JPH0226036Y2 - - Google Patents

Info

Publication number
JPH0226036Y2
JPH0226036Y2 JP1981198303U JP19830381U JPH0226036Y2 JP H0226036 Y2 JPH0226036 Y2 JP H0226036Y2 JP 1981198303 U JP1981198303 U JP 1981198303U JP 19830381 U JP19830381 U JP 19830381U JP H0226036 Y2 JPH0226036 Y2 JP H0226036Y2
Authority
JP
Japan
Prior art keywords
strain
fixed
load cell
bridge
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981198303U
Other languages
Japanese (ja)
Other versions
JPS58101145U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19830381U priority Critical patent/JPS58101145U/en
Publication of JPS58101145U publication Critical patent/JPS58101145U/en
Application granted granted Critical
Publication of JPH0226036Y2 publication Critical patent/JPH0226036Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は被測定荷重によりロードセルに歪を与
えることによつてその荷重を測定する、いわゆる
ロードセルはかりに関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a so-called load cell scale that measures the load by applying strain to the load cell due to the load to be measured.

〈従来の技術〉 一般にはかりは、その受け皿に被測定物を載せ
てこれを秤量するが、被測定物を載せる受け皿の
位置によつて生ずる秤量値の誤差、つまり偏置誤
差は、可能な限り小さいことが好ましい。
<Prior art> Generally, scales place the object to be measured on its tray and weigh it, but the error in the weighing value caused by the position of the tray on which the object is placed, that is, the eccentricity error, is minimized as much as possible. Preferably small.

従来のロードセルはかりは、この偏置誤差を除
くために、第1図にその構成を示すように、ロバ
ーバル機構に歪ゲージSを貼り付けたロバーバル
型のロードセルを使用していた。
In order to eliminate this eccentricity error, conventional load cell scales use a Roberval type load cell in which a strain gauge S is attached to a Roberval mechanism, as shown in FIG. 1.

〈考案が解決しようとする課題〉 以上のような従来のロードセルはかりにおい
て、受け皿Dのどの位置に載せても偏置誤差のな
い測定結果を得るためには、ロバーバル機構の平
行四辺形が完全なものではなくてはならず、その
製作は困難であり、結局、第2図に第1図のA−
A断面図を示すように、図中黒塗部を手作業によ
り、荷重位置をW1〜W5に変更しつつ少量ずつ削
り込んで偏置誤差を修正する必要があり、その修
正作業にも熟練を要するという問題があつた。
<Problem to be solved by the invention> In the conventional load cell scale as described above, in order to obtain measurement results without eccentricity errors no matter where it is placed on the tray D, the parallelogram of the Roberval mechanism must be completely It has to be a real thing, and it is difficult to make it, so in the end, Figure 2 shows A- in Figure 1.
As shown in cross-sectional view A, it is necessary to correct the eccentricity error by manually cutting the black part in the figure little by little while changing the load position from W 1 to W 5 . The problem was that it required skill.

また、ロバーバル機構は、その平行四辺形の精
度を確保するためには荷重付加方向の高さをある
一定の値以上にする必要があつて、荷重付加方向
の厚みの小さい偏平なはかりを得るには限界があ
つた。
In addition, in order to ensure the accuracy of the parallelogram, the height of the Roberval mechanism in the load application direction must be greater than a certain value, and in order to obtain a flat scale with a small thickness in the load application direction. has reached its limit.

本考案はこのような点に鑑みてなされたもの
で、簡単な構成によつて、削り込みによる偏置誤
差修正作業が不要で、しかも、偏平なロードセル
はかりの提供を目的としている。
The present invention has been made in view of the above points, and aims to provide a flat load cell scale that has a simple structure, does not require the work of correcting eccentricity errors by cutting.

