上述
と同一の条件でメツキした場合、厚さ6μで直径
30μのメツキ・スポツトを造るのに1秒を要する
ことからも明らかなように高速とは言い難く、寧
ろ低速度であり、上記先行技術文献が適用分野と
して挙げるICやLSI等の各種電子デバイス及びプ
リント基板等には、特別な場合等以外には到底適
用できないものであつた。
An example of this type of plating method using electroplating is the selective electroplating method described in JP-A-55-148797. According to this publication, a cathode is provided in an electrolyte, an anode is provided in the electrolyte at a distance from the cathode, and an energy beam ( Electromagnetic radiation (e.g., laser) is applied to the area, a voltage is applied between the anode,
A prior art technique has been disclosed in which plating is performed while relatively moving the beam spot and the cathode so as to draw a predetermined plating pattern on the beam spot. However, according to this prior art, to form a 10μ wide Ni line plating with a thickness of 0.2 to 0.4μ, the argon laser is focused into a beam with a diameter of 20μ and the intensity at the spot is 2×10 5 . When applying a DC plating potential of 1.5 V between the Ni evaporated cathode and anode as W/cm 2 , the effective exposure time to the cathode must be 20 milliseconds, and the plating line path speed of the light source is 1 mm/sec.
(≒60mm/min). And this means that in the above laser, the diameter of the beam spot is less than half that of the above, the power intensity at the spot is quadrupled, and the beam is pulsed by a mechanical chopper.
When plated under the same conditions as above while repeatedly irradiating 0.3 millisecond light pulses, the diameter was 6 μm thick.
As is clear from the fact that it takes 1 second to make a 30μ plating spot, it is far from being fast, but rather slow, and is suitable for various electronic devices such as ICs and LSIs that the above-mentioned prior art documents apply to. It could not be applied to printed circuit boards or the like except in special cases.

また、特開昭55−148757号公報には、非感光性
のメツキ浴を準備する工程、該メツキ浴に被メツ
キ対象物を接触させる工程、該接触面を局部的に
加熱してメツキを促進するに十分な強度のエネル
ギ・ビーム(レーザ等の電磁放射線)を上記接触
面に当てる工程とを有し、上記ビーム・スポツト
に所定メツキ・パターンを描かせるようにビー
ム・スポツトと被メツキ対象物とを相対的に移動
させつつ選択的にメツキ(電気を用いない無電解
又は化学メツキ)をすると言う先行技術が開示さ
れている。そして、この先行技術のメツキ法によ
れば、Niを蒸着した被メツキ対象物に対しての
メツキ速度を、前記第1の先行技術の条件(メツ
キ厚さ0.2〜0.4μ、メツキ幅10μ)により換算する
と、メツキ速度は大凡0.5〜3.6mm/sec(≒30〜216
mm/minであつて、上記第1の先行技術のものよ
り倍程度速い条件の場合があると言うに過ぎず、
目的とする集積回路等への適用は矢張り特別な場
合等以外は、メツキ速度が低速なため適用不可と
思惟される。
Furthermore, JP-A-55-148757 discloses a step of preparing a non-photosensitive plating bath, a step of bringing the object to be plated into contact with the plating bath, and a step of locally heating the contact surface to promote plating. applying an energy beam (electromagnetic radiation such as a laser) of sufficient intensity to the contact surface, the beam spot and the object to be plated so as to draw a predetermined plating pattern on the beam spot; A prior art technique has been disclosed in which selective plating (electroless or chemical plating that does not use electricity) is performed while relatively moving the material and the material. According to the plating method of this prior art, the plating speed for the plated object on which Ni is vapor-deposited is set according to the conditions of the first prior art (plating thickness 0.2 to 0.4μ, plating width 10μ). When converted, the plating speed is approximately 0.5 to 3.6 mm/sec (≒30 to 216
It is only to say that there are cases where the speed is approximately twice as fast as that of the first prior art mentioned above.
It is thought that it cannot be applied to the intended integrated circuits, etc., except in special cases, because the plating speed is slow.

また、各種の電子デバイスやプリント板等の基
板は、通常、絶縁体乃至は半導体であるから、金
属導電性表面領域内に所定パターン等の選択メツ
キを行なうものである上記第1及び第2の先行技
術文献に記載のものは、本発明に於ける被メツキ
対象物の基板には何等かの工夫なしには適用でき
ず、上記先行技術に記載の選択メツキ後に、該メ
ツキがされなかつたNi蒸着膜部分を、好ましく
は選択的に除去する処置等をしなければ、絶縁性
基板上に金属又は合金の導電性のパターンを有す
るものを製作することができない。
In addition, since various electronic devices and substrates such as printed boards are usually insulators or semiconductors, the first and second methods described above involve selectively plating a predetermined pattern in the metal conductive surface area. What is described in the prior art documents cannot be applied to the substrate to be plated in the present invention without some kind of ingenuity. Unless the deposited film portion is preferably selectively removed, it is not possible to fabricate a device having a conductive pattern of metal or alloy on an insulating substrate.

本発明はかかる点に鑑みて提案されたものであ
り、高速メツキが可能となり、かつ絶縁性基板に
対するメツキが行なえる選択的メツキ方法を提供
することを目的とする。
The present invention has been proposed in view of these points, and an object of the present invention is to provide a selective plating method that enables high-speed plating and also allows plating of insulating substrates.

