JPS61112938A - Compensation circuit of semiconductive pressure sensor - Google Patents

Compensation circuit of semiconductive pressure sensor

Info

Publication number
JPS61112938A
JPS61112938A JP59235634A JP23563484A JPS61112938A JP S61112938 A JPS61112938 A JP S61112938A JP 59235634 A JP59235634 A JP 59235634A JP 23563484 A JP23563484 A JP 23563484A JP S61112938 A JPS61112938 A JP S61112938A
Authority
JP
Japan
Prior art keywords
pressure
data
pressure sensor
compensation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59235634A
Other languages
Japanese (ja)
Inventor
Isao Takizawa
功 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP59235634A priority Critical patent/JPS61112938A/en
Publication of JPS61112938A publication Critical patent/JPS61112938A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/04Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges
    • G01L9/045Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges with electric temperature compensating means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

PURPOSE:To eliminate the necessity for providing a separate compensation table at every indivisual pressure sensor, in a compensation circuit for processing the detection output of a bridge circuit while converting the same to digital data, by mounting function for forming a compensation table for itself. CONSTITUTION:In order to impart compensation table forming function, pressure sensor units 10 are arranged in a test tank at the point of time when a manufacturing process was finished. A computer 25 issues an order to a temp./pressure controller 24 to variously change the temp. and pressure in the test tank 21 and supplies reference data BD showing the accurate temp. and pressure in the test tank 21 to each pressure sensor unit 10 through a terminal 16. Each of the pressure sensor units 10 has pressure data correcting function and corrects pressure data PD containing an error on the basis of the tables TB1, TB2 in memory 18c when actual pressure is measured and outputs the same as accurate pressure data LPD containing no error.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体圧力センサの出力に温度補償、非直
線性補償、零点オフセット補償等を施す補償回路に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a compensation circuit that performs temperature compensation, nonlinearity compensation, zero point offset compensation, etc. on the output of a semiconductor pressure sensor.

〔従来技術〕[Prior art]

周知のように、半導体圧力センサは、例えばn型シリコ
ンからなるダイヤフラム上に、4個のP型検出抵抗を拡
散あるいはイオン打込み技術によって形成し、これらの
検出抵抗をブリッジ接続して被測定圧力に対応する検出
電圧を得るようにしたものである。
As is well known, a semiconductor pressure sensor has four P-type detection resistors formed by diffusion or ion implantation technology on a diaphragm made of, for example, n-type silicon, and these detection resistors are bridge-connected to respond to the pressure to be measured. A corresponding detection voltage is obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、この半導体圧力センサの検出電圧には、温度
依存性、非直線性等が存在し、したがって、高精度の圧
力検出を行う場合は、温度補償、非11線性補償等が不
可欠である。
By the way, the detection voltage of this semiconductor pressure sensor has temperature dependence, non-linearity, etc. Therefore, when performing high-precision pressure detection, temperature compensation, non-eleven linearity compensation, etc. are essential.

従来、これらの補償を行う方法としては、例えば第7図
に示すように補償抵抗RPI、RP2゜ROを付加する
方法、あるいは、第8図に示すように、ブリッジ回路の
出力に演纂増幅a1,2、サーミスタ3等を挿入して補
償を行う方法等が知られている。なお、これらの図にお
いてR1−R4はダイヤフラムに形成ばれた検出抵抗、
Aは定電流源である。しかしながら、これらの方法にあ
っては量産性が悪い、高精度の補償がむずかしい等の欠
点があった。
Conventionally, methods for making these compensations include, for example, adding compensation resistors RPI and RP2°RO as shown in FIG. 7, or adding deductive amplification a1 to the output of the bridge circuit as shown in FIG. , 2, a method of inserting a thermistor 3, etc. to perform compensation are known. In addition, in these figures, R1-R4 are detection resistors formed on the diaphragm,
A is a constant current source. However, these methods have drawbacks such as poor mass productivity and difficulty in achieving high-precision compensation.

