JPH0577327A - Forming method for fiber reinforced synthetic resin composite body - Google Patents

Forming method for fiber reinforced synthetic resin composite body

Info

Publication number
JPH0577327A
JPH0577327A JP3241616A JP24161691A JPH0577327A JP H0577327 A JPH0577327 A JP H0577327A JP 3241616 A JP3241616 A JP 3241616A JP 24161691 A JP24161691 A JP 24161691A JP H0577327 A JPH0577327 A JP H0577327A
Authority
JP
Japan
Prior art keywords
core material
synthetic resin
molding
reinforced synthetic
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3241616A
Other languages
Japanese (ja)
Inventor
Hajime Naito
一 内藤
Morio Hattori
守雄 服部
Akihiro Ueda
明弘 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP3241616A priority Critical patent/JPH0577327A/en
Publication of JPH0577327A publication Critical patent/JPH0577327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To provide a forming method enabling synthetic bodies to be manufactured with an excellent productivity and excellent adhesion between a core material layer and a fiber reinforced synthetic resin layer in a forming method of a fiber reinforced synthetic resin composite body wherein the forming method of a core material and a composite body consisting of forming a fiber reinforced synthetic resin layer therearound is carried out in use of a extraction forming method. CONSTITUTION:Heating mandrels 2,2 are consecutively inserted into a core material 1 and, by taking advantage of the chemical reaction heat of reaction substances sealed into the heating mandrels, the surface temperature of the core material 1 is raised and, in the case of complete heat-hardening conducted in a forming mold 11, the temperature dispersion in the thickness direction that exerts the forming material in the heat-curing area is allowed to be uniform to thus improve the adhesion property of a core layer 16 and a fiber reinforced synthetic resin layer 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、芯材層とこれを被包す
る繊維強化合成樹脂層とからなる繊維強化合成樹脂複合
体の成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for molding a fiber-reinforced synthetic resin composite comprising a core material layer and a fiber-reinforced synthetic resin layer covering the core material layer.

【0002】[0002]

【従来の技術】従来、繊維強化合成樹脂成形体の成形方
法としては、種々の方法が知られているが、その内引抜
成形方法は連続成形が可能であり、種々の断面形状を呈
する長尺体を能率よく生産することが出来るので注目さ
れている。
2. Description of the Related Art Conventionally, various methods have been known as a method for molding a fiber-reinforced synthetic resin molding, but the internal pultrusion molding method is capable of continuous molding, and has a long cross-sectional shape. It is attracting attention because it can produce the body efficiently.

【0003】特に、引抜成形方法により成形体を成形し
た場合、引き抜き方向と、これに対して直角方向との強
度差が大きく、成形体の用途が制限されるので、芯材層
とその外層に繊維強化合成樹脂層を形成してなる複合体
とし、このときの芯材に等方体を用いてこの欠点を解消
するようにした成形方法が汎用されており、この方法に
よれば、強度の方向性が改善されるのみならず、芯材と
外層用の樹脂や繊維の材料の種類、各層の厚さ、等を種
々組み合わせることにより、上記断面形状を任意に設定
できる引抜成形方法の特徴と相まって、強度、重量、そ
の他の諸物性の好みのものを得ることが可能となり、用
途に応じた合理的な諸特性を具備したものが容易に得ら
れるという点で優れた技術である。
In particular, when a molded body is molded by a pultrusion method, the strength difference between the drawing direction and the direction perpendicular thereto is large, and the use of the molded body is limited. As a composite formed by forming a fiber-reinforced synthetic resin layer, a molding method is generally used in which an isotropic body is used for the core material at this time so as to eliminate this drawback. Not only the directionality is improved, but also the characteristics of the pultrusion molding method in which the cross-sectional shape can be arbitrarily set by variously combining the core material and the type of resin or fiber material for the outer layer, the thickness of each layer, and the like. In combination, it is possible to obtain a desired product with various physical properties such as strength, weight and the like, and it is an excellent technique in that it is possible to easily obtain a product having rational properties according to the application.

【0004】ところが、金型内の成形通路において成形
材料を硬化させる為の熱量は、専ら金型からの伝熱に頼
っていた。従って、加熱硬化区間での成形材料の温度分
布についてみると、金型に接する部分が最も高く、以下
内部(厚み方向)にいくに従って次第に低くなり、芯材
に接する部分が最も低くなるという高低差のある温度分
布になるのである。
However, the amount of heat for curing the molding material in the molding passage in the mold relies exclusively on heat transfer from the mold. Therefore, looking at the temperature distribution of the molding material in the heat-curing zone, the part that comes in contact with the mold has the highest temperature, the temperature gradually decreases inward (thickness direction), and the part that comes into contact with the core material has the lowest height difference. There is a certain temperature distribution.

