JPS61143580A - Partial chemical plating method of non-metallic member - Google Patents

Partial chemical plating method of non-metallic member

Info

Publication number
JPS61143580A
JPS61143580A JP26407884A JP26407884A JPS61143580A JP S61143580 A JPS61143580 A JP S61143580A JP 26407884 A JP26407884 A JP 26407884A JP 26407884 A JP26407884 A JP 26407884A JP S61143580 A JPS61143580 A JP S61143580A
Authority
JP
Japan
Prior art keywords
metallic
platiang
compd
laser beam
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26407884A
Other languages
Japanese (ja)
Inventor
Shoji Shiga
志賀 章二
Toru Tanigawa
徹 谷川
Toshio Tani
俊夫 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP26407884A priority Critical patent/JPS61143580A/en
Publication of JPS61143580A publication Critical patent/JPS61143580A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1862Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
    • C23C18/1868Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1879Use of metal, e.g. activation, sensitisation with noble metals

Abstract

PURPOSE:To simplify a plating stage and to obtain a pecision pattern having excellent adhesive strength by sticking a catalytic metallic compd. to the surface of a non-metallic member then irradiating a laser abeam to the partical platiang part to reduce said compd. then subjecting the surface to chemical platiang by the conventional practice after washing. CONSTITUTION:The catalyatic metallic compd. is stuck on the surface of the non-metallic member 1 such as Al2O3 substrate and thereafter the laser beam 3 is irradiated to the partial platiang part 2 on the surface of the above- mentioned member 1 to heat locally the platiang part 2 and to reduce the catalytic metallic compd. The catalytic metallic compd. except in the platiang part is then washed away and the surface is subjected to the chemical plating in accordance with the conventional practice, by which the surface of the non-metallic member 1 is subjected to the partial platiang of the desired part. The compd. of Pd, Pt. Ag or Cu,or example, PdCl2, PtBr4, AgNO3, CuSO4, etc., are more preferably used for the catalytic metallic compd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非金属部材の部分化学メッキ法に関し、特に非
金属部材の表面に接着力の優れた精密なパターンの部分
化学メッキを経済的に行なうものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for partial chemical plating of non-metallic members, and in particular, to economical partial chemical plating of precise patterns with excellent adhesive strength on the surface of non-metallic members. It is something to do.

〔従来の技術〕[Conventional technology]

一般にプラスチックやセラミックス等の非金属部材の表
面に、Cu、Ni 、3n、ALI。
Generally, Cu, Ni, 3n, and ALI are used on the surface of nonmetallic materials such as plastics and ceramics.

AQ等の金属を無電解的に析出させて金属皮膜を形成す
る化学メッキ法はメタライジングの目的に広く用いられ
ている。特にエレクトロニクスの分野では電子部品の電
極や回路として所望部分のみに部分メッキしたものが用
いられている。このような部分メッキを行なうためには
、非金属部材の表面をエツチングして粗面とした後、S
n 塩を増感作用兼助触媒として付着し、これにPd 
 塩を吸着させてから全面に化学メッキを行ない、しか
る後、所望部分以外のメッキ金属をエツチング等により
除去している。また表面をエツチングして粗面とした後
、所望のメッキハターン部にペースト状の触媒を印刷塗
布し、しかる後化学メッキすることも一部で行なわれて
いる。
A chemical plating method in which a metal such as AQ is deposited electrolessly to form a metal film is widely used for the purpose of metallizing. Particularly in the field of electronics, electrodes and circuits of electronic components that are partially plated only on desired parts are used. In order to perform such partial plating, the surface of the non-metallic member is etched to make it a rough surface, and then S
n salt is attached as a sensitizing agent and co-catalyst, and Pd
After adsorbing the salt, chemical plating is applied to the entire surface, and then the plated metal other than the desired areas is removed by etching or the like. In some cases, after etching the surface to make it rough, a paste-like catalyst is printed and coated on the desired plating pattern, and then chemical plating is carried out.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記部分メッキ法は何れも接着力やメッキ速度が劣るば
かりか、工程が煩雑で経済性の低い方法であり、これが
部分化学メッキの工業的活用の大きな障害となっている
。即ち一般的にはSn“1塩を増感作用又は助触媒とし
て付着させ、これにPb  j!!を吸着させるところ
から、100人前後のPd粒が機械的に付着した状態と
なり、触媒作用が不十分なばかりか、接着力に欠ける。
All of the above partial plating methods not only have poor adhesive strength and plating speed, but also involve complicated processes and are uneconomical, which is a major obstacle to the industrial use of partial chemical plating. In other words, in general, Sn"1 salt is attached as a sensitizing agent or co-catalyst, and Pb j!! is adsorbed onto it. This results in a state in which about 100 Pd particles are mechanically attached, and the catalytic effect is lost. Not only is it insufficient, but it also lacks adhesive strength.