そこで、これらの欠点を除去する方法として、ブリッジ
回路の出力をディジタルデータに変換し、このディジタ
ルデータを、予め補償回路内に設けた補償用テーブル内
のデータを用いて補正する方法が考えられる。しかしな
がら、この方法には次の問題がある。すなわち、個々の
圧力センサは各々、実装時における種々の要因によって
出力特性が異なってくる。例えばチップを基台に接着す
る時の接着剤の種類によっても出力特性が異なってくる
。このため、上記補償方法の場合、個々の圧力センサ毎
に補償用テーブルを変えなければならないため、個々の
圧力センサに対する補償用テーブルを作成するため、デ
ータ処理時間が膨大になるという問題がある。
Therefore, as a method to eliminate these drawbacks, a method can be considered that converts the output of the bridge circuit into digital data and corrects this digital data using data in a compensation table provided in advance in the compensation circuit. However, this method has the following problems. That is, the output characteristics of individual pressure sensors differ depending on various factors at the time of mounting. For example, the output characteristics vary depending on the type of adhesive used to bond the chip to the base. For this reason, in the case of the above compensation method, the compensation table must be changed for each individual pressure sensor, so there is a problem in that the data processing time is enormous in order to create the compensation table for each pressure sensor.

この発明は上述した各問題点に鑑みてなされたもので、
その目的は1固々の圧力センサ毎に別個の補償用テーブ
ルを設ける必要がなく、しかも、量産性に優れ、力・つ
、極めて高n度の補償を行うことができ、半導体圧力セ
ンサと共に、シリコン単結晶上に、モノリシック形成す
るに最適な半導体圧力センサの補償回路を提供すること
にある。
This invention was made in view of the above-mentioned problems.
The purpose of this is to eliminate the need to provide a separate compensation table for each pressure sensor, have excellent mass productivity, and be able to perform extremely high-degree compensation for force and force, as well as semiconductor pressure sensors. The object of the present invention is to provide a compensation circuit for a semiconductor pressure sensor that is optimal for monolithic formation on a silicon single crystal.

〔問題を解決するための手段〕[Means to solve the problem]

この発明は、ブリッジ回路の検出出力をディジタルデー
タに変換して処理する補償回路において、該補償回路に
、補償用テーブルを自ら作成する機能を具備させたもの
である。
The present invention provides a compensation circuit that converts the detection output of a bridge circuit into digital data for processing, and is provided with a function of creating a compensation table by itself.

〔実施例〕〔Example〕

第1図は、半導体圧力センサ8と、この発明の一実施例
による補償回路9とから構成きれる圧力センサユニット
10の構成を示すブロック図である。この図において、
半導体圧力センサ8の検出出力PVHA[)C(アナロ
グ/ディジタル変換′6)12によってディジタル圧力
データPDKim#れ、CPTJ(中央処理装置)13
へ供給される。
FIG. 1 is a block diagram showing the configuration of a pressure sensor unit 10 consisting of a semiconductor pressure sensor 8 and a compensation circuit 9 according to an embodiment of the present invention. In this diagram,
Digital pressure data PDKim# is generated by the detection output PVHA[)C (analog/digital conversion '6) 12 of the semiconductor pressure sensor 8, and the CPTJ (central processing unit) 13
supplied to

なお、Aは定電流源である。14は、圧力センサ11の
近傍に設けられた温度センサであり、その出力#’!A
DC15によってディジタル温度データTDに変換され
、CPU13へ供給される。16は後述する基準データ
BDが供給される端子であり、この端子16へ供給され
た基準データBDはインターフェイス回路17を介して
CPU13へ供給される。18は記憶回路であり、CP
U13において用いられるプログラムが記憶されている
ROM18 aと、データ記憶用のRAM1sbと、不
揮発性の書込み可能メモ’) 18 oとから構成され
ている。
Note that A is a constant current source. 14 is a temperature sensor provided near the pressure sensor 11, and its output #'! A
The data is converted into digital temperature data TD by the DC 15 and supplied to the CPU 13. 16 is a terminal to which reference data BD, which will be described later, is supplied, and the reference data BD supplied to this terminal 16 is supplied to the CPU 13 via an interface circuit 17. 18 is a memory circuit, CP
It is composed of a ROM 18a in which programs used in U13 are stored, a RAM 1sb for data storage, and a nonvolatile writable memo 18o.