〈課題を解決するための手段〉 上記の目的を達成するための構成を、実施例に
対応する第3図乃至第5図を参照しつつ説明する
と、本考案では、外部に固定される固定部9と、
長手方向の伸縮を吸収し得る可撓部10と、歪ゲ
ージを貼着して歪を検出する歪検出部11とを有
した起歪体3〜6を、方形の4つの頂点をなす位
置関係で配設する。また、4つの歪検出部への歪
ゲージS1〜S4の貼着面は、2つは上面、残り
2つは下面とし、その合計4つの歪ゲージS1〜
S4でブリツジ回路を形成し、かつ、そのブリツ
ジ内には、不平衡調整用の可変抵抗Zを挿入し、
更に、ブリツジ回路における各歪ゲージS1〜S
4には、それぞれ可変抵抗VR1〜VR4と固定
抵抗R1〜R4を直列接続した回路を並列に接続
している。
<Means for Solving the Problems> The configuration for achieving the above object will be explained with reference to FIGS. 3 to 5 corresponding to the embodiment. 9 and
The strain-generating bodies 3 to 6 each have a flexible portion 10 that can absorb expansion and contraction in the longitudinal direction, and a strain detection portion 11 that detects strain by attaching a strain gauge, in a positional relationship that forms four vertices of a rectangle. Arrange with. In addition, the surfaces to which the strain gauges S1 to S4 are attached to the four strain detection sections are two on the top surface and the remaining two on the bottom surface, for a total of four strain gauges S1 to S4.
A bridge circuit is formed in S4, and a variable resistor Z for unbalance adjustment is inserted into the bridge.
Furthermore, each strain gauge S1 to S in the bridge circuit
4 are connected in parallel to circuits in which variable resistors VR1 to VR4 and fixed resistors R1 to R4 are connected in series, respectively.

〈作用〉 方形の4つの頂点をなす位置に配設された起歪
体3〜6の歪検出部のうちの2つは上面、他の2
つは下面に歪ゲージを貼着して、これらの合計4
つの歪ゲージS1〜S4でブリツジ回路を組むこ
とにより、全体が一個のロードセルを形成するこ
とになり、また、そのブリツジ回路の歪ゲージS
1〜S4のそれぞれに、可変抵抗VR1〜VR4
と固定抵抗R1〜R4を直列接続した回路を並列
に接続することによつて、可変抵抗VR1〜VR
4の調整、およびその調整によるブリツジの不平
衡を調整する可変抵抗Zの調整により、純電気的
な偏置誤差の調整が可能となり、所期の目的を達
成することができる。
<Operation> Two of the strain detecting parts of the flexure generating bodies 3 to 6 arranged at the positions forming the four vertices of the rectangle are on the top surface, and the other two are on the top surface.
One is to attach a strain gauge to the bottom surface, and the total of these is 4.
By assembling a bridge circuit with two strain gauges S1 to S4, the whole forms one load cell, and the strain gauge S of the bridge circuit
1 to S4, variable resistors VR1 to VR4, respectively.
By connecting in parallel a circuit in which fixed resistors R1 to R4 are connected in series, variable resistors VR1 to VR
4 and the variable resistor Z that adjusts the unbalance of the bridge by the adjustment, it is possible to adjust the purely electrical eccentricity error, and the desired purpose can be achieved.

〈実施例〉 第3図は本考案実施例の正面図で、第4図はそ
のロードセル部のみを取り出した斜視図である。
<Embodiment> FIG. 3 is a front view of an embodiment of the present invention, and FIG. 4 is a perspective view of only the load cell portion thereof.

荷重を受ける受け皿1はスペーサ12を介して
結合部材2に固着されている。結合部材2の荷重
付加方向に直角な面で、かつ、受け皿1を固着し
た面と反対側の面には、その両端部に第1の起歪
体3および第2の起歪体4を配した第1の梁7の
中腹部が固着され、その同じ面に第1の梁7と平
行にその両端部に第3の起歪体5および第4の起
歪体6を配した第2の梁8の中腹部が固着されて
いる。これにより、第1から第4の起歪体3,
4,5,6は結合部材2を囲むよう方形の頂点を
なす位置関係にて同一平面上に配設されることに
なる。
A load-receiving tray 1 is fixed to a coupling member 2 via a spacer 12. A first strain-generating body 3 and a second strain-generating body 4 are arranged at both ends of the surface of the coupling member 2 that is perpendicular to the load application direction and opposite to the surface to which the receiving plate 1 is fixed. The midsection of the first beam 7 is fixed, and a second strain body 5 and a fourth strain body 6 are arranged on the same surface parallel to the first beam 7 at both ends thereof. The midsection of the beam 8 is fixed. As a result, the first to fourth strain bodies 3,
4, 5, and 6 are arranged on the same plane so as to surround the coupling member 2 and form the apexes of a rectangle.

