JPH0577252B2 - - Google Patents

Info

Publication number
JPH0577252B2
JPH0577252B2 JP61181115A JP18111586A JPH0577252B2 JP H0577252 B2 JPH0577252 B2 JP H0577252B2 JP 61181115 A JP61181115 A JP 61181115A JP 18111586 A JP18111586 A JP 18111586A JP H0577252 B2 JPH0577252 B2 JP H0577252B2
Authority
JP
Japan
Prior art keywords
temperature
resistor
term
change
load cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61181115A
Other languages
Japanese (ja)
Other versions
JPS6337226A (en
Inventor
Tetsuo Mori
Hiroshi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teraoka Seiko Co Ltd
Original Assignee
Teraoka Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teraoka Seiko Co Ltd filed Critical Teraoka Seiko Co Ltd
Priority to JP18111586A priority Critical patent/JPS6337226A/en
Publication of JPS6337226A publication Critical patent/JPS6337226A/en
Publication of JPH0577252B2 publication Critical patent/JPH0577252B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Force In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は起歪体の所定位置に貼り付けた歪ゲー
ジを具備し、該歪ゲージをブリツジ回路に組み、
該ブリツジ回路の出力から荷重を測定するロード
セルの零点温度変化の補償方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention comprises a strain gauge affixed to a predetermined position of a strain-generating body, and the strain gauge is assembled into a bridge circuit.
The present invention relates to a method of compensating for changes in zero point temperature of a load cell that measures load from the output of the bridge circuit.

〔従来技術〕[Prior art]

従来、第2図に示すような構造の起歪体10の
所定の薄肉部10a〜10dに、歪ゲージZ1〜Z4
を貼り付け、該歪ゲージZ1〜Z4を第3図に示すよ
うなブリツジ回路に組んだ構造のロードセルがあ
る。該ロードセルにおいては、起歪体10の一端
に矢印A方向の荷重を加えると、歪ゲージZ1及び
Z4は圧縮力を受けると共に歪ゲージZ2及びZ3は引
張り力を受け、前記ブリツジ回路からの荷重に対
応した出力V0が得られる。
Conventionally, strain gauges Z 1 to Z 4 are attached to predetermined thin-walled portions 10a to 10d of a strain generating body 10 having a structure as shown in FIG.
There is a load cell having a structure in which the strain gauges Z 1 to Z 4 are assembled into a bridge circuit as shown in FIG. In this load cell, when a load in the direction of arrow A is applied to one end of the strain-generating body 10, the strain gauges Z1 and
Z4 receives a compressive force, and strain gauges Z2 and Z3 receive a tensile force, resulting in an output V0 corresponding to the load from the bridge circuit.

上記構成のロードセルにおいては、温度変化に
応じて出力V0が変化するため、温度補償をする
必要がある。この温度補償には温度変化により起
歪体10の薄肉部10a〜10dのヤング率に起
因する出力V0の変化を補償する所謂スパン補償
と、温度変化により歪ゲージZ1〜Z4の抵抗値の変
化による零点の変化を補償する所謂零点補償とが
ある。
In the load cell configured as described above, the output V 0 changes in response to temperature changes, so temperature compensation is required. This temperature compensation includes so-called span compensation that compensates for changes in the output V 0 caused by the Young's modulus of the thin parts 10a to 10d of the strain body 10 due to temperature changes, and the resistance values of the strain gauges Z 1 to Z 4 that change due to temperature changes. There is a so-called zero point compensation that compensates for the change in the zero point due to the change in .

上記スパン補償には、第3図のa,b点にスパ
ン補償用の低抗体を挿入し、零点補償には同図の
c,d,e,f,g,h,i,jに零点補償の抵
抗を挿入して各補償を行なつている。
For the above span compensation, insert low antibodies for span compensation at points a and b in Figure 3, and for zero point compensation, insert zero point compensation at points c, d, e, f, g, h, i, and j in the same figure. Each compensation is performed by inserting a resistor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記構成のロードセルにおいて、その温度Tに
対する零点出力V0の変化は第4図に示すように、
非直線成分を含んでいる。
In the load cell with the above configuration, the change in zero point output V 0 with respect to temperature T is as shown in Fig. 4.
Contains non-linear components.

従来の零点の温度変化を補償する方法としては
単に第5図に示すように温度変化に伴う零点の直
線的変化(勾配)を補償するのみで、出力変化に
非直線成分がある場合、その非直線成分の補償が
できず、ロードセルを用いる荷重計の温度変化に
よる測定誤差の原因となつていた。
The conventional method of compensating for temperature changes at the zero point simply compensates for the linear change (gradient) at the zero point due to temperature changes, as shown in Figure 5. If there is a non-linear component in the output change, that nonlinear component is compensated. It was not possible to compensate for the linear component, which caused measurement errors due to temperature changes in the load cell.