【0005】従って、樹脂の硬化現象は、金型に接する
部分から進行し、芯材と接する部分の硬化がもっとも遅
れることになり、この外層部における樹脂の硬化速度の
不均一の為、芯材と繊維強化合成樹脂層との界面に、硬
化収縮による樹脂の含浸不良が起こり、その結果、ボイ
ド、巣等が発生して芯材層と繊維強化合成樹脂層との密
着性が劣り、強度低下を来すと言う問題が発生し、又、
芯材と接する部分の硬化を充分にする為に成形速度を出
来るだけ低速に維持しようとすると、繊維強化合成樹脂
層の厚みが厚くなればなる程成形速度が低下し、期待す
る生産速度が得られないという問題もあった。
Therefore, the curing phenomenon of the resin progresses from the portion in contact with the mold, and the curing in the portion in contact with the core material is delayed most, and since the curing rate of the resin in this outer layer portion is non-uniform, the core material is not cured. Poor resin impregnation due to curing shrinkage at the interface between the fiber-reinforced synthetic resin layer and the fiber-reinforced synthetic resin layer, resulting in voids and cavities, resulting in poor adhesion between the core layer and the fiber-reinforced synthetic resin layer, resulting in reduced strength. The problem of calling
If you try to keep the molding speed as low as possible in order to fully cure the part in contact with the core material, the thicker the fiber-reinforced synthetic resin layer, the lower the molding speed and the expected production speed. There was also the problem of not being able to do it.

【0006】そこで、この問題を解決する為に、従来種
々研究がされているが、その一つとして特開昭63−3
5332号公報には、金属材料を芯材とし、その外周囲
に繊維強化合成樹脂層を形成した構造の複合体の引抜成
形方法について記載されている。この方法によれば、成
形方向に二個の金型を配置し、熱硬化性樹脂を含浸した
強化繊維と共に送りこまれた金属材料からなる芯材が、
先に通過する金型内で高周波により誘導加熱せしめら
れ、次いで後で通過する金型によって、該金型からの伝
熱により強化繊維が加熱硬化せしめられるので、熱硬化
性樹脂を含浸した強化繊維が、金属製芯材と接する面と
金型の内壁面に接する面との温度差は、殆ど無い状態に
することができ、従って、この外層部である熱硬化性樹
脂の硬化速度の均一化が得られ、不均一に原因する品質
の劣化や生産速度の低下を防止できると言う点で注目さ
れる技術である。
To solve this problem, various studies have heretofore been made, one of which is Japanese Patent Laid-Open No. 63-3.
Japanese Patent No. 5332 describes a pultrusion molding method of a composite having a structure in which a metal material is used as a core material and a fiber reinforced synthetic resin layer is formed around the core material. According to this method, two molds are arranged in the molding direction, and the core material made of the metal material sent together with the reinforcing fiber impregnated with the thermosetting resin is,
Reinforcement fibers impregnated with a thermosetting resin are heated inductively by a high frequency in a mold that passes first, and then the reinforcing fibers are heat-cured by heat transfer from the mold by a mold that passes later. However, there can be almost no temperature difference between the surface in contact with the metal core material and the surface in contact with the inner wall surface of the mold. Therefore, the curing rate of the thermosetting resin that is the outer layer can be made uniform. This is a technology that is attracting attention because it can prevent the deterioration of quality and the decrease of production rate due to non-uniformity.

【0007】[0007]

【本発明が解決しようとする課題】ところが、上記従来
技術は電磁誘導を利用した加熱方法である為、芯材が金
属に限られるという制約があり、金属以外のものでは採
用出来ないと言う問題があった。
However, since the above-mentioned prior art is a heating method utilizing electromagnetic induction, there is a restriction that the core material is limited to a metal, and a problem that it cannot be adopted with a material other than a metal. was there.

【0008】本発明はこのような従来技術の欠点を解消
し、金属は無論のこと金属以外のものでも、予め芯材を
加熱することが可能であり、強化繊維の芯材と接する部
分の硬化の遅れを防ぎ、もって芯材と繊維強化合成樹脂
層との密着性がよく、且つ生産性を犠牲にすることのな
い成形方法を提供することを目的としてなさたものであ
る。
The present invention solves the above-mentioned drawbacks of the prior art, and of course, it is possible to heat the core material in advance even if the metal is other than the metal, and to cure the portion of the reinforcing fiber in contact with the core material. It is an object of the present invention to provide a molding method which prevents the delay of the molding, has good adhesion between the core material and the fiber-reinforced synthetic resin layer, and does not sacrifice the productivity.