この目的を達成するため、本発明においては、
基板表面にエネルギ・スポツトを所定のパターン
で照射することにより照射部分を活性化させ、そ
の後化学メツキの際析出核となる物質を含む流体
を該基板表面に接触させ、次に化学メツキ液と接
触させて化学メツキを行なうことにより、所定パ
ターンの選択的化学メツキがマスク等を行なうこ
となく高速で行なえるようにしたことを特徴とす
るものである。
In order to achieve this objective, in the present invention,
The irradiated area is activated by irradiating the substrate surface with energy spots in a predetermined pattern, and then a fluid containing a substance that will become a precipitation nucleus during chemical plating is brought into contact with the substrate surface, and then brought into contact with a chemical plating solution. By performing chemical plating in a predetermined manner, selective chemical plating of a predetermined pattern can be performed at high speed without using a mask or the like.

本発明において、上記析出核となる物質として
は、パラジウムや錫等が用いられ、これらの塩化
物等の化合物が液体あるいはペースト状の流体中
に含有されて使用される。また、上記化学メツキ
を行なう物質は一般的にはニツケル、銅、金等で
ある。すなわち本発明は、化学メツキを行なうも
のであるが、化学メツキの金属析出の段階でエネ
ルギ・ビームを用いるのではなく、化学メツキの
前処理の段階でエネルビ・ビームを用い、エネル
ギ・ビームの照射により、化学メツキの際の析出
核の被着形成を析出効率良く、かつ所定パターン
形成と共に高速で行なわれるようにしたことによ
り、爾後は所定パターンの析出核に対して一度に
化学メツキにより金属析出をさせれば良いのであ
るから、全体として化学メツキによる選択的メツ
キが高速で行なわれるようになつたものである。
In the present invention, palladium, tin, etc. are used as the substance serving as the precipitation nucleus, and compounds such as chlorides of these are used as contained in a liquid or paste-like fluid. Further, the substance used for the chemical plating is generally nickel, copper, gold, or the like. That is, the present invention performs chemical plating, but instead of using an energy beam in the metal deposition stage of chemical plating, it uses an energy beam in the pretreatment stage of chemical plating, and the energy beam irradiation By making it possible to form deposition nuclei during chemical plating with high deposition efficiency and at high speed while forming a predetermined pattern, metal deposition can be performed on precipitate nuclei in a predetermined pattern at once by chemical plating. As a result, selective plating by chemical plating has become possible at high speed as a whole.

以下本発明の詳細を第1図に示す実施例により
説明する。第1図Aに示すように、NC装置1に
より位置制御されるXYテーブル2に選択的メツ
キを施こすべき基板3をセツトする。なお、該基
板3は、例えば第2図Aに示すように、ガラス繊
維3Aの表面をエポキシ樹脂3Bによりコーテイ
ングしたものであり、セツトの前に中性洗剤で洗
浄し、水で中性洗剤を良く洗い落とし、その後電
気炉並びに天火で乾燥させたものである。該基板
3の表面に対して、変調器を含むレーザ装置6よ
り凸レンズ7により直径1mmに集束させた1.5×
103W/cm2のレーザ・ビーム8を、好ましくは減
圧若しくは真空中、又は清浄気体中で照射するこ
とにより、基板3の表面にNC装置1により発生
される数値に基づく線幅1mmの活性化した所定の
画線を描く。
The details of the present invention will be explained below with reference to the embodiment shown in FIG. As shown in FIG. 1A, a substrate 3 to be selectively plated is set on an XY table 2 whose position is controlled by an NC device 1. Note that, as shown in FIG. 2A, for example, the substrate 3 is made by coating the surface of glass fiber 3A with epoxy resin 3B, and before setting it, it is washed with a neutral detergent and washed with water. It was washed thoroughly and then dried in an electric furnace or an open fire. A laser beam of 1.5× is focused onto the surface of the substrate 3 by a convex lens 7 to a diameter of 1 mm from a laser device 6 including a modulator.
By irradiating the surface of the substrate 3 with a laser beam 8 of 10 3 W/cm 2 , preferably in reduced pressure or vacuum or in a clean gas, an active line width of 1 mm based on the numerical value generated by the NC device 1 is generated on the surface of the substrate 3. Draw the specified stroke line.

ここでレーザ・ビームを含むエネルギ・ビーム
による活性化について説明すると、エネルギ・ビ
ームを合成樹脂等の高分子物質、酸化物等のセラ
ミツクス、金属等の表面に局部的に照射すると、
照射された部分に温度上昇を生じ、或いは表面の
吸着物(薄い分子層の酸化物、水、塵芥、油脂
等)が飛び出し、エネルギ的或いは化学的に清浄
な表面が出現する。固体の物質におけるこの清浄
化された最外面の表面原子は前記吸着物で覆われ
た部分に比較して電子構造的に極めて不安定ない
わば「尻丸出し」の状態にあると言つて良く、こ
の状態を解消しようとして分子、原子をくつつけ
たいと常に指向する一種の興奮状態を形成してお
り、エネルギ的に表面下の原子に比較して高い状
態にある。このような局部的に活性な状態を、エ
ネルギ・ビームの照射によつて希望する場所に形
成する訳である。第2図Aはレーザ・ビーム8の
照射によつて基板3の表面に活性点3aが形成さ
れる状態を示している。
To explain activation by energy beams including laser beams, when energy beams are locally irradiated onto the surface of polymeric substances such as synthetic resins, ceramics such as oxides, metals, etc.
A temperature rise occurs in the irradiated area, or adsorbed substances on the surface (oxides in a thin molecular layer, water, dust, oil, etc.) fly out, and an energetically or chemically clean surface appears. It can be said that the surface atoms of this cleaned outermost surface of a solid substance are in a state where the electronic structure is extremely unstable compared to the part covered with the adsorbate, so to speak. It forms a kind of excited state in which molecules and atoms are constantly trying to stick together in an attempt to resolve the state, and are in a higher energy state than the atoms below the surface. Such a locally activated state is created at a desired location by irradiation with an energy beam. FIG. 2A shows a state in which active points 3a are formed on the surface of the substrate 3 by irradiation with the laser beam 8. FIG.