本発明は上述の点に鑑みてなされたもので、ロ
ードセルの零点の温度に対する変化に直線的変化
と非直線的変化がある場合、両者の変化を補償す
るロードセルの零点温度変化の補償方法を提供す
ることにある。
The present invention has been made in view of the above-mentioned points, and provides a method for compensating for changes in zero point temperature of a load cell, which compensates for both changes when there are linear changes and non-linear changes in changes with respect to temperature at the zero point of a load cell. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため本発明は、1次温度
係数及び2次温度係数を有し抵抗値が温度によつ
て変化する金属歪ゲージを具備すると共に該金属
歪ゲージをブリツジ回路に組み、該ブリツジ回路
の出力から荷重を測定するロードセルにおいて、
該ロードセルの零点温度変化の非直線的変化及び
直線的変化を前記ブリツジ回路の辺に下式が成立
する1次温度係数及び2次温度係数を有する前記
金属歪ゲージとは異種の抵抗体を温度補償抵抗体
として直列に挿入することにより温度変化の2乗
項についての零点温度補償を成立させることによ
りロードセルの零点温度変化の補償を行う。
In order to solve the above-mentioned problems, the present invention includes a metal strain gauge that has a first-order temperature coefficient and a second-order temperature coefficient and whose resistance value changes depending on temperature, and also incorporates the metal strain gauge into a bridge circuit. In the load cell that measures the load from the output of the bridge circuit,
The non-linear change and linear change in the zero point temperature change of the load cell are measured by using a resistor of a different type than the metal strain gauge, which has a first-order temperature coefficient and a second-order temperature coefficient for which the following equation holds on the side of the bridge circuit. By inserting it in series as a compensation resistor, zero point temperature compensation is established for the square term of temperature change, thereby compensating for zero point temperature change of the load cell.

Z・Bz=−R・Br ここで、Zは歪ゲージの公称抵抗値、Bはロー
ドセルの温度係数の2乗項、Rは温度補償抵抗
値、Brは温度補償抵抗の温度係数の2乗項であ
る。
Z・Bz=−R・Br Here, Z is the nominal resistance value of the strain gauge, B is the square term of the temperature coefficient of the load cell, R is the temperature compensation resistance value, and Br is the square term of the temperature coefficient of the temperature compensation resistance. It is.

〔作用〕[Effect]

第3図の示すブリツジ回路において、ブリツジ
回路の零点出力V0(変動負荷がかからない場合の
出力)は(1)式で表される。
In the bridge circuit shown in FIG. 3, the zero point output V 0 (output when no variable load is applied) of the bridge circuit is expressed by equation (1).

V0=Vio{Z2/(Z4+Z2) −Z1/(Z3+Z1)} (1) 従つて Vio={Z/(RZ+Z)}・E (2) RZ=Ra+Rb (3) (但し、Ra,Rbは第3図のa,bに挿入される
抵抗体の抵抗値、Zはブリツジ回路の入力抵抗
値) Z=(Z4+Z2)(Z3+Z1) /(Z1+Z2+Z3+Z4) (4) 一般にロードセルの零点が変化する要因として
は、温度の他に歪ゲージ内の水分量が関係してい
る。今、各歪ゲージZ1〜Z4が有する零点変化要因
の関数を一つの歪ゲージZ3に集約して、他の歪ゲ
ージZ1,Z2,Z4の要因に体しては無関係なものと
すると、 Z3=Z30+f(T)+g(H) となる。ここでZ30は歪ゲージZ3の温度及び湿度
の影響を受けない抵抗値、g(H)はロードセル歪ゲ
ージの水分量によつて変化する抵抗値、f(T)は歪
ゲージの温度によつて変化する抵抗値である。ま
た上記g(H)は、 g(H)=G(h、T、t) で表される。ここで、hは相対湿度、Tは温度、
tはある環境条件におかれた時間を示す。
V 0 = V io {Z 2 / (Z 4 + Z 2 ) −Z 1 / (Z 3 + Z 1 )} (1) Therefore, V io = {Z / (R Z + Z)}・E (2) R Z = R a + R b (3) (However, R a and R b are the resistance values of the resistors inserted in a and b in Figure 3, and Z is the input resistance value of the bridge circuit) Z = (Z 4 + Z 2 ) (Z 3 +Z 1 ) / (Z 1 +Z 2 +Z 3 +Z 4 ) (4) In general, factors that cause the zero point of a load cell to change are related to the amount of water in the strain gauge in addition to temperature. Now, the functions of zero point change factors that each strain gauge Z 1 to Z 4 have are aggregated into one strain gauge Z 3 , and the functions of the other strain gauges Z 1 , Z 2 , and Z 4 are unrelated. Then, Z 3 =Z 30 +f(T)+g(H). Here, Z 30 is the resistance value of the strain gauge Z 3 that is not affected by temperature and humidity, g (H) is the resistance value that changes depending on the moisture content of the load cell strain gauge, and f (T) is the resistance value that changes depending on the temperature of the strain gauge. This is the resistance value that changes accordingly. Further, the above g(H) is expressed as g(H)=G(h, T, t). Here, h is relative humidity, T is temperature,
t indicates the time spent under a certain environmental condition.