第1から第4の起歪体3,4,5,6には、そ
れぞれに座板14を介して外部に固定される固定
部9を最端部に配設し、その内側には荷重を受け
る方向に対してその断面が薄くなるような上下か
らの2つの切欠部からなる可撓部10と、歪ゲー
ジS1,S2,S3,S4をそれぞれ貼着して荷
重に対する歪を検出する歪検出部11を備えてい
る。ここで、可撓部10は、起歪体のたわみ変位
による荷重付加方向に直角な起歪体長手方向の伸
縮を吸収するためのものである。
The first to fourth strain-generating bodies 3, 4, 5, and 6 are each provided with a fixing part 9 fixed to the outside via a seat plate 14 at the end thereof, and a load is applied to the inside of the fixing part 9. Strain detection that detects strain against a load by attaching a flexible part 10 consisting of two notches from above and below whose cross section becomes thinner in the receiving direction, and strain gauges S1, S2, S3, and S4, respectively. 11. Here, the flexible portion 10 is for absorbing expansion and contraction in the longitudinal direction of the flexure body perpendicular to the load application direction due to deflection displacement of the flexure body.

なお、この可撓部10は、第7図a,b,cに
示すように、上下からの2つの切込み部の片方あ
るいは両方に切込み部と平行に可撓部の断面がよ
り薄くなるように丸孔を追加した構造にしてもよ
い。
In addition, as shown in FIGS. 7a, b, and c, this flexible part 10 has two notches from above and below, one or both of which are parallel to the notches so that the cross section of the flexible part becomes thinner. A structure with additional round holes may also be used.

第1の起歪体3および第4の起歪体6の歪検出
部11には、歪ゲージS1およびS4が下面に、
また、第2の起歪体4および第3の起歪体5歪検
1部11には、歪ゲージS2およびS3が上面に
貼り付けられている。
The strain detecting sections 11 of the first strain body 3 and the fourth strain body 6 have strain gauges S1 and S4 on the lower surface.
Further, strain gauges S2 and S3 are attached to the upper surfaces of the second strain body 4 and the third strain body 5 strain detection section 11.

第5図は以上の本考案実施例の回路構成図であ
る。
FIG. 5 is a circuit configuration diagram of the above embodiment of the present invention.

前記した4つの歪ゲージS1〜S4により、ブ
リツジ回路が形成されており、そのブリツジの各
辺、つまり各歪ゲージS1〜S4には、可変抵抗
VR1〜VR4と固定抵抗R1〜R4を直列に接
続した回路が、それぞれ並列に接続されている。
ここで、固定抵抗R1〜R4は可変抵抗VR1〜
VR4による各辺の抵抗値の調節量を制限するた
めのものである。また、この回路においては、ブ
リツジの一辺に零点温度調整用抵抗α0が挿入され
ているとともに、ブリツジ内には可変抵抗型の不
平衡調整用抵抗Zが挿入されこの抵抗Zを介して
ブリツジ出力が取り出されるように構成されてい
る。更にブリツジと電源との間には感度温度係数
調整用抵抗αsが挿入されている。
A bridge circuit is formed by the four strain gauges S1 to S4 described above, and each side of the bridge, that is, each strain gauge S1 to S4, is equipped with a variable resistor.
Circuits in which VR1 to VR4 and fixed resistors R1 to R4 are connected in series are connected in parallel.
Here, fixed resistances R1 to R4 are variable resistances VR1 to
This is to limit the amount of adjustment of the resistance value on each side by VR4. In addition, in this circuit, a zero point temperature adjustment resistor α 0 is inserted on one side of the bridge, and a variable resistance type unbalance adjustment resistor Z is inserted in the bridge, and the bridge output is controlled through this resistor Z. is configured to be retrieved. Furthermore, a sensitivity temperature coefficient adjusting resistor αs is inserted between the bridge and the power source.