これを改善するため触媒上にメッキ核が生成。To improve this, plating nuclei are generated on the catalyst.

成長するところからプリント回路基板等では基板中に予
めPd粉末を分散させておくことが試みられているが、
十分な接着力とメッキ速度を得ることができない。この
ような欠陥は精密パターンの部分化学メッキにおいて一
層顕著なものとなる。
Attempts have been made to disperse Pd powder in advance in printed circuit boards, etc., from the point of growth.
Unable to obtain sufficient adhesion and plating speed. Such defects become more noticeable in partial chemical plating of precision patterns.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の決、非金属部材の表面所
望部分に接着力の優れた精密なパターンの部分メッキ法
を経済的に形成することができる部分化学メッキ法を開
発したもので、非金属部材の表面に触媒金属化合物を付
着した後、表面の部分メッキ部にレーザ光線を照射して
部分メッキ部の触媒金属化合物を加熱還元し、しかる後
部分メッキ部以外の触媒金属化合物を洗浄除去してから
化学メッキを行なうことを特徴とするものである。
In view of this, after various studies, the present invention has developed a partial chemical plating method that can economically form a precise pattern of partial plating with excellent adhesive strength on a desired part of the surface of a non-metallic member. After attaching a catalytic metal compound to the surface of a non-metallic member, the partially plated part of the surface is irradiated with a laser beam to reduce the catalytic metal compound in the partially plated part by heating, and then the catalytic metal compound other than the partially plated part is cleaned. This method is characterized by performing chemical plating after removal.

即ち本発明は非金属部材の表面に触媒金属化合物を付着
させた後、第1図に示すように非金属部材(1)の表面
の部分メッキ部(2)にレーザ光11(3)を照射して
、部分メッキ部(2)を局部的に加熱することにより、
該メッキ部(2)の触媒金属化合物を還元する。次に部
分メッキ部(2)以外の触媒金属化合物を洗浄除去した
後、常法に従って化学メッキを行ない、非金属部材(1
)の表面に所望のパターンの部分メッキを1)!iすも
のである。
That is, in the present invention, after a catalytic metal compound is attached to the surface of a non-metallic member, the partially plated portion (2) on the surface of the non-metallic member (1) is irradiated with a laser beam 11 (3) as shown in FIG. By heating the partially plated part (2) locally,
The catalytic metal compound in the plated portion (2) is reduced. Next, after washing and removing the catalytic metal compound other than the partially plated part (2), chemical plating is performed according to a conventional method.
1) Partial plating of desired pattern on the surface of )! It is something that I do.

レーザ光線(3)は図に示すようにレーザ光源(4)か
ら発したレーザ光線(3′)を反射鏡(5)、集光レン
ズ(6)等の光学系を通して非金属部材(1)の表面に
照射する。レーザ光線としては通常直径が数十μ以下の
スポット状のものを用い、これ以上の大きなパターンに
照射する場合には、レーザ光線又は非金属部材を走査す
る。レーザ光線としては通常直径が数十μ以下のスポッ
ト状のものを用い、これ以上の大きなパターンに照射す
る場合には、レーザー光線又は非金属部材を走査する。
As shown in the figure, the laser beam (3) is emitted from the laser light source (4) and passes through an optical system such as a reflecting mirror (5) and a condensing lens (6) to the non-metallic member (1). Irradiate the surface. The laser beam is usually in the form of a spot with a diameter of several tens of microns or less, and when a larger pattern is to be irradiated, the laser beam or a nonmetallic member is scanned. The laser beam is usually in the form of a spot with a diameter of several tens of microns or less, and when a larger pattern is to be irradiated, the laser beam or a nonmetallic member is scanned.

また、第2図に示すように非金属部材(1)の表面に断
続するスポット状のメッキ部(2>、(2’ )。
Further, as shown in FIG. 2, there are spot-shaped plated portions (2>, (2')) which are intermittent on the surface of the non-metallic member (1).