【0009】[0009]

【課題を解決する為の手段】本発明は、芯材層と、これ
を被包する繊維強化合成樹脂層とからなる複合体を、引
抜成形方法を用いて連続的に成形する繊維強化合成樹脂
複合体の成形方法において、横断面が中空の環状を呈す
る芯材を用いると共に、その中空内部に、外力により開
通可能な隔壁によって2室以上に分離された中空容器内
に、混合により高度に発熱反応する2種以上の反応物を
それぞれ個別に封入してなる加熱マンドレルを、発熱さ
せつつ成形方向に逐次送り込み、芯材を熱硬化性樹脂を
含浸した強化繊維で被包しつつ引抜成形を行い、得られ
た複合体を切断後加熱マンドレルを取り出すことを特徴
とする繊維強化合成樹脂複合体の成形方法をその要旨と
するものである。
The present invention provides a fiber reinforced synthetic resin for continuously molding a composite comprising a core material layer and a fiber reinforced synthetic resin layer encapsulating the core material layer by a pultrusion method. In the method of molding a composite, a core material having a hollow annular cross section is used, and a high heat is generated by mixing in a hollow container separated into two or more chambers by a partition wall that can be opened by an external force inside the hollow core material. A heating mandrel in which two or more types of reactants to be reacted are individually enclosed is sequentially fed in the molding direction while generating heat, and the core material is pultruded with a reinforcing fiber impregnated with a thermosetting resin to perform pultrusion molding. The gist of the present invention is a method for molding a fiber-reinforced synthetic resin composite, which comprises taking out a heating mandrel after cutting the obtained composite.

【0010】本発明の芯材を形成する素材としては、金
属、木材、セラミック、各種合成樹脂、各種繊維強化合
成樹脂、これら合成樹脂の発泡体等その材質は特に限定
されないが、中に挿入される加熱マンドレルの発熱に対
しての耐熱性があり、又その熱量の芯材への伝熱に優れ
たものが選択使用され、その形状は中空状でなければな
らない。
Materials for forming the core material of the present invention include metal, wood, ceramics, various synthetic resins, various fiber reinforced synthetic resins, foams of these synthetic resins, etc., but the material is not particularly limited, but is inserted therein. A heating mandrel that has heat resistance against heat generated by the heating mandrel and is excellent in heat transfer to the core material of the amount of heat is selected and used, and its shape must be hollow.

【0011】本発明において用いる加熱マンドレルの形
状は、連続的に移送される芯材の中空内部に逐次送り込
むのに適したものであれば特に限定されない。また、材
質はその中に封入される化合物により自ずから決まる
が、通常金属製のものが耐熱性、伝熱性の点で好適であ
る。またその長さは、切断長さ(最終製品の長さ)の
0.6〜0.9倍とするのが好ましい。
The shape of the heating mandrel used in the present invention is not particularly limited as long as it is suitable for being successively fed into the hollow inside of the core material that is continuously transported. Further, the material is naturally determined by the compound enclosed therein, but a metal material is generally preferable in terms of heat resistance and heat transfer. The length thereof is preferably 0.6 to 0.9 times the cutting length (length of the final product).

【0012】又、外力により開通可能な隔壁とは、例え
ば、アルミ、鉄等の金属製薄板からなる円筒状容器の長
手方向中程内に隔壁を設けたものであって、この隔壁に
予め反対側に連通していない切れ溝を刻設し、使用に際
して容器の外側から軽く叩いてこの切れ溝を破断するよ
うな構造のもの、同じく隔壁に外部から抜栓可能な栓体
が挿着され、使用に際してその栓体を抜いて使用するよ
うにしたもの、或いは又、同じく円筒状容器であって、
その二本が直列に連結され、連結部分の中央で互いに周
方向に回動可能になされ、その回動によって、連結部分
の水密に摺動する側板同士の位置如何により相互に連通
可能な構造としたもの(図2〜図4参照)等が挙げられ
る。
The partition wall that can be opened by an external force is, for example, a partition wall provided in the middle of the longitudinal direction of a cylindrical container made of a thin metal plate such as aluminum or iron, and the partition wall is opposite to this partition wall in advance. It has a structure in which a cutting groove that does not communicate with the side is engraved, and when using it, it is tapped from the outside of the container to break this cutting groove. At that time, the one that is used by pulling out the plug, or the same cylindrical container,
A structure in which the two are connected in series and are rotatable in the circumferential direction at the center of the connecting portion, and by the rotation, mutual communication is possible depending on the position of the watertight side plates of the connecting portion. (See FIGS. 2 to 4) and the like.

【0013】又、混合により高度に発熱反応する2種以
上の反応物としては、生石灰と水、鉄粉と酸素等が好適
である。必要とする熱量は芯材の材質、厚み、強化層の
加熱に必要とされる温度その他により一概に言えない
が、通常、中空芯材が70〜130℃の温度範囲になる
ようにするのがよく、その為には、例えば生石灰と水と
を用いる場合、その配合比は5:1〜1:1となるよう
にする。
Further, as the two or more kinds of reaction products which are highly exothermic reaction upon mixing, quick lime and water, iron powder and oxygen and the like are suitable. The required amount of heat cannot be generally stated depending on the material of the core material, the thickness, the temperature required for heating the reinforcing layer, and the like, but normally, the hollow core material should be in the temperature range of 70 to 130 ° C. Well, for that purpose, for example, when quick lime and water are used, the compounding ratio thereof should be 5: 1 to 1: 1.