以上のように構成された本考案実施例では、そ
の偏置誤差は、4箇所の起歪体3,4,5,6の
歪ゲージS1,S2,S3,S4の出力差によつ
て生ずるが、可変抵抗VR1,VR2,VR3,も
しくはVR4を調節することによつて、その差を
解消することができる。ここで、可変抵抗VR1
〜VR4の調節によるブリツジのゼロバランスの
くずれは、可変型の不平衡調整用抵抗Zの調節に
よつて修正可能である。よつて、本考案実施例の
偏置誤差の修正は、受け皿1上への荷重付加位置
を変化させつつ、可変抵抗VR1〜VR4と、必
要に応じて不平衡調整用抵抗Zを調節することに
よつて、純電気的な手法を用いて行うことができ
る。
In the embodiment of the present invention configured as described above, the eccentricity error is caused by the difference in the outputs of the strain gauges S1, S2, S3, and S4 of the four strain bodies 3, 4, 5, and 6. , the difference can be eliminated by adjusting the variable resistors VR1, VR2, VR3, or VR4. Here, variable resistor VR1
The loss of zero balance of the bridge due to the adjustment of ~VR4 can be corrected by adjusting the variable unbalance adjustment resistor Z. Therefore, in order to correct the eccentricity error in the embodiment of the present invention, while changing the load application position on the receiving tray 1, the variable resistors VR1 to VR4 and, if necessary, the unbalance adjustment resistor Z are adjusted. Therefore, it can be performed using a purely electrical method.

なお、以上の実施例の各起歪体の可撓部10
は、第6図にその正面図を示すように、固定部9
と歪検出部11とを、薄板で形成されその長手方
向にはほとんど延びを有さずそれに直行する方向
には撓みやすい弾性バンド13で結合する構成で
もよい。
In addition, the flexible portion 10 of each strain-generating body in the above embodiments
As shown in the front view in FIG.
and the strain detection section 11 may be connected by an elastic band 13 that is formed of a thin plate, has almost no extension in its longitudinal direction, and is easily bent in a direction perpendicular thereto.

更に、前記した実施例では、4つの起歪体のう
ち2つずつを梁で連結して結合部材2に固着した
が、4つの起歪体を1個の材料から削り出した
り、個々に独立して結合してもよいことは勿論で
あり、また、前記した実施例では受け皿1を結合
部材2に固着し、各起歪体の固定部9を外部に固
定したが、これを逆転して各起歪体の固定部9に
受け皿1を固着して結合部材2を外部に固定して
もよいことはいうまでもない。
Furthermore, in the above-mentioned embodiment, two of the four strain-generating bodies are connected by beams and fixed to the connecting member 2, but the four strain-generating bodies may be cut out of one material or individually separated. Of course, it is also possible to connect the receiver plate 1 to the connecting member 2 in the above-mentioned embodiment, and fix the fixing part 9 of each strain body to the outside. It goes without saying that the receiving tray 1 may be fixed to the fixing portion 9 of each strain-generating body and the coupling member 2 may be fixed to the outside.