なお、前述のような活性点(線)は、活性度は
上記のもの程高くはないものの、例えばダイヤモ
ンドバイト等による基板3の表面層の削り取りに
よつても露出形成できるもので、必要に応じて本
発明を適用できるものである。
Although the active points (lines) described above are not as highly active as those mentioned above, they can be exposed and formed by, for example, scraping off the surface layer of the substrate 3 with a diamond cutting tool, etc. The present invention can be applied to the following cases.

このようにして活性点3aないしはその連続で
なる線を形成した後、第1図Bに示すように、た
だちに基板3を活性化処理漕4内に入れて塩化パ
ラジウム溶液5に浸漬する。第2図B,Cは塩化
パラジウム溶液5の存在下で基板3の表面の凹状
の活性点3aにパラジウムによる析出核9が形成
される様子を示している。
After forming the active points 3a or a line consisting of a series of active points 3a in this manner, the substrate 3 is immediately placed in an activation treatment tank 4 and immersed in a palladium chloride solution 5, as shown in FIG. 1B. 2B and 2C show the formation of palladium precipitation nuclei 9 in the concave active points 3a on the surface of the substrate 3 in the presence of the palladium chloride solution 5.

ここで使用した塩化パラジウム溶液5としては
下記の組成のものを使用した。
The palladium chloride solution 5 used here had the following composition.

PdCl2 0.25〜12.5g/ 36%HCl 2.5〜125ml/ C3H8O3 0〜200ml/ C2H5OH ベース なお、上記HClはPdCl2をエタノール
(C2H5OH)に溶解させるために、また、グリセ
リン(C3H8O3)は溶液の粘性を高め、溶液5が
基板3に湿潤する効果を持たせるためにそれぞれ
添加したものであり、ベースとしてエタノールを
用いたのは、これが上記エポキシ樹脂でコーテイ
ングした基板3をエツチングする効果を持ち、ま
た蒸発熱が小さいため、レーザ・パワーを小さく
する効果を合わせ持つからである。なお、溶液5
は、必要に応じ、例えば約50〜60℃前後に加熱し
ておいて塩化パラジウムの還元による活性点3a
への析出が円滑迅速に行なわれるようにするのが
良く、又上記ベースとしては、この他にアセトン
や水等を用いることができる。
PdCl 2 0.25-12.5 g / 36% HCl 2.5-125 ml / C 3 H 8 O 3 0-200 ml / C 2 H 5 OH base Note that the above HCl is used to dissolve PdCl 2 in ethanol (C 2 H 5 OH). In addition, glycerin (C 3 H 8 O 3 ) was added to increase the viscosity of the solution and to make the solution 5 wet the substrate 3, and ethanol was used as the base. This is because this has the effect of etching the substrate 3 coated with the epoxy resin, and since the heat of evaporation is small, it also has the effect of reducing the laser power. In addition, solution 5
is heated to about 50 to 60°C as necessary to reduce the active site 3a by reduction of palladium chloride.
It is preferable to make the precipitation smooth and rapid, and as the base, acetone, water, etc. can be used in addition to the above-mentioned base.

上記のようにして析出核9を形成させた後、第
1図Cに示すようにノズル10から10%塩酸水溶
液を基板3の表面に流下させて付着している塩化
パラジウム溶液を洗い流し、次いで水で塩酸水溶
液を洗い流した後、第1図Dに示すように該基板
3を銅あるいはニツケルの無電解メツキ溶液11
中に浸漬して無電解メツキ(化学メツキ)を行な
う。この無電解メツキにおいては、第2図にDに
示すように、上記パラジウムでなる析出核9上に
銅またはニツケル14が析出することになる。
After forming the precipitation nuclei 9 as described above, as shown in FIG. After washing away the hydrochloric acid aqueous solution, the substrate 3 is coated with a copper or nickel electroless plating solution 11 as shown in FIG. 1D.
Electroless plating (chemical plating) is performed by immersing it in the liquid. In this electroless plating, as shown at D in FIG. 2, copper or nickel 14 is deposited on the precipitation core 9 made of palladium.

ここで、本実施例において無電解メツキに使用
した銅メツキ液は水中に下記の量の物質を含むも
のである。
Here, the copper plating solution used for electroless plating in this example contains the following amount of substance in water.

硫酸銅 7g/ ロツシエル塩 20g/ 炭酸ナトリウム 2g/ 水酸化ナトリウム 5g/ ホルムアルデヒド40%水溶液 25ml/ また、ニツケルメツキ液としては下記の組成の
ものを使用した。
Copper sulfate 7 g / Rothsiel's salt 20 g / Sodium carbonate 2 g / Sodium hydroxide 5 g / Formaldehyde 40% aqueous solution 25 ml / The Nickelmeck liquid had the following composition.