【0014】本発明の繊維強化合成樹脂層に用いる強化
繊維としては、ガラス繊維、炭素繊維、有機繊維等のロ
ービングやチョップドストランドマット、クロスマッ
ト、ラミマットなどが挙げられ、これらのロービングや
マットを、それぞれ単独で或いは両方を重ねて用いるこ
とが出来る。
Examples of the reinforcing fibers used in the fiber-reinforced synthetic resin layer of the present invention include rovings such as glass fibers, carbon fibers, and organic fibers, chopped strand mats, cross mats, lami mats, and the like. Each can be used alone or in combination.

【0015】本発明に於いて、強化繊維に熱硬化性樹脂
を含浸させるには、成形金型に送り込む前工程で樹脂液
槽を通過させて含浸させる方法、成形金型の成形通路内
に開口した樹脂液挿入口より樹脂液を送り込んで含浸さ
せる方法等その他公知の方法が採用され得る。
In the present invention, in order to impregnate the reinforcing fiber with the thermosetting resin, a method of impregnating the resin through a resin liquid tank in a step before feeding into the molding die, and opening in the molding passage of the molding die Other known methods such as a method of feeding a resin liquid through the resin liquid insertion port to impregnate the resin liquid can be adopted.

【0016】本発明に於いて採用される成形金型は、従
来引抜成形方法において使用されている金型が採用で
き、熱源も電熱やオイル等の熱媒体の他、赤外線や高周
波を利用した加熱方法等が挙げられ、これらの熱源によ
り通常金型温度が100〜200℃の範囲になるように
温度調節して使用する。
The mold used in the present invention may be a mold conventionally used in the pultrusion molding method, and the heat source may be a heating medium such as electric heat or oil, as well as heating utilizing infrared rays or high frequencies. Examples thereof include a method and the like, and these heat sources are usually used by adjusting the temperature so that the mold temperature is in the range of 100 to 200 ° C.

【0017】本発明に於いては、その他は従来知られて
いる引抜成形方法がその儘採用可能であり、成形金型内
で加熱硬化させた後、複合体として引き出しカッターで
切断して定尺とすればよい。成形速度は通常0.1〜2
m/分とするのが好ましい。
In the present invention, the other conventionally known pultrusion molding method can be adopted, and after heat curing in a molding die, it is cut as a composite with a drawer cutter to a fixed length. And it is sufficient. Molding speed is usually 0.1-2
It is preferably m / min.

【0018】[0018]

【作用】本発明は、芯材層と、これを被包する繊維強化
合成樹脂層とからなる複合体を、引抜成形方法を用いて
連続的に成形する繊維強化合成樹脂複合体の成形方法に
おいて、横断面が中空の環状を呈する芯材を用いると共
に、その中空内部に、外力により開通可能な隔壁によっ
て2室以上に分離された中空容器内に、混合により高度
に発熱反応する2種以上の反応物をそれぞれ個別に封入
してなる加熱マンドレルを、発熱させつつ成形方向に逐
次送り込み、これを熱硬化性樹脂を含浸した強化繊維で
被包しつつ引抜成形を行い、得られた複合体を切断後加
熱マンドレルを取り出すようにしたので、芯材は加熱マ
ンドレルの反応熱により昇温されており、その外周囲に
導かれた樹脂を含浸した強化繊維は、この芯材と共に成
形金型内の成形通路に導入され、その金型のみならず芯
材によっても加熱されて硬化するので、成形材料が加熱
硬化区間で受ける厚み方向の温度分布において、成形金
型の壁面から受ける温度と、芯材と接する部分から受け
る温度との温度差が少なくなる。
The present invention provides a method for molding a fiber-reinforced synthetic resin composite in which a composite comprising a core material layer and a fiber-reinforced synthetic resin layer encapsulating the core material layer is continuously molded by a pultrusion molding method. , A hollow core material having a hollow cross section is used, and two or more kinds of highly exothermic reactions are generated by mixing in a hollow container separated into two or more chambers by a partition wall which can be opened by an external force inside the hollow core material. The heating mandrel, in which the reactants are individually encapsulated, is sequentially fed in the molding direction while generating heat, and is pultruded while being encapsulated with the reinforcing fiber impregnated with the thermosetting resin, and the resulting composite is obtained. Since the heating mandrel was taken out after cutting, the core material was heated by the reaction heat of the heating mandrel, and the reinforcing fiber impregnated with the resin introduced to the outer periphery of the core material was used in the molding die together with the core material. Molding In the temperature distribution in the thickness direction that the molding material receives in the heat curing section, the temperature is received from the wall surface of the molding die and the core material is in contact with the core material. The temperature difference from the temperature received from the part is reduced.