上式において、hは小さくするとg(H)は無視で
きる程度小さくなり、ロードセルの零点の温度変
化は、略温度のみに関係する。実験によればg(H)
≒0の条件下において、零点出力の温度による変
化は2次関数で近似される。従つて、上記のよう
に歪ゲージZ3に集約した温度による変化抵抗値f
(T)も下式の2次関数で近似される。
In the above equation, when h is small, g(H) becomes negligibly small, and the temperature change at the zero point of the load cell is approximately related only to the temperature. According to experiments, g(H)
Under the condition of ≈0, the change in zero point output due to temperature is approximated by a quadratic function. Therefore, as mentioned above, the change resistance value f due to temperature concentrated in the strain gauge Z3
(T) is also approximated by the following quadratic function.

f(T)=a0+a1T+a2T2 即ち、g(H)≒0の条件下では、 Z3=Z30+a0+a1T+a2T2 となる。従つて、ロードセルを低温度の環境にお
いて使用する場合や、完全な防湿コーテイング処
理を行なえば、ブリツジ内に上記2次項を相殺す
るように2次項の温度係数を有する抵抗体を挿入
することにより零点温度変化の非直線性を修正で
きる。また、非直線性を補償するため挿入した抵
抗体の1次項の温度係数を含む零点の直線的温度
変化(元来からあつた直線的温度変化が加算又は
減算されて生じる)は、2次項以下を有しない
(上記非直線性補償の抵抗値の温度係数の2次項
の1/100程度以下)温度係数の抵抗体で補償する。
今、温度補償抵抗体の抵抗値Rを2次式で表す
と、 R=R0(C+AT+BT2) となり、上記Z3=Z30+a0+a1T+a2T2を上式に
合わせて表すと、 Z3=Z30′(a0′+a1′T+a2′T2) となり、ここで、1次項以下の抵抗体を用いて2
次項のみの抵抗変化分は、Z3=Z30′a2′T2とR=
R0BT2となり、Z3の2次項を補償抵抗で相殺す
るためには歪ゲージZ30の抵抗値Z3に抵抗値Rを
等しくさせればよく、 Z30′a2′T2=−R0BT2 となり、 Z30′a2′=−R0B となる。ここでZ30′は歪ゲージの公称抵抗値Z、
a2′はロードセルの温度係数の2乗項Bz、R0は温
度補償抵抗の抵抗値R、Bは温度補償抵抗の温度
係数の2乗項Brで表すことができるから、Z・
z=−R・Brとなり、温度補償抵抗体がこの条
件を満たせばロードセルの零点温度変化の補償が
できる。
f(T)=a 0 +a 1 T+a 2 T 2 , that is, under the condition of g(H)≈0, Z 3 =Z 30 +a 0 +a 1 T+a 2 T 2 . Therefore, if the load cell is used in a low-temperature environment or if it is completely coated with a moisture-proof coating, the zero point can be reduced by inserting a resistor having a temperature coefficient of the quadratic term in the bridge to cancel out the quadratic term. Non-linearity of temperature change can be corrected. In addition, the linear temperature change at the zero point, including the temperature coefficient of the linear term of the resistor inserted to compensate for nonlinearity (which occurs when the originally linear temperature change is added or subtracted), is less than or equal to the quadratic term. (approximately 1/100 or less of the quadratic term of the temperature coefficient of the resistance value for nonlinearity compensation).
Now, if we express the resistance value R of the temperature compensation resistor using a quadratic equation, we get R=R 0 (C+AT+BT 2 ), and if we express the above Z 3 = Z 30 + a 0 + a 1 T+a 2 T 2 according to the above equation, we get , Z 3 = Z 30 ′(a 0 ′+a 1 ′T+a 2 ′T 2 ), and here, using a resistor with a first-order term or less,
The resistance change of only the next term is Z 3 = Z 30 ′a 2 ′T 2 and R =
R 0 BT 2 , and in order to cancel the quadratic term of Z 3 with the compensation resistor, it is sufficient to make the resistance value R equal to the resistance value Z 3 of the strain gauge Z 30 , and Z 30 ′a 2 ′ T 2 = − R 0 BT 2 , and Z 30 ′a 2 ′=−R 0 B. Here, Z 30 ′ is the nominal resistance value Z of the strain gauge,
Since a 2 ' can be expressed as the square term Bz of the temperature coefficient of the load cell, R 0 can be expressed as the resistance value R of the temperature compensation resistor, and B can be expressed as the square term Br of the temperature coefficient of the temperature compensation resistor, Z・
z=-R·Br, and if the temperature compensation resistor satisfies this condition, it is possible to compensate for the zero point temperature change of the load cell.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明
する。
Hereinafter, one embodiment of the present invention will be described based on the drawings.

ロードセルの起歪体としては、第2図に示す形
状の起歪体10と同じものを用い、その薄肉部1
0a〜10dに歪ゲージZ1〜Z4を貼り付ける。該
歪ゲージZ1〜Z4の公称抵抗値は、350Ωとする。
歪ゲージZ1〜Z4が第1図に示すブリツジ回路に接
続され、電源電圧Eを12Vとすると、下記の各温
度でのブリツジ回路の零点出力は下記に示す通り
であつた。
The strain body of the load cell is the same as the strain body 10 having the shape shown in FIG.
Attach strain gauges Z 1 to Z 4 to 0a to 10d. The nominal resistance value of the strain gauges Z 1 to Z 4 is 350Ω.
When strain gauges Z 1 to Z 4 are connected to the bridge circuit shown in FIG. 1 and the power supply voltage E is 12V, the zero point output of the bridge circuit at each temperature listed below was as shown below.