塩化ニツケル 45g/ 次亜リン酸ナトリウム 11g/ クエン酸ナトリウム 100g/ 塩化アンモニウム 50g/ その後、第1図Eに示すように、ノズル12に
より基板3に水を流下させて洗浄し、メツキ厚が
さらに必要な場合には第1図Fのように電気メツ
キ液13中に基板を浸漬して電気メツキを行な
う。この電気メツキは化学メツキと同じ金属のみ
ならず、例えば銀や金等のような異なる金属につ
いて行なつてもよい。
Nickel chloride 45g / Sodium hypophosphite 11g / Sodium citrate 100g / Ammonium chloride 50g / Then, as shown in Figure 1E, the substrate 3 is cleaned by flowing water through the nozzle 12 to increase the plating thickness. In such a case, electroplating is performed by immersing the substrate in electroplating liquid 13 as shown in FIG. 1F. This electroplating may be performed not only on the same metal as chemical plating, but also on different metals such as silver, gold, etc.

上述のようにレーザ・ビームを用いてパラジウ
ム析出の活性点(線)3a形成の前処理を行なつ
た場合、約180m/min(3.0m/sec)以下のビー
ム走査速度であれば、爾後の処理(第1図B)で
パラジウムを析出させることができた。基板3に
パラジウムによるパターンを描いた後は、無電解
メツキによるメツキであるが、これは能率アツプ
の上で問題となることはない。なぜならば、この
無電解メツキは析出核を寄り所として高速に進行
する上、多数の基板3をメツキ槽に浸漬しておく
ことによつてメツキを進行させることができるか
らである。
When performing pretreatment to form active points (lines) 3a for palladium precipitation using a laser beam as described above, if the beam scanning speed is approximately 180 m/min (3.0 m/sec) or less, the subsequent The treatment (FIG. 1B) allowed palladium to be deposited. After drawing the palladium pattern on the substrate 3, it is plated by electroless plating, but this does not pose a problem in improving efficiency. This is because electroless plating proceeds at high speed using precipitation nuclei as a stop, and plating can proceed by immersing a large number of substrates 3 in a plating bath.

ここで、上記パラジウム溶液の代わりに、硝酸
アンモニウムおよび亜硝酸ナトリウムを含むアン
モニア水中にPd(NH32(NO22を0.04M含有させ
たPH8.5、45℃の溶液を用いた場合にもほぼ同様
の結果を得た。
Here, instead of the above palladium solution, when using a solution containing 0.04M of Pd(NH 3 ) 2 (NO 2 ) 2 in ammonia water containing ammonium nitrate and sodium nitrite at pH 8.5 and 45°C. also obtained almost the same results.

また、別の実施例として、出力ビームの直径が
0.6cm、出力10W、波長10.6μのCO2レーザを用い、
該レーザを基板3表面の所定部分に照射して照射
部分に活性点(線)を形成する前処理を行つた
後、パラジウム溶液5として、水中に0.1%の塩
化パラジウムと0.3%の塩化水素とを加えた溶液
を使用し、基板3の表面に0.1〜1mmの液層がで
きるように、第3図に示すように流出口15から
塩化パラジウム溶液5を1c.c./secの流量で流し
て上記活性点(線)3aにパラジウムの析出を行
なわせた場合、36cm/min以下のビーム走査速度
であれば上記レーザ照射により基板3表面の所定
部分を充分に活性化してパラジウム析出を行なわ
せることが可能であつた。従つて、1分間にパラ
ジウムを析出できる面積は、 0.6×36=21.6cm2/min となる。ここでビームを0.06cm(0.6mm)に縮つ
たとすれば、 21.6÷0.06=360cm/min の走査速度を実現することが可能である。同じビ
ーム直径でレーザ出力を10倍、即ち100Wとする
と、走査速度はレーザ出力に比例する関係から、
走査速度も最大で10倍、すなわち3600cm/min
(36m/min)となり、秒速に換算すると約0.6
m/secとなる。なお上記走査速度は前記塩化パ
ラジウム溶液の温度や供給量にも比例する。
As another example, the diameter of the output beam may be
Using a CO 2 laser of 0.6cm, output 10W, and wavelength 10.6μ,
After performing a pretreatment of irradiating a predetermined portion of the surface of the substrate 3 with the laser to form active points (lines) on the irradiated portion, a palladium solution 5 is prepared by adding 0.1% palladium chloride and 0.3% hydrogen chloride in water. As shown in FIG. 3, the palladium chloride solution 5 is poured from the outlet 15 at a flow rate of 1 c.c./sec so that a 0.1 to 1 mm liquid layer is formed on the surface of the substrate 3. When palladium is deposited on the active point (line) 3a, if the beam scanning speed is 36 cm/min or less, the predetermined portion of the surface of the substrate 3 is sufficiently activated by the laser irradiation to deposit palladium. It was possible. Therefore, the area on which palladium can be deposited per minute is 0.6×36=21.6 cm 2 /min. If the beam is reduced to 0.06 cm (0.6 mm), it is possible to achieve a scanning speed of 21.6 ÷ 0.06 = 360 cm/min. If we increase the laser power by 10 times, or 100W, with the same beam diameter, the scanning speed is proportional to the laser power, so
Scanning speed is also up to 10 times faster, i.e. 3600cm/min
(36m/min), which is approximately 0.6 when converted to speed per second.
m/sec. Note that the scanning speed is also proportional to the temperature and supply amount of the palladium chloride solution.