次に1第1図に示す圧力センサユニット10の動作を説
明する。この圧力センサユニツ)Hl(11補償用テー
ブルをメモIJ 18 o内に作成する機能、(2)メ
モリ18c内に作成した補償用テーブルを用いて圧力デ
ータPDの補正を行い、正しい圧力データLPDとして
出力する機能を共に有している。
Next, the operation of the pressure sensor unit 10 shown in FIG. 1 will be explained. This pressure sensor unit) Hl (11 function to create a compensation table in the memo IJ 18 o, (2) corrects the pressure data PD using the compensation table created in the memory 18c, and outputs it as correct pressure data LPD. Both have the function of

以下、これらの機能を順次説明する。Below, these functions will be explained one by one.

(1)補償用テーブル作成機能 第1図に示す圧力センサユニット10Fi、製造工程が
終了した時点で、第2図に示す試験槽21円に設置され
る。試験槽21は、内部の温度および圧力を一定に保つ
ことができるようになっており、また、内部に高精度の
温度センサ22および圧力センサ23が各々設置されて
いる。温度/圧力コントローラ24Fi、試験[11!
11内の温度および圧力を制御するもので、コンピュー
タ25からの指令に応じて上記制御を行う。コンピュー
タ25は、温度/圧力コントローラ24へ指令を出すと
とkよって試験槽21内の温度および圧力を種々変化さ
せると共に1試験槽21内部の正確な温度および圧力を
示す基準データBDを各圧力センサユニット10へ端子
16を介して供給する。
(1) Compensation table creation function When the manufacturing process of the pressure sensor unit 10Fi shown in FIG. 1 is completed, it is installed in the test tank 21 shown in FIG. 2. The test chamber 21 is capable of keeping the internal temperature and pressure constant, and a highly accurate temperature sensor 22 and pressure sensor 23 are installed inside the test chamber 21, respectively. Temperature/Pressure Controller 24Fi, Test [11!
It controls the temperature and pressure inside the computer 25, and performs the above control in accordance with instructions from the computer 25. The computer 25 issues commands to the temperature/pressure controller 24 to variously change the temperature and pressure inside the test chamber 21, and transmits reference data BD indicating accurate temperature and pressure inside the test chamber 21 to each pressure sensor. The unit 10 is supplied via a terminal 16.

しかして、各圧力センサユニット10における補償用テ
ーブルの作成は、例えば次の過程によって行われる。ま
ず、コンピュータ25は、試験槽21内の圧力を一定値
(例えば1〜)に設定する。
Therefore, the creation of the compensation table in each pressure sensor unit 10 is performed, for example, by the following process. First, the computer 25 sets the pressure within the test tank 21 to a constant value (for example, 1 or more).

そして、この圧カ一定の状態において、試験槽21内の
温度を一10°Cとするよう温度/圧力コントローラ2
4へ指令を出す。次に、試験41I21内の温度が一1
0°Cに達した時点で圧力センサユニット10へ一10
℃を示す基準温度データBDtおよび1〜を示す基準圧
力データBDpを各々出力する。これらの基準データ1
3DtおよびBDpが圧力センサユニット10の端子1
6(第1図)を介してC’PU13へ供給されると、C
PU13がこれらの基準データBDtおよびBDpを各
々RAM18b内に書込み、次いで、その時点において
ADC12から出力されている圧力データPDおよびλ
DC15から出力されている温度データTDを各々RA
MI Bb内に書込む。
Then, in this state of constant pressure, the temperature/pressure controller 2 is set so that the temperature inside the test chamber 21 is -10°C
Issue a command to 4. Next, the temperature inside test 41I21 is 11
When the temperature reaches 0°C, the pressure sensor unit 10 is
Reference temperature data BDt indicating °C and reference pressure data BDp indicating 1 to 1 are output, respectively. These standard data 1
3Dt and BDp are terminals 1 of the pressure sensor unit 10
6 (FIG. 1) to the C'PU 13.
The PU 13 writes these reference data BDt and BDp into the RAM 18b, and then writes the pressure data PD and λ output from the ADC 12 at that time.
Each temperature data TD output from DC15 is RA
Write in MI Bb.