25℃ −4.8991mV 50℃ −4.9041mV −10℃ −4.9241mV このロードセルの温度による零点出力の変化を
Z3に集約すると抵抗値f(T)は、 f(T)=−0.70246+a1T+a2T2 a1=350×(−9.2820×10-7) a2=350×(−6.6051×10-9) となる。
25℃ -4.8991mV 50℃ -4.9041mV -10℃ -4.9241mV Change in zero point output due to temperature of this load cell.
Summarizing Z 3 , the resistance value f(T) is f(T)=−0.70246+a 1 T+a 2 T 2 a 1 =350×(−9.2820×10 −7 ) a 2 =350×(−6.6051×10 − 9 ).

上記の様にa2<0の場合零点温度変化の非直線
性を補償する抵抗体として、正の2次項温度係数
を有する低抗体(例えばニツケル)を歪ゲージZ3
と同一辺又は歪ゲージZ2と同一辺に抵抗体X3
はX2として挿入する。また負の2次項温度係数
を有する抵抗体(例えば白金)であれば、逆方向
の歪ゲージZ1と同一の辺又は歪ゲージZ4と同一辺
に抵抗体X1又はX4として挿入する。また、a2
0の場合は、正の2次項温度係数を有する抵抗体
であれば歪ゲージZ1又はZ4と同一の辺に抵抗体
X1又はX4として挿入する。例えば上記ロードセ
ルの零点温度変化の非直線性を補償する抵抗体と
して温度係数が、 1+0.004975T+7.06×10-7T2(Tは温度) を有する抵抗体R1の約3.27Ω(0℃)を歪ゲージ
Z3又はZ2と同一の辺に抵抗体X3又はX2として挿
入する。また、直線的零点変化を補償する抵抗体
として温度係数が、 1+0.004368×10T なる温度係数を有する抵抗体R2の約3.8Ω(0℃)
を歪ゲージZ1又はZ4と同一の辺に抵抗体X1又は
X4として挿入する。この場合零バランスは4mm
V崩れ−4.9mVから−8.9mVとなる。しかし、
同時に上記抵抗体R1及びR2と0℃で同一の抵抗
値を有する非感温の抵抗体(50ppm程度低下)を
対応するブリツジに挿入すれば零バランスはくず
れない。
As mentioned above, when a 2 < 0, a low antibody (for example, Nickel) with a positive quadratic term temperature coefficient is used as a strain gauge Z 3 as a resistor to compensate for the nonlinearity of zero point temperature change.
Insert the resistor X3 or X2 on the same side as the strain gauge Z2 or on the same side as the strain gauge Z2. Furthermore, if the resistor has a negative quadratic term temperature coefficient (for example, platinum), it is inserted as the resistor X 1 or X 4 on the same side as the strain gauge Z 1 or on the same side as the strain gauge Z 4 in the opposite direction. Also, a 2 >
In the case of 0, if the resistor has a positive quadratic term temperature coefficient, place the resistor on the same side as strain gauge Z 1 or Z 4 .
Insert as X 1 or X 4 . For example , as a resistor that compensates for the non-linearity of the zero point temperature change of the load cell, a resistor R1 of approximately 3.27Ω (0°C ) strain gauge
Insert resistor X 3 or X 2 on the same side as Z 3 or Z 2 . Also, as a resistor that compensates for linear zero point change, the temperature coefficient of resistor R2 is approximately 3.8Ω (0℃), which has a temperature coefficient of 1 + 0.004368 × 10T.
Place resistor X 1 or resistor on the same side as strain gauge Z 1 or Z 4 .
Insert as X4 . In this case, the zero balance is 4mm
V collapse from -4.9mV to -8.9mV. but,
At the same time, if a non-temperature sensitive resistor (approximately 50 ppm decrease) having the same resistance value at 0° C. as the resistors R 1 and R 2 is inserted into the corresponding bridge, the zero balance will not be lost.

ここでは全ての事例を取り入れたわかり易いモ
デルとするために、架空の温度係数を持つ抵抗体
によつて説明したが、零点の非直線的変化を補正
するのにニツケル抵抗体を用い、直線的変化を補
正するために銅抵抗体を用いると零バランスは余
りくずれず、非感温抵抗体を挿入する必要はなく
なる。なお、第1図において、SR1及びSR2はス
パン補償用抵抗体である。
Here, in order to create an easy-to-understand model that incorporates all cases, we have explained using a resistor with a fictitious temperature coefficient, but we have used a nickel resistor to correct non-linear changes in the zero point, and If a copper resistor is used to correct this, the zero balance will not be disturbed much, and there will be no need to insert a non-temperature-sensitive resistor. In FIG. 1, SR 1 and SR 2 are span compensation resistors.

次に、上記ロードセルの零点温度変化の補償方
法の具体的実験例を説明する。
Next, a specific experimental example of the compensation method for the zero point temperature change of the load cell will be explained.

第1図において、スパン補償用抵抗体SR1及び
SR2として下記のものを用いる。
In Figure 1, span compensation resistor SR 1 and
The following is used as SR 2 .