上記実施例においては、塩化パラジウム溶液を
基板に対して浸漬あるいた流下することにより供
給するようにしたが、第4図に示すようにノズル
15′から噴霧させるようにしてもよく、また上
記流体は液体ではなくペースト状をなすものであ
つても良く、その場合には第5図に示すようにペ
ースト状のパラジウム化合物を含む流体5をホツ
パー16から塗布用ローラ17を介して基板3の
表面に塗布する等の塗布機構が採用できる。
In the above embodiment, the palladium chloride solution was supplied by dipping or flowing down onto the substrate, but it may also be sprayed from the nozzle 15' as shown in FIG. may be in the form of a paste rather than a liquid; in that case, as shown in FIG. A coating mechanism such as coating on the surface can be adopted.

第6図は本発明の他の実施例であり、本実施例
は、上記パラジウム等の析出を促進するために、
超音波発生装置18から基板3に対して例えば10
〜50kHzの超音波を当てながら上記溶液5を基板
表面に接触させるものであり、本実施例によれ
ば、第1図の実施例と同様の溶液5の組成、供給
量、レーザ・ビーム強度等の条件下で約2倍の析
出速度を得ることができた。また、超音波を基板
3に当てることにより、レーザ・ビーム出力を1/
4にしても同じ析出速度を得ることができた。
FIG. 6 shows another embodiment of the present invention. In this embodiment, in order to promote the precipitation of palladium etc.,
For example, 10 from the ultrasonic generator 18 to the substrate 3
The solution 5 is brought into contact with the substrate surface while applying ultrasonic waves of ~50 kHz. According to this embodiment, the composition, supply amount, laser beam intensity, etc. of the solution 5 are the same as in the embodiment shown in FIG. About twice the precipitation rate could be obtained under these conditions. In addition, by applying ultrasonic waves to the substrate 3, the laser beam output can be reduced by 1/2.
4, the same precipitation rate could be obtained.

第7図は本発明の他の実施例であり、本実施例
は、基板20として、帯状をなす可撓性を有する
合成樹脂を用いるか、帯状基材に基板を貼り付け
ることにより、連続処理ができるようにしたもの
である。第7図において、供給リール21から繰
り出される適宣の洗浄処理が為されている基板2
0は、NC装置1の相対位置制御によりレーザ装
置6によるレーザ・ビーム8の照射を受け、その
後活性化処理槽22内のローラ23にガイドさ
れ、パラジウム化合物溶液5に浸漬されることに
より、上記したように予め決められたパターンで
表面に金属パラジウムにより画線される。
FIG. 7 shows another embodiment of the present invention. In this embodiment, continuous processing is performed by using a band-shaped flexible synthetic resin as the substrate 20 or by pasting the substrate on a band-shaped base material. It was made so that it could be done. In FIG. 7, a substrate 2 that has been subjected to an appropriate cleaning process is fed out from a supply reel 21.
0 is irradiated with a laser beam 8 by a laser device 6 under the relative position control of the NC device 1, and then guided by a roller 23 in an activation treatment tank 22 and immersed in a palladium compound solution 5, whereby the above-mentioned The surface is streaked with metallic palladium in a predetermined pattern.

その後槽外のガイドローラ24,25間でノズ
ル26から噴出する水により水洗し、次にガイド
ローラ27,28でガイドして化学メツキ槽29
中のニツケルや銅の無電解メツキ液11に浸漬し
て無電解メツキを行なわせる。この場合イオン制
御槽30と化学メツキ槽29との間でメツキ液1
1を循環させ、ニツケルあるいは銅イオンの濃度
が一定になるように陽極にニツケルあるいは銅3
1を接続して電解する。次に槽外のガイドローラ
32,33間でノズル26から噴出する水により
水洗し、次にガイドローラ34,35でガイドし
て電気メツキ槽36中のニツケルや銅、金銀等の
電気メツキ液13に浸漬し、接触ローラ37を介
して基板20上に上記化学メツキ層を陰極に接続
して電気メツキを行なわせる。次にガイドローラ
38を介して引上た部分でノズル39等から噴出
する温風等により乾燥させた後に巻取りリール4
0に巻取る等の手段によりまとめる。
After that, it is washed with water jetted from the nozzle 26 between the guide rollers 24 and 25 outside the tank, and then guided by the guide rollers 27 and 28 to the chemical plating tank 29.
Electroless plating is performed by immersing the nickel or copper in the electroless plating solution 11. In this case, the plating liquid 1 is placed between the ion control tank 30 and the chemical plating tank 29.
1 is circulated, and nickel or copper 3 is placed at the anode so that the concentration of nickel or copper ions is constant.
Connect 1 and electrolyze. Next, the electroplating liquid 13 of nickel, copper, gold and silver, etc. in the electroplating tank 36 is washed with water jetted from the nozzle 26 between the guide rollers 32 and 33 outside the tank, and then guided by the guide rollers 34 and 35. The chemical plating layer is connected to the cathode on the substrate 20 via the contact roller 37, and electroplating is performed. Next, the portion pulled up via the guide roller 38 is dried by hot air etc. ejected from the nozzle 39 etc., and then the take-up reel 4
Gather together by winding up to zero or other means.