次に、コンピュータ25は、試験槽21内の温度を一5
℃とするよう温度/圧力コントローラ24へ指令を出し
、試験[21内の温度が一5℃になった時点で、−5℃
を示す基準温度データBDtおよび1¥1を示す基準圧
力データBDpを各々出力する。これらの基準データB
DtおよびBDpが出力されると、前述した場合と同様
にCP U13がこれらのデータBDt、BDpを各々
RA M2B5)内に誉込み、次いで、その時点におけ
る圧力データT’Dおよび温度データTDをRAM18
b内に書込む。以下同様に、コンピュータ25は、試験
槽21内の温度を0℃、+5℃、+10°C・・・と順
次変化させると共に、基準データBT)t。
Next, the computer 25 lowers the temperature inside the test chamber 21 to 15.
A command is issued to the temperature/pressure controller 24 to set the temperature to -5°C.
Reference temperature data BDt indicating 1 yen and reference pressure data BDp indicating 1 yen are output, respectively. These standard data B
When Dt and BDp are output, the CPU 13 stores these data BDt and BDp in the RAM 2B5) as in the case described above, and then stores the pressure data T'D and temperature data TD at that point in the RAM 18.
Write in b. Similarly, the computer 25 sequentially changes the temperature inside the test chamber 21 to 0° C., +5° C., +10° C., etc., and sets the reference data BT)t.

BDI)を順次出力する。BDI) are output sequentially.

また、CPTJ13は、基準データ13Dt、13Dp
が供給ばれる毎にRAMI B b内に誓込み、また、
圧力データPD、温度データTDをRAM18b内に書
込む。
In addition, CPTJ13 has reference data 13Dt, 13Dp.
is pledged in RAMI B b each time it is supplied, and
Write pressure data PD and temperature data TD into RAM 18b.

以上の過程により、RAM18b内に例えば第3図に示
す表E1の部分EIILが作成される。次に、CPUI
 3は、この表E1の部分EIILが作成された時点で
、同表E1における誤差平均6NGを算出する。すなわ
ち、−10°Cにおける圧力測定誤差0.05と一5℃
における圧力測定誤差α03との平均値として[104
を求め、他の誤差平均値Gも同様にして求める。そして
、求めた誤差平均値Gを表E1に書込む。こうして、表
E1が完成する。次に、CPUI 3は、この表E1に
おける温度データTDおよび誤差平均値Gに基づいて第
4図に示す温度補償テーブルTBIをメモリ180内に
作成する。この温度補償テーブルTBIの門番は次のこ
とを表わしている(第1行目参照)。
Through the above process, for example, the partial EIIL of the table E1 shown in FIG. 3 is created in the RAM 18b. Next, the CPUI
3 calculates the average error 6NG in the table E1 at the time when the partial EIIL of the table E1 is created. That is, the pressure measurement error at -10°C is 0.05 and -5°C.
[104
is obtained, and other error average values G are obtained in the same manner. Then, the calculated error average value G is written in table E1. In this way, table E1 is completed. Next, the CPU 3 creates a temperature compensation table TBI shown in FIG. 4 in the memory 180 based on the temperature data TD and the average error value G in the table E1. The gatekeeper of this temperature compensation table TBI represents the following (see the first line).