(2″)にレーザ光線を照射する場合には、非金属部材
(1)又はレーザ光線を縦又は横方向に走査してメッキ
部(2)にレーザ光線を照射した後、レーザ光線の照射
を中断して非金属部材(1)又はレーザ光線を走査して
レーザ光線をメッキ部(2′ )合せて照射し、これを
繰返せばよい。これ等の走査は容易に自動化することが
できる。レーザ光線のパワー密度としては、触媒金属化
合物の種類及び非金属部材の材質により必ずしも一定で
はないが、一般には102〜106W / ci程度で
、レーザ光源としても0.1W以上の中乃至大出力のA
rガス、YAG (Nd )固体、COガス等のレーザ
を用いる。
(2″), scan the nonmetallic member (1) or the laser beam in the vertical or horizontal direction to irradiate the plated part (2) with the laser beam, and then irradiate the plated part (2) with the laser beam. The nonmetallic member (1) or the laser beam may be scanned at intervals, the laser beam may be applied to the plated portion (2'), and this may be repeated.Such scanning can be easily automated. Although the power density of the laser beam is not necessarily constant depending on the type of catalytic metal compound and the material of the non-metallic member, it is generally about 102 to 106 W/ci, and as a laser light source, a medium to high output of 0.1 W or more is used. A
A laser such as r gas, YAG (Nd) solid, CO gas, etc. is used.

触媒金属化合物としては、Pd C!z 、 Pd(N
Os )z 、Pd  (NH3)2 、Pd SO+
Pd  (NOx )z 、 Cu  (HCOO)z
 、Cu(NH3)4 C,ez 、Cu 804 、
AgF。
As a catalytic metal compound, Pd C! z, Pd(N
Os )z , Pd (NH3)2 , Pd SO+
Pd (NOx)z, Cu (HCOO)z
, Cu(NH3)4C,ez, Cu804,
AgF.

Ag SO+  、Ag NO3、A!II  1.A
o  CN。
Ag SO+, Ag NO3, A! II 1. A
oCN.

Pt C1,Kz Pt (CN)+ 、 Pt Br
+等であり、水、アルコール、エーテルなどの溶液又は
固体粉末として非金属部材の表面に付着する。
Pt C1, Kz Pt (CN)+, Pt Br
+, etc., and adheres to the surface of non-metallic members as a solution of water, alcohol, ether, etc. or as a solid powder.

レーザ光線照射後の部分メッキ部以外の触媒金属化合物
の洗浄には水やアルコールなどを用いて完全に除去回収
する。更に完全を期すために酸等を用いて軽くエツチン
グする。しかる後、Cu 、Ni 、Sn 、Ao 、
Au等の塩分J−M元剤、例えばホルマリン、ギ酸、N
a Hz POz 。
After laser beam irradiation, water, alcohol, or the like is used to completely remove and recover the catalytic metal compound in areas other than the partially plated area. To further ensure perfection, lightly etch using acid or the like. After that, Cu, Ni, Sn, Ao,
Salt J-M base agents such as Au, such as formalin, formic acid, N
a Hz POz.

ジメチルアミンボラン等との混合液に浸漬して所望の厚
さに化学メッキする。
It is chemically plated to the desired thickness by immersing it in a mixed solution with dimethylamine borane, etc.

〔作 用〕[For production]

レーザ光線の照射により非金属部材の部分メツキ部と該
メッキ部上の触媒金属化合物が局部的に高温に加熱され
、化合物は熱分解を起して金属粒状に還元され、同時に
非金属部材と金属粒子の少なくとも一方がメルトして混
合するため、非金属部材と金属粒子は強固に接着する。
By irradiating the laser beam, the partially plated part of the nonmetallic member and the catalytic metal compound on the plated part are locally heated to a high temperature, and the compound undergoes thermal decomposition and is reduced to metal particles, and at the same time, the nonmetallic part and the metal Since at least one of the particles melts and mixes, the nonmetallic member and the metal particles are firmly adhered.

即ち上記触媒金属化合物は何れも100〜1000℃で
熱分解し、pd 、Pt 、A!J等は単純に還元され
、Cuは化合物の分解時に発生する還元性ガス、例えば
Cu  (HCOO)zではCOとH2が非金属部材と
の反応に有効に作用する。
That is, all of the above catalytic metal compounds are thermally decomposed at 100 to 1000°C, resulting in pd, Pt, A! J and the like are simply reduced, and Cu is a reducing gas generated when the compound is decomposed, for example, in the case of Cu(HCOO)z, CO and H2 effectively act on the reaction with the nonmetallic member.