〈考案の効果〉 以上説明したように、本考案によれば、方形の
4つの頂点をなす位置関係で起歪体を配設し、そ
のうちの2つの上面、および他の2つの下面に歪
ゲージを貼着し、これらの合計4つの歪ゲージで
ブリツジ回路を形成することにより、4つの起歪
体全体で一つのロードセルを形成し、かつ、その
ブリツジ回路内には不平衡調整用の可変抵抗を挿
入するとともに、各歪ゲージには、それぞれ可変
抵抗と固定抵抗を直列接続した回路を並列に接続
したから、4つの歪ゲージを用いた比較的簡単な
構成のもとに、ブリツジ各辺の可変抵抗および不
平衡調整用の可変抵抗に合計5つの可変抵抗の調
整によつて、はかりの偏置誤差を純電気的に修正
することが可能となり、従来のように熟練を必要
とすることがない。しかも、歪ゲージは合計4つ
をそれぞれの箇所に1つずつ貼着するだけでよ
く、材料費および貼着工数の両面で低コスト化を
達成することができるとともに、ロバーバル機構
を採用した場合のように荷重付加方向に一定以上
の高さを設ける必要がなく、容易に偏平なはかり
を得ることができ、被測定物の載せ降ろしはかり
が容易で特にベツドスケール用はかりに適したは
かりが得られる。
<Effects of the invention> As explained above, according to the invention, strain-generating bodies are arranged in a positional relationship that forms the four vertices of a rectangle, and strain gauges are installed on the upper surfaces of two of them and the lower surfaces of the other two. By pasting these four strain gauges together to form a bridge circuit, the four strain-generating bodies form one load cell, and a variable resistor for unbalance adjustment is installed in the bridge circuit. At the same time, each strain gauge was connected in parallel with a circuit in which a variable resistor and a fixed resistor were connected in series. Therefore, with a relatively simple configuration using four strain gauges, each side of the bridge could be By adjusting a total of five variable resistors, including variable resistors and variable resistors for unbalance adjustment, it is possible to correct the eccentricity error of the scale purely electrically, eliminating the need for skill as in the past. do not have. Moreover, it is only necessary to affix a total of four strain gauges, one at each location, making it possible to achieve cost reductions in terms of both material costs and affixing man-hours. As such, there is no need to provide a height above a certain level in the load application direction, and a flat scale can be easily obtained, making it easy to load and unload objects to be measured, making it particularly suitable for bed scales. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のロバーバル型ロードセルはかり
の説明図、第2図はその断面図、第3図は本考案
実施例の正面図、第4図はその要部斜視図、第5
図は本考案実施例のブリツジ結線図、第6図は本
考案の他の実施例の正面図、第7図は本考案のさ
らに他の実施例の起歪体の可撓部の説明図であ
る。 1……受け皿、2……結合部材、3,4,5,
6……起歪体、9……固定部、10……可撓部、
11……歪検出部、S1,S2,S3,S4……
歪ゲージ、VR1,VR2,VR3,VR4……可
変抵抗、R1,R2,R3,R4……固定抵抗、
Z……不平衡調整用可変抵抗。
Fig. 1 is an explanatory diagram of a conventional Roberval type load cell scale, Fig. 2 is a cross-sectional view thereof, Fig. 3 is a front view of an embodiment of the present invention, Fig. 4 is a perspective view of its main parts, Fig. 5
The figure is a bridge connection diagram of an embodiment of the present invention, FIG. 6 is a front view of another embodiment of the present invention, and FIG. be. 1... saucer, 2... coupling member, 3, 4, 5,
6... Strain body, 9... Fixed part, 10... Flexible part,
11...Distortion detection section, S1, S2, S3, S4...
Strain gauge, VR1, VR2, VR3, VR4...variable resistance, R1, R2, R3, R4...fixed resistance,
Z...variable resistor for unbalance adjustment.

Claims (1)