「周囲温度が−9,5℃〜−4,6℃の範囲においては
杓子004〜の圧力測定誤差が発生する。」したがって
、周囲温度が一95℃〜−4.6℃の範囲内の場合は、
測定した圧力を示す圧力データPT)からα04を減算
すれば周圧温度の影響を受けない圧力データを得ること
ができる。第1行目以外についても同様である。
"When the ambient temperature is in the range of -9.5℃ to -4.6℃, a pressure measurement error of 004~ will occur." Therefore, if the ambient temperature is in the range of 195℃ to -4.6℃ teeth,
By subtracting α04 from the pressure data (PT) indicating the measured pressure, pressure data that is not affected by the circumferential pressure temperature can be obtained. The same applies to lines other than the first line.

次に、非直線性補償テーブルの作成過程について説明す
る。この場合、コンピュータ25は試験N21内の温度
を一定(例えば20℃)に保ち、圧力を種々変化上せる
。すなわち、コンピュータ25は、まず試験N21内の
圧力を0.5¥1とするよう温度/圧力コントローラ2
4へ指令を出し、試験P#21内の圧力がa5〜になっ
た時点で0.5すを示す基準圧力データBnpを出力す
る。CPU13はこの基準圧力データBDpをRAM 
18 b内に書込み、次いでその時点における圧力デー
タPDをRAM18b内に書込む。以下同様に、コンピ
ュータ25#″s、試験槽21内の圧力を1野、1.5
〜・・・に順次設定して基準圧力データBDpを順次出
力し、また、CPTJ13は、供給される基準圧力デー
タBDpを順次1NAM18b内に書込むと共に、この
書込みに対応して圧力データPDをRAM18b内に書
込む。こうして、第5図に示す表E2の部分E2aがR
AM18b内に作成される。次にCPTJxaは、表E
2の部分E21Lが作成された時点で、同表E2におけ
る誤差平均値Hな算出する。すなわち、圧力[L55に
おける圧力測定誤差α口2と、圧力1すにおける圧力測
定誤差α03との平均値としてα025を求め、他の誤
差平均値)■も同様にして求める。そして、求めた各誤
差平均値Hを表E2に書込む。こうして表E2が完成す
る。次にCPTJ13は、この表E2に基づいて第6図
に示す非直線性補償テーブルTB2をメモリ18o内に
作成する。この非iI!m性テーブルTB2の内存ハ次
のことを表わしている(第1行目参照)。「測定した圧
力がα5〜1.0〜の場合は、約αo 25Ytの非直
線性誤差が発生する。」したがって、被測定圧を示す圧
力データPD+が0.5〜1.0〜の範囲内の場合は、
同圧力データPDから0.025を減算すれば正しい圧
力データを得ることができる。
Next, the process of creating a nonlinearity compensation table will be explained. In this case, the computer 25 keeps the temperature within the test N21 constant (eg, 20° C.) and increases the pressure in various ways. That is, the computer 25 first controls the temperature/pressure controller 2 to set the pressure in the test N21 to 0.5 yen.
4, and when the pressure in test P#21 reaches a5~, it outputs reference pressure data Bnp indicating 0.5. The CPU 13 stores this reference pressure data BDp in the RAM.
18b, and then the pressure data PD at that point is written into the RAM 18b. Similarly, the computer 25#''s sets the pressure in the test chamber 21 to 1 and 1.5.
...... and sequentially outputs the reference pressure data BDp, and the CPTJ 13 sequentially writes the supplied reference pressure data BDp into the 1NAM 18b, and correspondingly writes the pressure data PD into the RAM 18b. Write inside. In this way, the portion E2a of the table E2 shown in FIG.
Created in AM18b. Next, CPTJxa
At the time when part E21L of Table 2 is created, the average error value H in table E2 is calculated. That is, α025 is determined as the average value of pressure measurement error α02 at pressure L55 and pressure measurement error α03 at pressure 1, and other error average values (2) are determined in the same manner. Then, each calculated error average value H is written in Table E2. Table E2 is thus completed. Next, the CPTJ 13 creates a nonlinearity compensation table TB2 shown in FIG. 6 in the memory 18o based on this table E2. This non-iI! The existence of m-characteristic table TB2 represents the following (see the first line). “If the measured pressure is α5~1.0~, a nonlinear error of about αo25Yt will occur.” Therefore, the pressure data PD+ indicating the measured pressure is within the range of 0.5~1.0~ In the case of,
Correct pressure data can be obtained by subtracting 0.025 from the same pressure data PD.