更に触媒金属化合物にアルコール、アミン、アルデヒド
等の還元性物質を混合したり、HzやCOなとの雰囲気
中でレーザ光線を照射することが可能となり、接着力を
一層向上させることができる。またレーザ光線の照射は
多くの場合1秒以下、例えば0.01〜0.5秒と瞬時
的で充分であるため、還元された金属粒子の結晶成長は
起り難く、微粒子状で高密度に生成する。従って触媒活
性を増大し、化学メッキにおけるメッキ速度及びメッキ
の密着度を大きく向上することができる。
Furthermore, it is possible to mix a reducing substance such as an alcohol, an amine, or an aldehyde with the catalytic metal compound, or to irradiate it with a laser beam in an atmosphere of Hz or CO, thereby making it possible to further improve the adhesive strength. In addition, since the laser beam irradiation is instantaneous and sufficient for less than 1 second in most cases, for example 0.01 to 0.5 seconds, crystal growth of the reduced metal particles is difficult to occur, and they are formed in fine particles at a high density. do. Therefore, the catalytic activity can be increased, and the plating speed and plating adhesion in chemical plating can be greatly improved.

実施例(1) 2インチ巾のAfzO3(96%)基板を合成洗剤で洗
浄してから、Pd Cfz 2%、アルコール15%の
水溶液中に1分間浸漬してPd C,eZを付着させた
後乾燥した。これを7.5s/sinの速度で走行させ
、基板上に7WのYAG (Nd )固体レーザ光線を
石英レンズで集光して照射し、基板を一走行毎に巾方向
に0.025m+ずらせてレーザ光線の照射を3回繰返
した後、希HCJ!水溶液(80℃)を用いて1分間洗
浄し、レーザ光線照射部以外に付着するpdC,e<を
除去してから水洗し、しかる後上村工業■製化学Cuメ
ッキ液ELC−H浴(60℃)中に3時間浸漬し、基材
上に巾o、 1m 、厚さ12μのCu回路を形成した
。これについて接着強度を試へるため基板を折曲げて破
断し、Cu回路をビーリングし、従来品と比較した。
Example (1) After cleaning a 2-inch wide AfzO3 (96%) substrate with a synthetic detergent, it was immersed in an aqueous solution of 2% Pd Cfz and 15% alcohol for 1 minute to adhere Pd C, eZ. Dry. This was run at a speed of 7.5 s/sin, and a 7W YAG (Nd) solid-state laser beam was focused on the substrate using a quartz lens, and the substrate was shifted by 0.025 m+ in the width direction for each run. After repeating the laser beam irradiation three times, rare HCJ! Wash for 1 minute using an aqueous solution (80℃) to remove pdC,e< attached to areas other than the laser beam irradiation area, then wash with water, and then wash with water using a chemical Cu plating solution ELC-H bath (60℃ ) for 3 hours to form a Cu circuit with a width of 1 m and a thickness of 12 μm on the substrate. In order to test the adhesive strength, the substrate was bent and broken, the Cu circuit was beaded, and compared with a conventional product.

従来品は上記基材をHF(45%)水溶液中に3分間浸
漬して表面を粗面化した後水洗し、これをSn(、ez
(5%)水溶液中に浸漬してからPdCJ2z2%、ア
ルコール15%の水溶液に1分間浸漬した。これを実施
例(1)と同様のCuメッキ液中に3時間浸漬して全面
にCuメッキ(メッキ厚さは10μ)し、水洗乾燥して
から常法に従って液状レジスト膜を形成し、写真法によ
り巾0.11n11の回路を感光、現象処理し、次にF
e Cf3溶液を用いて回路部以外のCuメッキを除去
し、しかる後回路部上のレジスト膜を除去したものであ
る。
In the conventional product, the above substrate is immersed in an aqueous HF (45%) solution for 3 minutes to roughen the surface, then washed with water, and then
(5%) aqueous solution, and then immersed in an aqueous solution containing 2% PdCJ2z and 15% alcohol for 1 minute. This was immersed in the same Cu plating solution as in Example (1) for 3 hours to plate the entire surface with Cu (plating thickness: 10 μm), washed with water, dried, and formed a liquid resist film according to a conventional method. A circuit with a width of 0.11n11 was exposed and processed by F.
e The Cu plating other than the circuit part was removed using a Cf3 solution, and then the resist film on the circuit part was removed.