SR1=55.5×(C1+A1×T+B1×T2)Ω、(T
は温度) (C1=1.00002、A1=3.56112×10-3、B1=−
6.11861×10-7) SR2=26×(C2+A2×T+B2×T2)Ω (C2=0.916777、A2=3.26167×10-3、B2=−
4.31664×10-6) また、歪ゲージZ1〜Z2として公称値350Ωの歪
ゲージを起歪体10の薄肉部10a〜10dに貼
り付け、変動荷重のない状態で、常温、高温、低
温の3点で零点の出力値を測定したところ下記の
如くであつた。なお、入力電圧E=12V一定とす
る。
SR 1 = 55.5 × (C 1 + A 1 × T + B 1 × T 2 ) Ω, (T
is temperature) (C 1 = 1.00002, A 1 = 3.56112×10 -3 , B 1 = -
6.11861×10 -7 ) SR 2 = 26× (C 2 + A 2 × T + B 2 × T 2 ) Ω (C 2 = 0.916777, A 2 = 3.26167×10 -3 , B 2 = −
4.31664×10 -6 ) Also, as strain gauges Z 1 to Z 2 , strain gauges with a nominal value of 350Ω are pasted to the thin parts 10a to 10d of the flexure element 10, and the The zero point output values were measured at three points and were as follows. Note that the input voltage E is constant at 12V.

低温−8.4℃ 5.2783mV(100.672%) 常温24.8℃ 5.1977mV(100%) 高温51.2℃ 5.1191mV(99.345) 歪ゲージZ1〜Z4の抵抗値を Z1=Z2=Z4=350Ω (5) とし、Z3を Z3=350+350×(A×T+B×T2+C) (6) として、上記ロードセルの上記係数A、B、Cを
上記(1)〜(4)式にあてはめて求めると、 A=4.8017×10-7 B=−4.17685×10-9 C=0.753492/350 となり、今、−10℃と50℃の出力点で直線で結び
各温度での出力点の差を見ると最大で−0.068%
であつた。これは温度に対する零点出力の非直線
性の最大誤差とみなせる。
Low temperature -8.4℃ 5.2783mV (100.672%) Room temperature 24.8℃ 5.1977mV (100%) High temperature 51.2℃ 5.1191mV (99.345) Resistance values of strain gauges Z 1 to Z 4 Z 1 = Z 2 = Z 4 = 350Ω (5 ) and Z 3 as Z 3 = 350 + 350 × (A × T + B × T 2 + C) (6) and calculate the coefficients A, B, and C of the load cell by applying them to the formulas (1) to (4) above. , A = 4.8017×10 -7 B = -4.17685 −0.068%
It was hot. This can be regarded as the maximum error in the nonlinearity of the zero point output with respect to temperature.

今この要因をロードセルの温度係数の2乗項B
が起因しているとして、該2乗項Bを相殺する様
な抵抗体として、温度N℃における抵抗値RN RN=RN0(C3+A3×T+B3×T2) (7) C3=1、A3=0.0057457、B3=0.0000065 のニツケルワイヤを歪ゲージZ3と直列に挿入する
事を考えると、上記(6)式及び(7)式より、 350B=−RNOB3 (8) の条件が成立すれば両式の温度係数の2次項が相
殺できる。よつて、 RN0=350×4.17685×10-9/6.5×10-6 =3.5×4.17685×10-1/6.5=0.2249Ω のニツケルワイヤを歪ゲージZ3の辺に直列に挿入
すれば良いが、実際には切断誤差等を含み0℃で
実測値0.2249Ωのニツケル抵抗を歪ゲージZ3側に
挿入した。この抵抗を挿入することによつて生じ
る出力の直線的温度変化及びもとのロードセルの
零点の直線的変化分との合成された傾きを修正す
るために、歪ゲージZ1又はZ4の辺に直列に下記に
示すような抵抗値を有する銅ワイヤを挿入した。
Now this factor is the square term B of the temperature coefficient of the load cell.
Assuming that this is caused by _ Considering that a nickel wire with 3 = 1, A 3 = 0.0057457, and B 3 = 0.0000065 is inserted in series with the strain gauge Z 3 , from equations (6) and (7) above, 350B = -R NO B 3 If the condition (8) is satisfied, the quadratic terms of the temperature coefficients in both equations can be canceled out. Therefore, R N0 = 350 × 4.17685 × 10 -9 / 6.5 × 10 -6 = 3.5 × 4.17685 × 10 -1 / 6.5 = 0.2249Ω nickel wire should be inserted in series on the side of strain gauge Z 3 . In reality, a nickel resistor with a measured value of 0.2249Ω at 0°C, including cutting errors, was inserted on the strain gauge Z3 side. In order to correct the slope that is combined with the linear temperature change in the output caused by inserting this resistor and the linear change in the zero point of the original load cell, the side of the strain gauge Z 1 or Z 4 is A copper wire having a resistance value as shown below was inserted in series.

0.224×(1+0.00427T)Ω これらを挿入した後の計算値と実測値を第6図
及び第7図に示す。
0.224×(1+0.00427T)Ω The calculated values and actual measured values after inserting these values are shown in Figures 6 and 7.