以上が補償テーブルTBI、TB2の作成過程である。The above is the process of creating the compensation tables TBI and TB2.

(2)  圧力データ補正機能 第1図に示す圧力センサユニッ)10け、実際の圧力測
定時において、誤差を含む圧力データPDをメモリ18
a内のテーブルTBI、TB2に基づいて補正し、岨差
のない、正しい圧力データLPDとして出力する。すな
わち、実際の圧力測定時においては、CPTJ13・が
まず温度データTDを読込む。次いで第4図に示すテー
ブルTBIK基づいて、温度データTDが含まれる温度
範囲を検出し、次に、検出した温度範囲に対応する誤差
平均値GをテーブルTBIから読出す。次に、ADCl
 2から出力されている圧力データPDから誤差平均値
Gを加減算することKより、温度補償済の圧力データP
DIを得る。次に、第6図に示すテーブルTB2に基づ
いて圧力データPDIが属する圧力範囲を検出し、次い
で、同圧力範囲に対応する誤差平均値I]を、テーブル
TB2から読出す。次に・圧力データPT)1から誤差
平均値I−1を加減算することにより、正しい圧力デー
タT、 P Dを得る。
(2) Pressure data correction function The pressure sensor unit (shown in Figure 1) stores pressure data PD including errors in the memory 18 during actual pressure measurement.
It is corrected based on the tables TBI and TB2 in a and output as correct pressure data LPD with no difference. That is, during actual pressure measurement, the CPTJ 13 first reads the temperature data TD. Next, the temperature range in which the temperature data TD is included is detected based on the table TBIK shown in FIG. 4, and then the error average value G corresponding to the detected temperature range is read out from the table TBI. Next, ADCl
By adding and subtracting the average error value G from the pressure data PD output from 2, the temperature-compensated pressure data P is obtained.
Get DI. Next, the pressure range to which the pressure data PDI belongs is detected based on the table TB2 shown in FIG. 6, and then the error average value I corresponding to the same pressure range is read out from the table TB2. Next, correct pressure data T and PD are obtained by adding and subtracting the error average value I-1 from the pressure data PT)1.

以上が第1Mに示す実施例の詳細である。なお上記実施
例において、第4図に示す閥度@囲および第6図に示す
圧力範囲をさらにrmかくすれば、より正確な温度補償
、非直線補償を行うことができる。
The above are the details of the embodiment shown in No. 1M. In the above embodiment, if the temperature range shown in FIG. 4 and the pressure range shown in FIG. 6 are further increased by rm, more accurate temperature compensation and non-linear compensation can be performed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明による補償回路は、補償
テーブルを作成する機能ケ具備しているので、予め個々
の圧力センサ毎に別個の補償テーブルを設ける必要がな
く、しかも′!を産性に優れ、かつ、極めて高精度の補
償を行い得る効果がある。
As explained above, since the compensation circuit according to the present invention has the function of creating a compensation table, there is no need to prepare a separate compensation table for each pressure sensor in advance, and moreover, it is not necessary to create a separate compensation table for each pressure sensor. This has the effect of providing excellent productivity and making it possible to perform compensation with extremely high precision.