なお、本実施例で用いた活性化処理用の溶液
は、塩化パラジウム溶液の場合には、KCl 3.3g PdCl2 2g 36%HCl 25ml を水1に溶解したものを用いた。またこの他に
塩化錫の溶液を用い、この場合には、 SnCl2・H2O 25.2g HCl2.5g 36%HCl 25ml を水1に溶解したものを用いた。また、活性化
処理の場合に、増感剤としてAgNO3を1.5g加え
た所、約20%析出速度を上げることができた。
In the case of a palladium chloride solution, the activation treatment solution used in this example was a solution in which 3.3 g of KCl, 2 g of PdCl 2 , and 25 ml of 36% HCl were dissolved in 1 part of water. In addition, a solution of tin chloride was used; in this case, a solution of 25.2 g of SnCl 2 .H 2 O, 2.5 g of HCl, and 25 ml of 36% HCl dissolved in 1 part of water was used. Furthermore, in the case of activation treatment, when 1.5 g of AgNO 3 was added as a sensitizer, the precipitation rate could be increased by about 20%.

また、上記無電解メツキ液として、ニツケルを
含むものとしては、 クエン酸ナトリウム 0.2M ホウ酸 0.5M 次亜鉛酸ナトリウム 0.2M 硫酸ニツケル 0.1M を含むPH8、70℃の溶液を用い、銅を含むものと
しては、 ホルムアルデヒド 0.3M 硫酸銅 0.1M を含むPH11、25%℃の溶液を用いた。
In addition, the electroless plating solution containing nickel is a solution containing sodium citrate 0.2M boric acid 0.5M sodium subzincate 0.2M nickel sulfate 0.1M at pH 8 and 70℃, and containing copper. A solution containing 0.3M formaldehyde and 0.1M copper sulfate at pH 11 and 25%°C was used.

上記のような連続処理とすれば、自動的に作業
を行なう事ができ、省力化が容易となる。
If the above-mentioned continuous processing is performed, the work can be performed automatically and labor saving becomes easy.

本発明を実施する場合、基板3,20として
は、ABS、ポリプロピレン、エポキシ、ポリエ
ステル、フエノール、ポリフエニレンオキシド、
ポリビニル、ウレタン、アクリル等の合成樹脂や
シリコン、ガラス、アルミナ等の磁器等を用いる
ことができる。また、エネルギ・ビームとして
は、100MHz以上の電磁波を用いることができる。
When carrying out the present invention, the substrates 3 and 20 include ABS, polypropylene, epoxy, polyester, phenol, polyphenylene oxide,
Synthetic resins such as polyvinyl, urethane, acrylic, silicone, glass, porcelain such as alumina, etc. can be used. Further, as the energy beam, electromagnetic waves of 100 MHz or more can be used.

以上述べたように、本発明によれば、化学メツ
キの金属析出の段階でエネルギ・ビームを用いる
のではなく、パラジウム等の化学メツキ析出核を
生成させる処理段階の更に前の段階に於て基板表
面の所定部分に活性点(線)を形成するためにエ
ネルギビームを使用するようにしたので、化学メ
ツキ時の析出核となるパラジウムを所定パターン
形状に被着させるまでの処理走査を高めて高速に
行なうことができ、この結果、全メツキ工程に要
する時間を短縮して、絶縁性基板に対して選択的
メツキを高速で行なうことができる。また、本発
明によれば、化学メツキ用の核析出溶液及び金属
析出用無電解メツキ液の使用損耗量が、所定パタ
ーン等の選択的メツキ量に対応するものであるか
ら無駄がなく、極めて経済的である。また、活性
点(線)の形成には、前述のようにダイヤモンド
バイト等による基板表面の削り取り操作を、本発
明のエネルギビーム照射に併用することもでき
る。
As described above, according to the present invention, instead of using an energy beam at the stage of metal deposition in chemical plating, an energy beam is not used in the stage of chemical plating metal deposition, but in a stage prior to the processing stage in which chemical plating precipitation nuclei such as palladium are generated. Since an energy beam is used to form active points (lines) on predetermined portions of the surface, the processing scan is increased and the processing speed is increased until the palladium, which becomes the precipitation nucleus during chemical plating, is deposited in the predetermined pattern shape. As a result, the time required for the entire plating process can be shortened, and the insulating substrate can be selectively plated at high speed. Furthermore, according to the present invention, the amount of wear and tear during use of the nuclear deposition solution for chemical plating and the electroless plating solution for metal deposition corresponds to the amount of selective plating of a predetermined pattern, etc., so there is no waste and it is extremely economical. It is true. Furthermore, to form the active points (lines), the scraping operation of the substrate surface using a diamond cutting tool or the like as described above can be used in combination with the energy beam irradiation of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す工程図、第2
図は本発明の方法を実施した場合の原理図、第3
図ないし第6図は本発明における基板と流体との
接触の仕方の別の例を示す図、第7図は本発明の
他の実施例を示す工程図である。 1……NC装置、2……XYテーブル、3,2
0……基板、4……活性化槽、5……塩化パラジ
ウム溶液、6……レーザ装置、7……凸レンズ、
8……レーザ・ビーム、9……析出核、10,1
2……ノズル、11……化学メツキ液、13……
電気メツキ液、14……ニツケルまたは銅、18
……超音波発生装置。
Figure 1 is a process diagram showing one embodiment of the present invention, Figure 2 is a process diagram showing an embodiment of the present invention.
The figure is a diagram of the principle when implementing the method of the present invention.
6 to 6 are diagrams showing another example of how the substrate and fluid come into contact in the present invention, and FIG. 7 is a process diagram showing another embodiment of the present invention. 1...NC device, 2...XY table, 3,2
0... Substrate, 4... Activation tank, 5... Palladium chloride solution, 6... Laser device, 7... Convex lens,
8...Laser beam, 9...Precipitation nucleus, 10,1
2... Nozzle, 11... Chemical plating liquid, 13...
Electroplating liquid, 14... Nickel or copper, 18
...Ultrasonic generator.