【0019】[0019]

【実施例】以下本発明の一実施例を図面に基づいて詳細
に説明する。図1は、本発明繊維強化合成樹脂複合体の
成形方法を実施する場合の成形工程の一例を示す概略説
明図であり、図2は同上において用いる加熱マンドレル
の拡大断面図であって、両方の容器は連通したときの状
態を示し、図3(イ)は同上においてイ−イ線にて切断
し矢印方向にみた断面図であり、図3(ロ)は後述する
図4のロ−ロ線にて切断し矢印方向にみた断面図であ
り、図4は図2に示す加熱マンドレルであって、両方の
容器を独立状態にしたときの状態を示す図である。実施例 図1に於いて、1は芯材であって、不飽和ポリエステル
樹脂を含浸した2300番のガラス繊維を用い、フィラ
メントワインディング法により成形した繊維強化熱硬化
性樹脂製の中空管からなり、内径30mm、厚さ2m
m、長さ2mの寸法を有する。2、2・・は加熱マンド
レルであって、芯材1の移送に従って、逐次その内部に
挿入される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic explanatory view showing an example of a molding step when carrying out the method for molding a fiber-reinforced synthetic resin composite of the present invention, and FIG. 2 is an enlarged cross-sectional view of a heating mandrel used in the same, The container shows a state in which the containers are communicated with each other. Fig. 3 (a) is a sectional view taken along the line ii in the above view and viewed in the direction of the arrow, and Fig. 3 (b) is a roro line of Fig. 4 described later. 4 is a cross-sectional view taken along the line of FIG. 4 as seen in the direction of the arrow, and FIG. 4 is a view showing the heating mandrel shown in FIG. 2 when both containers are set in an independent state. Example In FIG. 1, 1 is a core material, which is made of fiber reinforced thermosetting resin hollow tube formed by filament winding method using No. 2300 glass fiber impregnated with unsaturated polyester resin. , Inner diameter 30mm, thickness 2m
It has a size of m and a length of 2 m. The heating mandrels 2, 2 ... Are sequentially inserted into the mandrel as the core material 1 is transferred.

【0020】その構造は、図2〜図4にも示すように外
壁がアルミ合金にて作られた円筒状容器3、3の底部同
士を重ねて、軸4の周りに回動可能になされている。各
容器3、3の蓋5、5は密に閉蓋され、それぞれ栓体6
が抜き差し自在に嵌着されている。
As shown in FIGS. 2 to 4, the structure is such that the bottoms of the cylindrical containers 3 and 3 whose outer walls are made of an aluminum alloy are overlapped with each other and are rotatable about a shaft 4. There is. The lids 5 and 5 of the containers 3 and 3 are tightly closed, and the stoppers 6 are respectively attached.
Is inserted and removed freely.

【0021】各容器3、3の底部開口周縁部は内側にリ
ブが設けられ、このリブに底板となる円板7、7が設け
られている。両方の円板7とこのリブ、並びに一方の円
板7と軸4とは固定されているが、他方の円板7は軸4
に対しては、その軸周りに回動可能になされている。
又、各円板7、7はその約半分が盲板であり、残り半分
が開口部8、8となされている。
A rib is provided on the inside of the peripheral edge portion of the bottom opening of each of the containers 3 and 3, and discs 7 and 7 which are bottom plates are provided on the rib. Both discs 7 and this rib, and one disc 7 and the shaft 4 are fixed, but the other disc 7 is fixed to the shaft 4.
, Is rotatable about its axis.
In addition, about half of each of the circular plates 7 and 7 is a blind plate, and the other half are openings 8 and 8.

【0022】従って、容器3、3を軸4の周りに回動し
て、図2及び図3の(イ)のように各開口部8、8を対
向させれば、容器3、3の内部は完全に連通し、又、容
器3、3を相対的に180度回転させて、図4及び図3
の(ロ)のようにすれば、容器3、3は完全に独立する
ようになり、軸周りは図示しないパッキングにより水密
になされている。
Therefore, if the containers 3 and 3 are rotated around the axis 4 and the openings 8 and 8 are opposed to each other as shown in FIGS. Completely communicate with each other, and the containers 3 and 3 are rotated by 180 degrees relative to each other.
In the case of (B), the containers 3 and 3 are completely independent, and the shaft is made watertight by packing not shown.

【0023】しかして、加熱マンドレル2の各容器3、
3内には、混合により高度に発熱反応する2種以上の反
応物をそれぞれ個別に封入してあり、本実施例の場合、
一方の容器3には生石灰Aが300g、他方の容器には
水Bが300gがそれぞれ封入されている。
Then, each container 3 of the heating mandrel 2,
Two or more kinds of reaction products, which are highly exothermic by mixing, are individually enclosed in 3, and in the case of the present embodiment,
One container 3 is filled with 300 g of quicklime A, and the other container is filled with 300 g of water B.