第6図は、0.2249Ω(0℃)のニツケルワイヤ
と0.2240Ω(0℃)の銅ワイヤで補償した場合を
示し、同図aは計算値を同図bは実測値を示す。
図において、直線性LIとは、0℃の値と50℃の
値を直線で結び計算値及び実測値との最大差、即
ちその最大膨らみを示し、勾配GRとは上記直線
の勾配を示す。
FIG. 6 shows the case where compensation is performed using a nickel wire of 0.2249Ω (0°C) and a copper wire of 0.2240Ω (0°C), where a shows the calculated value and b shows the measured value.
In the figure, linearity LI indicates the maximum difference between the calculated value and the measured value, that is, the maximum bulge, by connecting the value at 0° C. and the value at 50° C. with a straight line, and the gradient GR indicates the gradient of the straight line.

第7図は0.1060Ω(0℃)の銅ワイヤのみで補
償した場合を示し、同図aは計算値を同図bは実
測値を示す。図において、直線性LIとは第6図
の場合と同様0℃の値と50℃の値を直線で結びそ
の最大膨らみを示し、勾配GRとは上記直線の勾
配を示す。
FIG. 7 shows the case where compensation is performed only with a copper wire of 0.1060Ω (0° C.), where a shows the calculated value and b shows the actually measured value. In the figure, linearity LI indicates the maximum bulge connecting the 0°C value and 50°C value with a straight line, as in the case of Fig. 6, and gradient GR indicates the slope of the above straight line.

なお、上記実施例では異種抵抗体として2次項
を有する第1の抵抗体と2次項が小さく1次項の
大きい第2の抵抗体を用い零点出力の温度変化の
非直線的変化を第1の抵抗体の2次項により消去
し、直線的変化及び第1の抵抗体の1次項を第2
の抵抗体の1次項により消去したが、温度係数の
1次項を有する第1の抵抗体を1次項が小さく2
次項が大きい第2の抵抗体を用い、零点出力の温
度変化の直線的変化を第1の抵抗体の1次項によ
り消去し、非直線的変化及び第1の抵抗体の2次
項を第2の抵抗体の2次項により消去しても良い
(この場合、例えば第1の抵抗体をニツケル或い
は白金抵抗を用い、第2の抵抗体にマンガニン或
いはコンスタンタンを用いる)。また、温度係数
の1次項が小さく、2次項の大きい第1の抵抗体
を2次項が小さく1次項の大きい第2の抵抗体を
用い零点出力の温度変化の非直線的変化を第1の
抵抗体の2次項により消去し、直線的変化を第2
の抵抗体の1次項により消去しても良い(この場
合、例えば第1の抵抗体にマンガニン抵抗、第2
の抵抗体に銅抵抗を用いる)。
In the above embodiment, a first resistor having a quadratic term and a second resistor having a small quadratic term and a large first-order term are used as different resistors, and the non-linear change in the temperature change of the zero point output is detected by the first resistor. The linear change and the linear term of the first resistor are canceled by the second-order term of the first resistor.
The first resistor with the first order term of the temperature coefficient is erased by the first order term of the resistor with a small first order term of 2.
By using a second resistor with a large next term, the linear change in temperature change of the zero point output is canceled by the linear term of the first resistor, and the non-linear change and the quadratic term of the first resistor are eliminated by the second resistor. It may also be erased by a quadratic term of a resistor (in this case, for example, a nickel or platinum resistor is used as the first resistor, and manganin or constantan is used as the second resistor). In addition, by using a first resistor whose temperature coefficient has a small first-order term and a large second-order term, and a second resistor whose second-order term has a small second-order term and a large first-order term, the non-linear change in temperature change of the zero point output can be suppressed by using the first resistor. The linear change is eliminated by the quadratic term of the field, and the linear change is
(In this case, for example, the first resistor has a manganin resistance, the second
(using a copper resistor as the resistor).

なお、上記実施例ではブリツジ回路を構成する
各辺は何れも歪ゲージで構成したが、アクテイブ
ゲージが1枚又は2枚で他がダミー抵抗であつて
もよい。また、上記実施例ではロードセルの起歪
体の形状として第2図に示すものを用いたが、こ
れに限定されるものではなくロードセルの形状は
任意で良い。
In the above embodiment, each side of the bridge circuit is made up of strain gauges, but it is also possible to have one or two active gauges and the others are dummy resistors. Further, in the above embodiment, the shape of the strain body of the load cell shown in FIG. 2 was used, but the shape of the load cell is not limited to this, and the shape of the load cell may be arbitrary.

また、異種抵抗体はそれぞれの温度係数の1次
項、2次項を有しているものであつても、2次項
の特性が異なるものの組合わせであれば、適時そ
れぞれの割合を変化させロードセル出力の温度に
対する直線的変化(傾き)及び非直線的変化を修
正することが可能である。例えば下記のような抵
抗体の組合わせがある。
In addition, even if different types of resistors have their own temperature coefficients of first-order and second-order terms, if they are a combination of items with different characteristics of the second-order terms, the proportions of each may be changed in a timely manner to improve the load cell output. It is possible to correct for linear (slope) and non-linear changes with temperature. For example, there are the following combinations of resistors.

ニツケル+白金。 Nickel + platinum.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば下記のよう
な優れた効果が得られる。
As explained above, according to the present invention, the following excellent effects can be obtained.