【実用新案登録請求の範囲】 (1) 外部に固定される固定部と、長手方向の伸縮
を吸収し得る可撓部と、歪ゲージを貼着して歪
を検出する歪検出部とを有した起歪体を、方形
の4つの頂点をなす位置関係で配設するととも
に、上記4つの歪検出部のへの歪ゲージの貼着
面は、2つは上面、残り2つは下面とし、その
合計4つの歪ゲージでブリツジ回路を形成し、
かつ、そのブリツジ内には、不平衡調整用の可
変抵抗を挿入するとともに、更に各歪ゲージに
は、それぞれ可変抵抗と固定抵抗を直列接続し
た回路を並列に接続してなる、ロードセルはか
り。 (2) 起歪体の可撓部が上下からの切込み部である
実用新案登録請求の範囲第1項記載のロードセ
ルはかり。 (3) 起歪体の可撓部となつている上下からの切込
み部の両方あるいは片方に丸穴を追加したこと
を特徴とする、実用新案登録請求の範囲第2項
記載のロードセルはかり。 (4) 起歪体の固定部と歪検出部とを弾性バンドに
より結合して可撓部を形成したことを特徴とす
る、実用新案登録請求の範囲第1項記載のロー
ドセルはかり。
[Claims for Utility Model Registration] (1) It has a fixed part that is fixed to the outside, a flexible part that can absorb expansion and contraction in the longitudinal direction, and a strain detection part that detects strain by attaching a strain gauge. The strain-generating bodies are arranged in a positional relationship forming four vertices of a rectangle, and the surfaces to which the strain gauges are attached to the four strain detection sections are two on the top surface and the remaining two on the bottom surface, A total of four strain gauges form a bridge circuit,
In addition, a variable resistor for unbalance adjustment is inserted into the bridge, and each strain gauge is connected in parallel with a circuit in which a variable resistor and a fixed resistor are connected in series. (2) The load cell scale according to claim 1, wherein the flexible portion of the strain-generating body is a cut portion from above and below. (3) The load cell scale according to claim 2 of the utility model registration, characterized in that a round hole is added to both or one of the upper and lower notch portions, which are the flexible portions of the strain-generating body. (4) The load cell scale according to claim 1 of the utility model registration, characterized in that a fixed part of the strain-generating body and a strain detection part are connected by an elastic band to form a flexible part.
JP19830381U 1981-12-28 1981-12-28 load cell scale Granted JPS58101145U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19830381U JPS58101145U (en) 1981-12-28 1981-12-28 load cell scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19830381U JPS58101145U (en) 1981-12-28 1981-12-28 load cell scale

Publications (2)

Publication Number Publication Date
JPS58101145U JPS58101145U (en) 1983-07-09
JPH0226036Y2 true JPH0226036Y2 (en) 1990-07-17

Family

ID=30111496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19830381U Granted JPS58101145U (en) 1981-12-28 1981-12-28 load cell scale

Country Status (1)

Country Link
JP (1) JPS58101145U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388940B1 (en) * 2001-01-29 2003-06-25 주식회사 피앤엠 Electric sacle capable of compensating error caused by an eccentricity of a load to be gauged and a tilt thereof
JP5273023B2 (en) * 2009-11-27 2013-08-28 株式会社豊田中央研究所 Component meter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542818A (en) * 1977-06-09 1979-01-10 Tokyo Shibaura Electric Co Copier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110870U (en) * 1976-02-19 1977-08-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542818A (en) * 1977-06-09 1979-01-10 Tokyo Shibaura Electric Co Copier

Also Published As

Publication number Publication date
JPS58101145U (en) 1983-07-09

Similar Documents

Publication Publication Date Title
US4380175A (en) Compensated load cell
CA1047055A (en) Constant moment weigh scale with floating flexure beam
US4979580A (en) Force measuring device with sensitivity equalization
EP0295067B2 (en) Digital load shift compensation
EP0089209B1 (en) Improved compensated load cell
US3949603A (en) Strain gage transducer
JP4990360B2 (en) Top balance with corner load sensor
US4565255A (en) Weighing device with strain gages
US4958526A (en) Force measuring device with zero adjustment
EP1450143A2 (en) Bending beam load cell with torque sensitivity compensation
US4385527A (en) Aircraft weighing systems
EP0114530B1 (en) Weighing scale with a load cell
JP2834282B2 (en) Load cell
EP0153121A2 (en) Compensated load cell
JPH0226036Y2 (en)
JPH06103212B2 (en) Weight detector
USRE32003E (en) Constant moment weigh scale with floating flexure beam
US5369226A (en) Load shift compensation for weighing apparatus
JPH023123B2 (en)
EP0126566B1 (en) Load cell apparatus
JPH0526499Y2 (en)
JPS636659Y2 (en)
USRE32002E (en) Constant moment weigh scale with floating flexure beam
JP2654513B2 (en) Load cell
JPH0547389Y2 (en)