【0024】9、9は、比較的高温で硬化する不飽和ポ
リエステル樹脂液10、10がそれぞれ注入された上部
液槽と下部液槽である。11は成形金型、12、12・
・・は、芯材1のほぼ上下方向に配置された多数のボビ
ンから巻き出されたガラスロービング(旭ファイバー社
製、4500番)とコンティニアスマット(旭ファイバ
ー社製、450番)からなる強化繊維であって、この実
施例では最外層にのみコンティニアスマットを配するよ
うになっている。そしてこれらの強化繊維は図示しない
ガイド板等によりその配列を整えながら、上下液槽1
0、10を通過し、成形金型11の手前で芯材1の外周
囲に導かれる。13は引取装置、14は矢印方向に上下
するカッターである。
Reference numerals 9 and 9 denote an upper liquid tank and a lower liquid tank, respectively, into which unsaturated polyester resin liquids 10 and 10 which are hardened at a relatively high temperature are injected. 11 is a molding die, 12, 12 ...
..: Reinforcing fiber made of glass roving (Asahi Fiber Co., No. 4500) and continuous mat (Asahi Fiber Co., No. 450) unwound from a large number of bobbins arranged almost vertically in the core 1. However, in this embodiment, the continuous mat is arranged only in the outermost layer. Then, these reinforcing fibers are arranged by a guide plate or the like (not shown) while the upper and lower liquid tanks 1 are arranged.
It passes through 0 and 10 and is guided to the outer periphery of the core material 1 before the molding die 11. 13 is a take-up device, and 14 is a cutter that moves up and down in the direction of the arrow.

【0025】このような装置により、先ず芯材1を連続
的に成形方向に移送しつつ、その中空内部に、適宜本数
の加熱マンドレル2、2を逐次挿入した。この加熱マン
ドレル2、2の挿入に当たっては、その開口部8、8を
対向させて、左右の容器を連通させ、且つ軽く振る等し
て両方の成分を混合させた。その結果、生石灰Aと水B
とが反応し、図2に示すように反応生成物として消石灰
Cが生成した。又、マンドレル2の表面は昇温状態とな
った。
With such an apparatus, first, the core material 1 was continuously transferred in the molding direction, and an appropriate number of heating mandrels 2 and 2 were sequentially inserted into the hollow interior thereof. When the heating mandrels 2 and 2 were inserted, the openings 8 and 8 were opposed to each other so that the left and right containers were in communication with each other and shaken gently to mix both components. As a result, quicklime A and water B
React with each other, and slaked lime C is produced as a reaction product as shown in FIG. In addition, the surface of the mandrel 2 was heated.

【0026】又、予定切断箇所にはスペーサーとしてア
クリルホーム等の易切断性素材からなる硬質発泡体を介
するようにして、引き取り後、切断する際に、このスペ
ーサー15、15・・の箇所で切断するように図った。
このようにすれば、切断作業が簡単である。
Further, a hard foam made of an easily cleavable material such as acrylic home is used as a spacer at the planned cutting location, and when the cutting is carried out after the removal, the spacers 15, 15, ... I planned to do it.
By doing this, the cutting work is easy.

【0027】しかして、芯材1の周面に、比較的高温で
硬化する不飽和ポリエステル樹脂液槽10、10により
樹脂を含浸したガラスロービングやコンティニアスマッ
ト12、12・・の多数本をガイド板等によりその配列
を整えながら導き、成形金型11に送入した。金型11
は成形温度を150℃に調節した長さ900mmのもの
を用いたが、ここでは、強化繊維等の成形材料はその成
形通路の壁面からの伝熱によって加熱されると共に、既
に加熱マンドレル2、2・・からの伝熱により加熱され
昇温されている芯材1からの伝熱によっても加熱され、
不飽和ポリエステル樹脂液が硬化せしめられる。かくし
て、加熱硬化せしめられた成形材料を、引取装置13に
より引き取り、カッター14により定尺に切断した。得
られたものは、芯材層16とその外周囲に形成された繊
維強化合成樹脂層17とが強固に一体となされた二層構
造の複合体Pであった。尚、この実施例で使用したロー
ビング量は計100本であった。又、芯材層16内のマ
ンドレル2はスペーサー15と共に取り出したが、マン
ドレル2は中の反応物を入替えすれば、繰り返し使用可
能な状態であった。比較例 加熱マンドレルを用いなかったこと以外は実施例と同様
にして複合体を製造した。
However, on the peripheral surface of the core material 1, a large number of glass rovings and continuous mats 12, 12, ... It was introduced into the molding die 11 while adjusting the arrangement by means such as the above. Mold 11
Used a molding material having a length of 900 mm with the molding temperature adjusted to 150 ° C. Here, the molding material such as the reinforcing fiber is heated by heat transfer from the wall surface of the molding passage, and the heating mandrels 2, 2 are already used. ..Heated by the heat transfer from the core material 1, which is heated by the heat transfer from
The unsaturated polyester resin liquid is cured. Thus, the heat-cured molding material was taken by the take-up device 13 and cut into a regular size by the cutter 14. The obtained product was a composite P having a two-layer structure in which the core layer 16 and the fiber-reinforced synthetic resin layer 17 formed on the outer periphery thereof were firmly integrated. The roving amount used in this example was 100 in total. Further, the mandrel 2 in the core material layer 16 was taken out together with the spacer 15, but the mandrel 2 was in a state in which it could be used repeatedly by replacing the reactant therein. Comparative Example A composite was produced in the same manner as in Example except that the heating mandrel was not used.