ロードセルの零点温度変化の非直線的変化及び
直線的変化を前記ブリツジ回路の辺にZBz=−
RBr(但し、Zは歪ゲージの公称抵抗値、Bzはロ
ードセルの温度係数の2乗項、Rは温度補償抵抗
値、Brは温度補償抵抗の温度係数の2乗項)が
成立する1次温度係数及び2次温度係数を有する
金属歪ゲージとは異種の抵抗体を直列に挿入する
ことにより温度変化の2乗項についての零点温度
補償を成立させるので、ロードセルの零点温度変
化の非直線的変化及び直線的変化の両者を補償す
ることができる。
ZBz=-
RBr (where Z is the nominal resistance value of the strain gauge, Bz is the square term of the temperature coefficient of the load cell, R is the temperature compensation resistance value, and Br is the square term of the temperature coefficient of the temperature compensation resistance). By inserting a different type of resistor in series with a metal strain gauge that has a coefficient and a quadratic temperature coefficient, zero point temperature compensation is established for the square term of temperature change, so the zero point temperature change of the load cell is non-linear. and linear changes can be compensated for.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のロードセルの零点温度変化の
補償方法に適用する歪ゲージのブリツジ回路を示
す図、第2図はロードセル概略構成を示す図、第
3図は本発明のロードセルの零点温度変化の補償
方法の原理を説明するための歪ゲージのブリツジ
回路を示す図、第4図はロードセル出力の温度に
対する変化を示す図、第5図はその直線的変化を
補正する従来例を示す図、第6図は0.2249Ω(0
℃)のニツケルワイヤと0.1060Ω(0℃)の銅ワ
イヤで補償した場合を示す図で、同図aは計算値
を同図bは実測値を示す図、第7図は0.2240Ω
(0℃)の銅ワイヤのみで補償した場合を示す図
で、同図aは計算値を同図bは実測値を示す図で
ある。 図中、Z1〜Z4……歪ゲージ、X1〜X4……補償
用抵抗体。
Fig. 1 is a diagram showing a bridge circuit of a strain gauge applied to the compensation method for zero point temperature change of a load cell according to the present invention, Fig. 2 is a diagram showing a schematic configuration of a load cell, and Fig. 3 is a diagram showing a zero point temperature change of a load cell according to the present invention. A diagram showing a bridge circuit of a strain gauge to explain the principle of the compensation method, FIG. 4 is a diagram showing changes in load cell output with respect to temperature, and FIG. 5 is a diagram showing a conventional example of correcting the linear change. Figure 6 shows 0.2249Ω (0
This figure shows the case of compensation with nickel wire of 0.1060Ω (0℃) and copper wire of 0.1060Ω (0℃). Figure a shows the calculated value, figure b shows the measured value, and Figure 7 shows the 0.2240Ω.
This is a diagram showing a case where compensation is performed only with a copper wire at (0° C.), where a shows a calculated value and a diagram b shows an actual measured value. In the figure, Z 1 to Z 4 ... strain gauges, and X 1 to X 4 ... compensation resistors.

Claims (1)