また、センサ出力に経年変化が生じた時にも、個々のセ
ンサの補償テーブルを作り直すことが容易であるから、
精度の維持がは力為り易い。
In addition, even when sensor output changes over time, it is easy to recreate the compensation table for each individual sensor.
Maintaining accuracy is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による補償回路9と、圧力
センサ8とから構成される圧力センサユニット10の構
成を示すブロック図、第2図は補償回路9内のメモリ1
80内に補償用テーブルを作成する際の周辺装置の構成
を示すブロック図、第3図は温度補償テーブルTBIを
作成する際にRAM18b内に作られる表E1を示す図
、第4図は温度補償テーブルTBIを示す図、第5図は
非直線性補償デープルTB2を作成する際にRM418
b内に作られる表E2を示す図、第6図に非Im[練性
補償テーブルTB2を示す図、第7図、第8図は各々従
来の温度および非直線補償回路の構成例を示す回路図で
ある。 12・・・・・・アナログ/ディジタル変換器(第1の
変換手段)、13・・・・・・中央処理装置、14・・
・・・・温肝センサ(測温手段)、15・・・・・・ア
ナログ/デジタル変換器(第2の変換手段)、TBI・
・・・・・温度補償テーブル、TB2・・・・・・非直
線性補償テーブル。
FIG. 1 is a block diagram showing the configuration of a pressure sensor unit 10 comprising a compensation circuit 9 and a pressure sensor 8 according to an embodiment of the present invention, and FIG.
80 is a block diagram showing the configuration of peripheral devices when creating a compensation table in 80. FIG. 3 is a diagram showing table E1 created in RAM 18b when creating a temperature compensation table TBI. FIG. A diagram showing the table TBI, Figure 5 shows the RM418 when creating the non-linearity compensation daple TB2.
FIG. 6 is a diagram showing a non-Im [performance compensation table TB2], and FIGS. 7 and 8 are circuits each showing a configuration example of a conventional temperature and nonlinear compensation circuit. It is a diagram. 12...Analog/digital converter (first conversion means), 13...Central processing unit, 14...
... Liver temperature sensor (temperature measurement means), 15 ... Analog/digital converter (second conversion means), TBI・
...Temperature compensation table, TB2...Nonlinearity compensation table.

Claims (1)

【特許請求の範囲】 (a)半導体圧力センサから出力されるアナログ信号を
ディジタルデータに変換する第1の変換手段と、(b)
前記半導体圧力センサに近接して設けられた測温手段と
、 (c)前記測温手段の出力をディジタルデータに変換す
る第2の変換手段と、 (d)外部から供給される基準データと、前記第1、第
2の変換手段の各出力とを比較し、この比較結果に基づ
いて補償テーブルを作成する手段と、(e)前記第1の
変換手段の出力に、前記補償テーブル内のデータに対応
する補償を行つて出力する手段と、 を具備してなる半導体圧力センサの補償回路。
[Claims] (a) first conversion means for converting an analog signal output from a semiconductor pressure sensor into digital data; (b)
a temperature measuring means provided close to the semiconductor pressure sensor; (c) a second converting means for converting the output of the temperature measuring means into digital data; (d) reference data supplied from the outside; (e) means for comparing each output of the first and second converting means and creating a compensation table based on the comparison result; and (e) adding data in the compensation table to the output of the first converting means. A compensation circuit for a semiconductor pressure sensor, comprising: a means for performing compensation corresponding to and outputting the result; and a compensation circuit for a semiconductor pressure sensor.
JP59235634A 1984-11-08 1984-11-08 Compensation circuit of semiconductive pressure sensor Pending JPS61112938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59235634A JPS61112938A (en) 1984-11-08 1984-11-08 Compensation circuit of semiconductive pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59235634A JPS61112938A (en) 1984-11-08 1984-11-08 Compensation circuit of semiconductive pressure sensor

Publications (1)

Publication Number Publication Date
JPS61112938A true JPS61112938A (en) 1986-05-30

Family

ID=16988923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59235634A Pending JPS61112938A (en) 1984-11-08 1984-11-08 Compensation circuit of semiconductive pressure sensor

Country Status (1)