本発明メッキ法によるものは、Cu回路が破断したのに
対し、従来品ではCu回路がAJI!zO3基板より剥
離した。このように本発明方法は従来方法に較べてメッ
キ工程が極めて簡単なばかりか、密着力も優れているこ
とが判る。
In the case of the plating method according to the present invention, the Cu circuit was broken, whereas in the case of the conventional product, the Cu circuit was AJI! It was peeled off from the zO3 substrate. As described above, it can be seen that the method of the present invention not only has a much simpler plating process than the conventional method, but also has superior adhesion.

実施例(2) 実施例(1)においてPd C,ezに代えて王水に溶
解したPt溶液(p tl、5%)を用い、レーザ光線
の出力を6Wとして同様に処理した。
Example (2) The same process as in Example (1) was carried out except that a Pt solution (ptl, 5%) dissolved in aqua regia was used instead of Pd C, ez, and the output of the laser beam was 6W.

その結果Cu回路の厚さは10μ、折曲げ破断よるCu
回路の剥離は認められなかった。
As a result, the thickness of the Cu circuit was 10μ, and the thickness of the Cu circuit was 10μ.
No peeling of the circuit was observed.

実施例(3) 実施例(1)において、Pd C,ezに代えてAgN
0!溶液(A Oi、s%)を用い、レーザ光線の出力
を4Wとして同様に処理した。その結果、Cu回路の厚
さは9μ、折曲げ破断によるCu回路の剥離は認められ
なかった。
Example (3) In Example (1), AgN was used instead of Pd C,ez.
0! The same treatment was performed using a solution (A Oi, s%) and setting the output of the laser beam to 4W. As a result, the thickness of the Cu circuit was 9 μm, and no peeling of the Cu circuit due to bending and breakage was observed.

実施例(4) 実施例(1)において、PaCl2に代えてCu  (
HCOO)z溶液(Cu3%)を用い、レーザ光線の出
力を6Wとして同様に処理した。
Example (4) In Example (1), Cu (
The same process was carried out using a HCOO)z solution (3% Cu) and a laser beam output of 6W.

その結果、Cu回路の厚さは8μ、折曲げ破断によるC
u回路の剥離は認められなかった。
As a result, the thickness of the Cu circuit was 8μ, and the thickness of the Cu circuit was
No peeling of the u circuit was observed.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、メッキ工程が簡略化されて
経済的であるばかりか、メッキ速度が大きく、接着力の
大きいメッキが得られ、かつ高精密な任意のパターンの
メッキを行なうことができる等工業上顕著な効果を秦す
るものである。
As described above, according to the present invention, not only is the plating process simplified and economical, but also the plating speed is high, plating with strong adhesive strength can be obtained, and high-precision plating can be performed in any desired pattern. It has significant industrial effects such as:

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のレーザ光線照射工程を示す説明図、第
2図は本発明による断続するスポット状メッキ部のレー
ザ光線照射の説明図である。 1、非金属部材  20部分メッキ部 3、レーザ光線  4.レーザ光源 5、反射鏡    6.集光レンズ 第1図 第2図
FIG. 1 is an explanatory diagram showing the laser beam irradiation process of the present invention, and FIG. 2 is an explanatory diagram of the laser beam irradiation of intermittent spot-shaped plated parts according to the present invention. 1. Non-metallic member 20 partially plated portion 3. Laser beam 4. Laser light source 5, reflecting mirror 6. Condensing lens Fig. 1 Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1)非金属部材の表面に触媒金属化合物を付着した後
、表面の部分メッキ部にレーザ光線を照射して部分メッ
キ部の触媒金属化合物を加熱分解し、しかる後部分メッ
キ部以外の触媒金属化合物を洗浄除去してから化学メッ
キを行なうことを特徴とする非金属部材の部分化学メッ
キ法。
(1) After attaching a catalytic metal compound to the surface of a non-metallic member, the partially plated part on the surface is irradiated with a laser beam to thermally decompose the catalytic metal compound in the partially plated part, and then the catalytic metal compound other than the partially plated part is heated. A partial chemical plating method for non-metallic parts, characterized by performing chemical plating after washing and removing compounds.
(2)触媒金属化合物としてPd、Pt、Ag又はCu
の触媒化合物を用いる特許請求の範囲第1項記載の非金
属部材の部分化学メッキ法
(2) Pd, Pt, Ag or Cu as a catalytic metal compound
A partial chemical plating method for non-metallic members according to claim 1 using a catalyst compound of
JP26407884A 1984-12-14 1984-12-14 Partial chemical plating method of non-metallic member Pending JPS61143580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26407884A JPS61143580A (en) 1984-12-14 1984-12-14 Partial chemical plating method of non-metallic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26407884A JPS61143580A (en) 1984-12-14 1984-12-14 Partial chemical plating method of non-metallic member