【特許請求の範囲】 1 1次温度係数及び2次温度係数を有し抵抗値
が温度によつて変化する金属歪ゲージを具備する
と共に該金属歪ゲージをブリツジ回路に組み、該
ブリツジ回路の出力から荷重を測定するロードセ
ルにおいて、 該ロードセルの零点温度変化の非直線的変化及
び直線的変化を前記ブリツジ回路の辺に下式が成
立する1次温度係数及び2次温度係数を有する前
記金属歪ゲージとは異種の抵抗体を温度補償抵抗
体として直列に挿入することにより温度変化の2
乗項についての零点温度補償を成立させることを
特徴とするロードセルの零点温度変化の補償方
法。 Z・Bz=−R・Br ここで、Zは歪ゲージの公称抵抗値、Bzはロ
ードセルの温度係数の2乗項、Rは温度補償抵抗
値、Brは温度補償抵抗の温度係数の2乗項であ
る。 2 前記温度補償抵抗体として第1及び第2の2
個の抵抗体を用い、前記零点温度変化の非直線的
変化を2次項を有する第1の抵抗体の温度係数の
2次項により消去し、且つ直線的変化及び前記第
1の抵抗体の1次項を2次項が小さく1次項の大
きい第2の抵抗体の温度係数の1次項により消去
することを特徴とする特許請求の範囲第1項記載
のロードセルの零点温度変化の補償方法。 3 前記温度補償抵抗体として第1及び第2の2
個の抵抗体を用い、前記零点温度変化の直線的変
化を第1の抵抗体の温度係数の1次項により消去
し、且つ非直線的変化及び前記第1の抵抗体の2
次項を1次項が小さく2次項の大きい第2の抵抗
体の温度係数の2次項により消去することを特徴
とする特許請求の範囲第1項記載のロードセルの
零点温度変化の補償方法。 4 前記温度補償抵抗体として第1及び第2の2
個の抵抗体を用い前記零点温度変化の非直線的変
化を温度係数の1次項が小さく2次項の大きい第
1の抵抗体により消去し、且つ直線的変化を2次
項が小さく1次項の大きい第2の抵抗体により消
去することを特徴とする特許請求の範囲第1項記
載のロードセルの零点温度変化の補償方法。 5 零バランスが所定の規定値よりずれた場合
に、更に温度係数が略零の零バランス補正用の抵
抗体により補正することを特徴とする特許請求の
範囲第1乃至4項のいずれか1項に記載のロード
セルの零点温度変化の補償方法。
[Scope of Claims] 1. A metal strain gauge having a first-order temperature coefficient and a second-order temperature coefficient and whose resistance value changes depending on temperature, and the metal strain gauge is assembled into a bridge circuit, and the output of the bridge circuit is provided. In a load cell that measures a load from a load cell, the metal strain gauge has a first-order temperature coefficient and a second-order temperature coefficient on the side of the bridge circuit that satisfy the following equation to express non-linear changes and linear changes in zero-point temperature change of the load cell. By inserting a different type of resistor in series as a temperature compensating resistor, the temperature change can be reduced by
A method for compensating for changes in zero point temperature of a load cell, characterized by establishing zero point temperature compensation for a multiplicative term. Z・Bz=−R・Br Here, Z is the nominal resistance value of the strain gauge, Bz is the square term of the temperature coefficient of the load cell, R is the temperature compensation resistance value, and Br is the square term of the temperature coefficient of the temperature compensation resistance. It is. 2 first and second 2 as the temperature compensation resistor;
The non-linear change in the zero point temperature change is canceled by the quadratic term of the temperature coefficient of the first resistor having a quadratic term, and the linear change and the linear term of the first resistor are eliminated. 2. A method of compensating for a zero point temperature change in a load cell according to claim 1, wherein the temperature coefficient of the second resistor has a small quadratic term and a large linear term. 3. The first and second two as the temperature compensating resistor.
The linear change in the zero point temperature change is canceled by the linear term of the temperature coefficient of the first resistor, and the non-linear change and the
2. A method for compensating for a zero point temperature change in a load cell according to claim 1, wherein the next term is canceled by a second-order term of a temperature coefficient of a second resistor having a small first-order term and a large second-order term. 4 the first and second two as the temperature compensation resistor;
A first resistor whose temperature coefficient has a small first-order term and a large second-order term eliminates the non-linear change in the zero-point temperature change, and a linear change is canceled by a first resistor whose temperature coefficient has a small first-order term and a large first-order term. 2. A method for compensating for a zero point temperature change of a load cell according to claim 1, wherein the compensation method is performed using a resistor of 2. 5. Any one of claims 1 to 4, characterized in that when the zero balance deviates from a predetermined value, the zero balance is further corrected by a zero balance correction resistor having a temperature coefficient of approximately zero. Compensation method for load cell zero point temperature change described in .
JP18111586A 1986-07-31 1986-07-31 Method for compensating zero point temperature change of load cell Granted JPS6337226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18111586A JPS6337226A (en) 1986-07-31 1986-07-31 Method for compensating zero point temperature change of load cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18111586A JPS6337226A (en) 1986-07-31 1986-07-31 Method for compensating zero point temperature change of load cell

Publications (2)

Publication Number Publication Date
JPS6337226A JPS6337226A (en) 1988-02-17
JPH0577252B2 true JPH0577252B2 (en) 1993-10-26

Family

ID=16095109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18111586A Granted JPS6337226A (en) 1986-07-31 1986-07-31 Method for compensating zero point temperature change of load cell

Country Status (1)

Country Link
JP (1) JPS6337226A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782930A (en) * 1993-09-10 1995-03-28 Susumu Ariyama Constructing method of concrete structure functioning as surface decorative board and form in combination

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925222A (en) * 1972-06-30 1974-03-06

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859083U (en) * 1971-11-05 1973-07-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925222A (en) * 1972-06-30 1974-03-06

Also Published As

Publication number Publication date
JPS6337226A (en) 1988-02-17

Similar Documents

Publication Publication Date Title
US7991571B2 (en) Providing nonlinear temperature compensation for sensing means by use of padé approximant function emulators
US4796212A (en) Load cell type, weight-measuring device
US7478001B2 (en) Systems and methods for temperature-compensated measuring of a load
US3184962A (en) Strain type transducers
JP2000515623A (en) Wheatstone bridge to correct temperature gradient between bridge main resistance and its application in pressure sensor with strain gauge
US3245252A (en) Temperature compensated semiconductor strain gage unit
US4958526A (en) Force measuring device with zero adjustment
EP0178368B1 (en) Process variable transmitter and method for correcting its output signal
GB2240182A (en) Piezo resistive transducer
US6314815B1 (en) Pressure sensor with compensation for null shift non-linearity at very low temperatures
JPH0577252B2 (en)
US3034347A (en) Strain gauge bridge circuit arrangement, particularly for load cells
US5031463A (en) Load cell output correction circuitry
JP3465946B2 (en) Load cell temperature compensation method and apparatus
JP3302449B2 (en) Load cell failure detection device and self-compensation device
JP2898500B2 (en) Pressure sensor with temperature characteristic correction
JP2002131159A (en) Sensor circuit
US12021533B2 (en) Circuit arrangement and method of forming the same
JPH0339569B2 (en)
JPS6336447B2 (en)
JPS61112938A (en) Compensation circuit of semiconductive pressure sensor
JP3972188B2 (en) Load cell
JPH06294664A (en) Nonlinear circuit
JP2674095B2 (en) Zero adjustment circuit of bridge circuit
JPH0226036Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term