【0028】しかして、上記実施例及び比較例より採取
した試験片での芯材層16と繊維強化合成樹脂層17と
の界面の密着強度を測定した結果、前者の場合は0.7
Kg/mm2 であったのに対して、後者の場合は0.2
Kg/mm2 であった。
Thus, the adhesion strength at the interface between the core material layer 16 and the fiber reinforced synthetic resin layer 17 in the test pieces collected from the above-mentioned Examples and Comparative Examples was measured, and the result was 0.7 in the former case.
It was Kg / mm 2 , whereas in the latter case 0.2
It was Kg / mm 2 .

【0029】尚、密着強度はASTMC273−61に
準拠して測定した。
The adhesion strength was measured according to ASTM C273-61.

【0030】[0030]

【効果】本発明は、芯材層と、これを被包する繊維強化
合成樹脂層とからなる複合体を、引抜成形方法を用いて
連続的に成形する繊維強化合成樹脂複合体の成形方法に
おいて、横断面が中空の環状を呈する芯材を用いると共
に、その中空内部に、外力により開通可能な隔壁によっ
て2室以上に分離された中空容器内に、混合により高度
に発熱反応する2種以上の反応物をそれぞれ個別に封入
してなる加熱マンドレルを、発熱させつつ成形方向に逐
次送り込み、これを熱硬化性樹脂を含浸した強化繊維で
被包しつつ引抜成形を行い、得られた複合体を切断後加
熱マンドレルを取り出すようにしたので、芯材は加熱マ
ンドレルの反応熱により昇温されており、その外周囲に
導かれた樹脂を含浸した強化繊維は、この芯材と共に成
形金型内の成形通路に導入され、その金型のみならず芯
材によっても加熱されて硬化するので、成形材料が加熱
硬化区間で受ける厚み方向の温度分布において、成形金
型の壁面から受ける温度と、芯材と接する部分から受け
る温度との温度差が少なくなる。
[Effects] The present invention provides a method for molding a fiber-reinforced synthetic resin composite in which a composite comprising a core material layer and a fiber-reinforced synthetic resin layer encapsulating the core material layer is continuously molded using a pultrusion molding method. , A hollow core material having a hollow cross section is used, and two or more kinds of highly exothermic reactions are generated by mixing in a hollow container separated into two or more chambers by a partition wall which can be opened by an external force inside the hollow core material. The heating mandrel, in which the reactants are individually sealed, is sent in the molding direction while generating heat, and the resulting composite is subjected to pultrusion while encapsulating it with reinforced fibers impregnated with a thermosetting resin. Since the heating mandrel was taken out after cutting, the core material was heated by the reaction heat of the heating mandrel, and the reinforcing fiber impregnated with the resin introduced to the outer periphery of the core material was used in the molding die together with the core material. Molding In the temperature distribution in the thickness direction that the molding material receives in the heat curing section, the temperature is received from the wall surface of the molding die and the core material is in contact with the core material. The temperature difference from the temperature received from the part is reduced.

【0031】従って、樹脂の硬化現象はこれに対応して
金型に接する部分のみならず、芯材と接する部分からも
進行し、硬化時間がそれだけ早くなると共に、強化樹脂
の厚み方向各深度における硬化速度が均一化され、芯材
と繊維強化合成樹脂層との界面に、硬化収縮による樹脂
の含浸不良が起こらず、品質に優れたものが速やかに、
安定して得られる。
Accordingly, the curing phenomenon of the resin correspondingly progresses not only from the portion in contact with the mold but also from the portion in contact with the core material, and the curing time is shortened by that much, and at each depth in the thickness direction of the reinforced resin. The curing speed is uniformized, the impregnation of the resin due to curing shrinkage does not occur at the interface between the core material and the fiber reinforced synthetic resin layer, and the one with excellent quality is promptly
It can be obtained stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の繊維強化合成樹脂複合体の成形方法を
実施する場合の成形工程の一例を示す概略説明図であ
る。
FIG. 1 is a schematic explanatory view showing an example of a molding step when carrying out the method for molding a fiber-reinforced synthetic resin composite of the present invention.

【図2】同上において用いる加熱マンドレルの拡大断面
図であって、両方の容器を連通したときの状態を示す図
である。
FIG. 2 is an enlarged cross-sectional view of the heating mandrel used in the above, showing a state in which both containers are in communication with each other.

【図3】(イ)は図2のイ−イ線にて切断し、矢印方向
にみた断面図であり、同じく(ロ)は、後述する図4の
ロ−ロ線にて切断し、矢印方向にみた断面図である。
FIG. 3A is a cross-sectional view taken along the line EE of FIG. 2 and viewed in the direction of the arrow, and FIG. 3B is similarly cut along the line ROLL of FIG. It is sectional drawing seen in the direction.

【図4】図1に示す加熱マンドレルの拡大断面図であっ
て、両方の容器を独立状態にしたときの状態を示す図で
ある。
FIG. 4 is an enlarged sectional view of the heating mandrel shown in FIG. 1, showing a state in which both containers are in an independent state.