Claims (1)

【特許請求の範囲】 1 メツキ対象物である絶縁性基板の表面の所定
部分にエネルギビームを照射し加熱して該照射部
分に活性点(線)を形成した後、化学メツキの際
に析出核となる物質を化合物として含有する流体
を上記基板の表面に接触させて上記活性点(線)
部分に上記物質を被着させ、次いで上記基板を洗
浄して残存する上記流体を除去した後、上記基板
表面を所定の化学メツキ液に接触させて上記活性
点(線)部分に被着した上記物質を核として化学
メツキにより金属を析出させることを特徴とする
選択的メツキ方法。 2 上記エネルギビームが、レーザビームである
特許請求の範囲第1項記載の選択的メツキ方法。 3 上記化学メツキの際に析出核となる物質がパ
ラジウムで、該物質の化合物が塩化パラジウムで
ある特許請求の範囲第1項記載の選択的メツキ方
法。 4 上記化学メツキの際に析出核となる物質を化
合物として含有する流体が、上記化合物を溶解含
有する水溶液である特許請求の範囲第1項記載の
選択的メツキ方法。 5 上記流体がペースト状物である特許請求の範
囲第1項記載の選択的メツキ方法。 6 上記流体の基板表面への接触が、上記流体を
基板表面に沿つて層状に流すことにより行なわれ
る特許請求の範囲第1項記載の選択的メツキ方
法。 7 上記流体の基板表面への接触が、上記流体を
基板表面へ層状に塗着することにより行なわれる
特許請求の範囲第1項記載の選択的メツキ方法。 8 上記流体の基板表面への接触が、上記流体を
基板表面へ噴霧することにより行なわれる特許請
求の範囲第1項記載の選択的メツキ方法。 9 上記基板表面に上記流体を接触させる際に、
超音波により基板を振動させる特許請求の範囲第
1項記載の選択的メツキ方法。 10 上記絶縁性基板が長尺帯状板からなり、上
記メツキが長さ方向に順次行なわれるものである
特許請求の範囲第1項記載の選択的メツキ方法。 11 上記絶縁性基板が合成樹脂である特許請求
の範囲第1項記載の選択的メツキ方法。 12 上記絶縁性基板が磁器である特許請求の範
囲第1項記載の選択的メツキ方法。 13 上記化学メツキがニツケルメツキである特
許請求の範囲第1項記載の選択的メツキ方法。 14 上記化学メツキが銅メツキである特許請求
の範囲第1項記載の選択的メツキ方法。 15 上記エネルギビームの基板表面の所定部分
への照射が、ビームと基板との相対的な数値制御
移動により行なわれるものである特許請求の範囲
第1項記載の選択的メツキ方法。 16 上記化学メツキにより金属を析出させた基
板に更に電気メツキが行なわれる特許請求の範囲
第1項記載の選択的メツキ方法。
[Claims] 1. After irradiating and heating a predetermined portion of the surface of the insulating substrate that is the object to be plated with an energy beam to form active points (lines) on the irradiated portion, precipitated nuclei are formed during chemical plating. A fluid containing a substance as a compound is brought into contact with the surface of the substrate to form the active points (lines).
After depositing the substance on the active point (line) portion, and then cleaning the substrate to remove the remaining fluid, the surface of the substrate is brought into contact with a predetermined chemical plating solution to deposit the substance on the active point (line) portion. A selective plating method characterized by depositing metal by chemical plating using a substance as a core. 2. The selective plating method according to claim 1, wherein the energy beam is a laser beam. 3. The selective plating method according to claim 1, wherein the substance that becomes a precipitation nucleus during the chemical plating is palladium, and the compound of the substance is palladium chloride. 4. The selective plating method according to claim 1, wherein the fluid containing as a compound a substance that becomes a precipitation nucleus during the chemical plating is an aqueous solution containing the compound dissolved therein. 5. The selective plating method according to claim 1, wherein the fluid is a paste-like material. 6. The selective plating method according to claim 1, wherein the fluid contacts the substrate surface by flowing the fluid in a layered manner along the substrate surface. 7. The selective plating method according to claim 1, wherein the contact of the fluid to the substrate surface is performed by applying the fluid to the substrate surface in a layered manner. 8. The selective plating method according to claim 1, wherein the fluid contacts the substrate surface by spraying the fluid onto the substrate surface. 9 When bringing the fluid into contact with the surface of the substrate,
The selective plating method according to claim 1, wherein the substrate is vibrated by ultrasonic waves. 10. The selective plating method according to claim 1, wherein the insulating substrate is made of a long strip-shaped plate, and the plating is performed sequentially in the length direction. 11. The selective plating method according to claim 1, wherein the insulating substrate is made of synthetic resin. 12. The selective plating method according to claim 1, wherein the insulating substrate is porcelain. 13. The selective plating method according to claim 1, wherein the chemical plating is nickel plating. 14. The selective plating method according to claim 1, wherein the chemical plating is copper plating. 15. The selective plating method according to claim 1, wherein the irradiation of the energy beam onto a predetermined portion of the substrate surface is performed by relative numerically controlled movement of the beam and the substrate. 16. The selective plating method according to claim 1, wherein electroplating is further performed on the substrate on which metal has been deposited by the chemical plating.
JP611784A 1984-01-17 1984-01-17 Selective plating method Granted JPS60149783A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP611784A JPS60149783A (en) 1984-01-17 1984-01-17 Selective plating method
US06/691,877 US4639378A (en) 1984-01-17 1985-01-16 Auto-selective metal deposition on dielectric surfaces
EP85100466A EP0151413A3 (en) 1984-01-17 1985-01-17 Auto-selective metal deposition on dielectric surfaces
US06/882,498 US4822633A (en) 1984-01-17 1986-07-07 Auto-selective metal deposition on dielectric surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP611784A JPS60149783A (en) 1984-01-17 1984-01-17 Selective plating method