Country Link
JP (1) JPS61112938A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372538U (en) * 1986-10-29 1988-05-14
JPH04265831A (en) * 1990-10-25 1992-09-22 Becton Dickinson & Co Apparatus and method for compensating for temperature of pressure transducer at catheter tip
JPH06331647A (en) * 1993-05-25 1994-12-02 Nec Corp Semiconductor acceleration sensor and manufacture thereof
WO2000063750A1 (en) * 1999-04-19 2000-10-26 Seiko Instruments Inc. Sensor clock, data input system of sensor clock, data input method of sensor clock and computer-readable recording medium in which program for making computer execute the method is recorded
JP2009025188A (en) * 2007-07-20 2009-02-05 Fujikura Ltd Temperature compensation method of physical quantity and temperature compensation type optical fiber sensor
US7528708B2 (en) 2004-10-13 2009-05-05 Nec Electronics Corporation Variation detection device, data communication apparatus, and method of detecting variation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122775A (en) * 1977-03-29 1978-10-26 Siemens Ag Gas pressure monitor
JPS5790107A (en) * 1980-11-26 1982-06-04 Toyoda Mach Works Ltd Method for compensating temperature in semiconductor converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122775A (en) * 1977-03-29 1978-10-26 Siemens Ag Gas pressure monitor
JPS5790107A (en) * 1980-11-26 1982-06-04 Toyoda Mach Works Ltd Method for compensating temperature in semiconductor converter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372538U (en) * 1986-10-29 1988-05-14
JPH04265831A (en) * 1990-10-25 1992-09-22 Becton Dickinson & Co Apparatus and method for compensating for temperature of pressure transducer at catheter tip
JPH06331647A (en) * 1993-05-25 1994-12-02 Nec Corp Semiconductor acceleration sensor and manufacture thereof
WO2000063750A1 (en) * 1999-04-19 2000-10-26 Seiko Instruments Inc. Sensor clock, data input system of sensor clock, data input method of sensor clock and computer-readable recording medium in which program for making computer execute the method is recorded
US7528708B2 (en) 2004-10-13 2009-05-05 Nec Electronics Corporation Variation detection device, data communication apparatus, and method of detecting variation
JP2009025188A (en) * 2007-07-20 2009-02-05 Fujikura Ltd Temperature compensation method of physical quantity and temperature compensation type optical fiber sensor

Similar Documents

Publication Publication Date Title
JP2001527648A (en) System and method for accuracy compensation of non-linear offset and sensitivity change of a sensor due to temperature change
US20170074740A1 (en) Reduction of non-linearity errors in automotive pressure sensors
JPS5815982B2 (en) Analog ↓-digital conversion circuit
JPS61112938A (en) Compensation circuit of semiconductive pressure sensor
JPH08298462A (en) Semiconductor device
JPS6197543A (en) Compensation circuit for semiconductor pressure sensor
JP2000241202A (en) Sensor device
JPH04305168A (en) Method for correcting error and measuring quantity of electricity
JP2973048B2 (en) Temperature sensor linearization processing method
JPS63305203A (en) Bridge output processing circuit in strain detector
JP2018119972A (en) Physical quantity sensor device
KR102694941B1 (en) Error compensation device for temperature sensor
JPH04155233A (en) Correction of temperature characteristic for pressure sensor
JPS61171226A (en) A/d converter
JPS6041311A (en) Amplifier device with automatic correcting function
JPH07162295A (en) Digital temperature compensating oscillator and its digital temperature compensating method
JP3060774B2 (en) Capacitance type alcohol concentration detector
JP2001308705A (en) Digital to analog converter and its conversion error reduction method
JPH02173534A (en) Temperature measuring instrument
JPS5863227A (en) Digital-analog converting circuit
JPS63121320A (en) Da converter with error correcting circuit
JP2021189109A (en) Sensor drive circuit
JPH01320825A (en) Correction type a/d converter
JP3042087B2 (en) Variable attenuator
JPH03282225A (en) Pressure measuring device