【符号の説明】[Explanation of symbols]

1 芯材 2 加熱マンドレル 3 円筒状容器 4 軸 7 円板 8 開口部 9 比較的高温で硬化する熱硬化性樹脂液を注入した
樹脂液槽 11 成形金型 12 強化繊維 13 引取装置 15 スペーサー 16 芯材層 17 繊維強化合成樹脂層 P 複合体
DESCRIPTION OF SYMBOLS 1 Core material 2 Heating mandrel 3 Cylindrical container 4 Shaft 7 Disc 8 Opening 9 Resin liquid tank into which thermosetting resin liquid which is hardened at a relatively high temperature is poured 11 Molding die 12 Reinforcing fiber 13 Pulling device 15 Spacer 16 Core Material layer 17 Fiber reinforced synthetic resin layer P Composite

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 芯材層と、これを被包する繊維強化合成
樹脂層とからなる複合体を、引抜成形方法を用いて連続
的に成形する繊維強化合成樹脂複合体の成形方法におい
て、横断面が中空の環状を呈する芯材を用いると共に、
その中空内部に、外力により開通可能な隔壁によって2
室以上に分離された中空容器内に、混合により高度に発
熱反応する2種以上の反応物をそれぞれ個別に封入して
なる加熱マンドレルを、発熱させつつ成形方向に逐次送
り込み、これを熱硬化性樹脂を含浸した強化繊維で被包
しつつ引抜成形を行い、得られた複合体を切断後加熱マ
ンドレルを取り出すことを特徴とする繊維強化合成樹脂
複合体の成形方法。
1. A method for molding a fiber-reinforced synthetic resin composite comprising continuously molding a composite comprising a core material layer and a fiber-reinforced synthetic resin layer encapsulating the core material using a pultrusion method. While using a core material whose surface is a hollow ring,
Inside the hollow, there is a partition wall that can be opened by external force.
A heating mandrel, which individually encloses two or more types of reactants that undergo highly exothermic reaction by mixing, is fed into the hollow container separated into more than one chamber sequentially in the molding direction while generating heat, and this is thermosettable. A method for molding a fiber-reinforced synthetic resin composite, which comprises pultrusion molding while encapsulating with a resin-impregnated reinforced fiber, cutting the obtained composite, and taking out a heating mandrel.
JP3241616A 1991-09-20 1991-09-20 Forming method for fiber reinforced synthetic resin composite body Pending JPH0577327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3241616A JPH0577327A (en) 1991-09-20 1991-09-20 Forming method for fiber reinforced synthetic resin composite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3241616A JPH0577327A (en) 1991-09-20 1991-09-20 Forming method for fiber reinforced synthetic resin composite body

Publications (1)

Publication Number Publication Date
JPH0577327A true JPH0577327A (en) 1993-03-30

Family

ID=17076979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3241616A Pending JPH0577327A (en) 1991-09-20 1991-09-20 Forming method for fiber reinforced synthetic resin composite body

Country Status (1)

Country Link
JP (1) JPH0577327A (en)

Similar Documents

Publication Publication Date Title
US5035602A (en) Resin transfer molding core and preform
RU2187433C2 (en) Method for production of heat-insulating material based on sintact froth, heat-insulated pipe and method for application of heat-insulating coating on pipe outer surface
CN1209231C (en) Large composite structure with resin distributing network
US8104392B2 (en) Rod-shaped fibre composite, and method and device for the production thereof
EP0295820B1 (en) Resin transfer molding core,preform and process
KR950012870B1 (en) Molding process for fiber reinforced plastics
US2814313A (en) Manufacture of pipe
US6623838B1 (en) Lightweight resin molded product and production method thereof
JPH03503866A (en) molding method
JPH0577327A (en) Forming method for fiber reinforced synthetic resin composite body
KR20190037653A (en) the tube type composite materials manufacture method with mold for direct supply of resin and blowing
CN107399090A (en) A kind of fiber forced foamed composite and its manufacture method
US3386872A (en) Method of making filament wound, compound curved shells
KR20170133769A (en) Resin trasferring mold forming method and device
EP0295819B1 (en) Resin transfer molding core, preform and process
JPH04290730A (en) Molding method for fiber reinforced synthetic resin composite
JPH01166937A (en) Long-sized, light-weight and fiber-reinforced composite draw molding and its manufacture
KR101687601B1 (en) Method for manufacturing insulation board
JPH04286629A (en) Molding method for fiber reinforced synthetic resin composite body
JPS605454B2 (en) Composite manufacturing method
KR101441037B1 (en) Insulation board
JPS6087023A (en) Compression molding stock of fiber reinforced plastic
KR790001449B1 (en) Process for forming continuous fiber reinforces material embedded in thermosetting resin
JP2021167097A (en) Method for manufacturing fiber-reinforced resin molded article
KR101626664B1 (en) Method of molding fiber-reinforced plastic product