Publications (2)

Publication Number Publication Date
JPS60149783A JPS60149783A (en) 1985-08-07
JPH0534428B2 true JPH0534428B2 (en) 1993-05-24

Family

ID=11629560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP611784A Granted JPS60149783A (en) 1984-01-17 1984-01-17 Selective plating method

Country Status (1)

Country Link
JP (1) JPS60149783A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262476A (en) * 1987-04-17 1988-10-28 Meiban Kogei Kk Formation of pattern
US5260108A (en) * 1992-03-10 1993-11-09 International Business Machines Corporation Selective seeding of Pd by excimer laser radiation through the liquid
WO2017187930A1 (en) 2016-04-26 2017-11-02 株式会社村田製作所 Method for producing ceramic electronic component
LT6518B (en) * 2016-09-13 2018-04-25 Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras Method for formation of electro-conductive traces on polymeric article surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920030A (en) * 1972-06-15 1974-02-22
JPS515626A (en) * 1974-07-04 1976-01-17 Matsushita Electric Ind Co Ltd RYURYOSEIGYOKI
JPS5362176A (en) * 1976-11-15 1978-06-03 Nippon Telegraph & Telephone Method of forming printed circuit
JPS5562156A (en) * 1978-10-27 1980-05-10 Schering Ag Manufacture of metal pattern on electric insulating supporter by photochemical method
JPS55148797A (en) * 1979-05-08 1980-11-19 Ibm Selective electroplating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920030A (en) * 1972-06-15 1974-02-22
JPS515626A (en) * 1974-07-04 1976-01-17 Matsushita Electric Ind Co Ltd RYURYOSEIGYOKI
JPS5362176A (en) * 1976-11-15 1978-06-03 Nippon Telegraph & Telephone Method of forming printed circuit
JPS5562156A (en) * 1978-10-27 1980-05-10 Schering Ag Manufacture of metal pattern on electric insulating supporter by photochemical method
JPS55148797A (en) * 1979-05-08 1980-11-19 Ibm Selective electroplating method

Also Published As

Publication number Publication date
JPS60149783A (en) 1985-08-07

Similar Documents

Publication Publication Date Title
US4822633A (en) Auto-selective metal deposition on dielectric surfaces
US3772056A (en) Sensitized substrates for chemical metallization
US4349583A (en) Laser enhanced maskless method for plating and simultaneous plating and etching of patterns
US3772078A (en) Process for the formation of real images and products produced thereby
JP3153682B2 (en) Circuit board manufacturing method
US4981715A (en) Method of patterning electroless plated metal on a polymer substrate
US3925578A (en) Sensitized substrates for chemical metallization
US3628999A (en) Plated through hole printed circuit boards
US8529738B2 (en) In situ plating and etching of materials covered with a surface film
US4440801A (en) Method for depositing a metal layer on polyesters
US3959547A (en) Process for the formation of real images and products produced thereby
US20110042201A1 (en) In situ Plating And Soldering Of Materials Covered With A Surface Film
US4165394A (en) Method of preparation of a substrate made of plastic material for its subsequent metallization
EP0109920A2 (en) Process for cleaning holes in printed circuit boards with permanganate and basic solutions
EP0357124B1 (en) Method of selectively providing a metal from the liquid phase on a substrate by means of a laser
JP2005022956A (en) Metallization of ceramic
US3791340A (en) Method of depositing a metal pattern on a surface
JPH0326816B2 (en)
JPH07180089A (en) Method and constitution for electric plating
PT788728E (en) PROCESS FOR THE COATING OF ELECTRICALLY NOT CONDUCTIVE SURFACES WITH METALLIC STRUCTURES LINKED BETWEEN
JPH0534428B2 (en)
JPH0577748B2 (en)
US3839083A (en) Selective metallization process
DD157989A3 (en) METHOD OF STRUCTURED CHEMICAL REDUCTIVE METAL SEPARATION
US3676213A (en) Process for the selective formation of coatings by electroless deposition