Publications (1)

Publication Number Publication Date
JPS61143580A true JPS61143580A (en) 1986-07-01

Family

ID=17398208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26407884A Pending JPS61143580A (en) 1984-12-14 1984-12-14 Partial chemical plating method of non-metallic member

Country Status (1)

Country Link
JP (1) JPS61143580A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038147A2 (en) * 2001-10-29 2003-05-08 Qinetiq Limited High resolution patterning method
WO2014187331A1 (en) * 2013-05-23 2014-11-27 Shenzhen Byd Auto R&D Company Limited Method for forming pattern on surface of insulating substrate and ceramic article
WO2017002425A1 (en) * 2015-06-29 2017-01-05 公立大学法人兵庫県立大学 Composite material and production method for same, and production device for same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134829A (en) * 1974-07-11 1976-03-24 Kollmorgen Corp Kitainozokanhoho oyobi konohohonyorierareruseihin
JPS55148757A (en) * 1979-05-08 1980-11-19 Ibm Selective plating method without using electricity
JPS60149782A (en) * 1984-01-17 1985-08-07 Inoue Japax Res Inc Selective plating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134829A (en) * 1974-07-11 1976-03-24 Kollmorgen Corp Kitainozokanhoho oyobi konohohonyorierareruseihin
JPS55148757A (en) * 1979-05-08 1980-11-19 Ibm Selective plating method without using electricity
JPS60149782A (en) * 1984-01-17 1985-08-07 Inoue Japax Res Inc Selective plating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038147A2 (en) * 2001-10-29 2003-05-08 Qinetiq Limited High resolution patterning method
WO2003038147A3 (en) * 2001-10-29 2004-08-19 Qinetiq Ltd High resolution patterning method
WO2014187331A1 (en) * 2013-05-23 2014-11-27 Shenzhen Byd Auto R&D Company Limited Method for forming pattern on surface of insulating substrate and ceramic article
WO2017002425A1 (en) * 2015-06-29 2017-01-05 公立大学法人兵庫県立大学 Composite material and production method for same, and production device for same
JP2017017111A (en) * 2015-06-29 2017-01-19 公立大学法人兵庫県立大学 Composite material, and method and device for producing the same

Similar Documents

Publication Publication Date Title
US4981715A (en) Method of patterning electroless plated metal on a polymer substrate
US6210781B1 (en) Method for photoselective seeding and metallization of three-dimensional materials
EP0182193B1 (en) A method of depositing a copper pattern on a substrate
US6319564B1 (en) Conductor track structures arranged on a nonconductive support material, especially fine conductor track structures, and method for producing the same
US5084299A (en) Method for patterning electroless plated metal on a polymer substrate
US4440801A (en) Method for depositing a metal layer on polyesters
US5192581A (en) Protective layer for preventing electroless deposition on a dielectric
JPS61143580A (en) Partial chemical plating method of non-metallic member
KR100292652B1 (en) Activation Catalysts for Electroless Plating and Electroless Plating Methods
JPH02305969A (en) Pretreatment for electroless plating
US5810913A (en) Activating catalytic solution for electroless plating and method of electroless plating
US4180602A (en) Electroless plating of polyvinylidene fluoride
WO2004110118A1 (en) Method for the structured metal-coating of polymeric and ceramic support materials, and compound that can be activated and is used in said method
EP0377867A2 (en) Laser surface modification for seeding substrates
JPH09272980A (en) Activation catalyst solution for electroless plating, and electroless plating method
US20050241953A1 (en) Electroless nickel plating method for the preparation of zirconia ceramic
JPH04215855A (en) Catalyst-treating liquid, catalyst-carrying method and conductor-forming method
Mance High‐resolution electroless deposits on alumina from ultraviolet exposure of a Pt metalorganic
EP1953262A1 (en) Catalyst treatment method, electroless plating method, and method for formation of circuit by using the electroless plating method
JPS61104083A (en) Electroless plating method
JP3161407B2 (en) Activating catalyst solution for electroless plating and electroless plating method
JPS60149783A (en) Selective plating method
JP3843686B2 (en) Circuit board manufacturing method
JPH01247577A (en) Chemical copper plating method
JPS6317531A (en) Method and apparatus for manufacturing fine conductor layered pattern