JPH0576876A - Treatment of waste water containing fluorine and manganese - Google Patents

Treatment of waste water containing fluorine and manganese

Info

Publication number
JPH0576876A
JPH0576876A JP16851391A JP16851391A JPH0576876A JP H0576876 A JPH0576876 A JP H0576876A JP 16851391 A JP16851391 A JP 16851391A JP 16851391 A JP16851391 A JP 16851391A JP H0576876 A JPH0576876 A JP H0576876A
Authority
JP
Japan
Prior art keywords
precipitate
tank
manganese
water
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16851391A
Other languages
Japanese (ja)
Inventor
Takayuki Takahashi
堅之 高橋
Hajime Negishi
一 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP16851391A priority Critical patent/JPH0576876A/en
Publication of JPH0576876A publication Critical patent/JPH0576876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To reduce the concns. of fluorine and manganese dissolved in waste water to regulation standard values of waste water by subjecting acidic waste water having component ions such as a fluorine ion, a manganese ion or the like dissolved therein to neutralization treatment to obtain a precipitate and holding the pH of a mixed suspension to 8.5-10. CONSTITUTION:Acidic raw water to be treated, the emulsion of slaked lime prepared in a dissolving tank 2 and the high concn. suspension refluxed from a sedimentation tank 3 are mixed and stirred in a neutralization tank 1. The addition amount of the slaked lime emulsion is set to an amount neutralizing the raw water to be treated to adjust the pH thereof 8.5-10. Subsequently, the mixed suspension is introduced into a flocculation tank 5 and the backwashing liquid in a sand filter tank 6 is injected in the tank 5 and a polymeric flocculant is further added to the tank 5 to flocculate a precipitate. Thereafter, the suspension is introduced into the sedimentation tank 3 to settle and concentrate the flocculated precipitate and overflow water is discharged. Next, the overflow water of the sedimentation tank 3 is introduced into the sand filter tank 6 to be filtered. As a result, the concns. of fluorine and manganese in water to be treated respectively become waste water regulation standard values or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、弗素、マンガン、およ
びその他の金属イオン等が溶存する酸性廃水(以下、処
理原水と称する)を処理し、弗素およびマンガンを除去
するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing fluorine and manganese by treating acidic wastewater (hereinafter referred to as treated raw water) in which fluorine, manganese and other metal ions are dissolved.

【0002】[0002]

【従来の技術】鉱山等から排出される廃水には比較的高
濃度の弗素およびマンガン等のイオンが溶存しているこ
とがあり、この場合には、これらイオンの濃度を廃水処
理により低減させる必要がある。
2. Description of the Related Art There are cases where relatively high concentrations of ions such as fluorine and manganese are dissolved in wastewater discharged from mines. In this case, it is necessary to reduce the concentration of these ions by treating the wastewater. There is.

【0003】このような廃水処理においては、従来よ
り、中和処理と呼称される方法が採られている。この中
和処理は、処理原水に消石灰を添加してpHを10以上
に維持しつつ、硫酸アルミニウムを併用して金属水酸化
物と弗化カルシウムの混合沈殿物を生成させ、濾過等の
方法を用いてこの混合沈澱物を除去することにより、排
出水中に溶存する弗素およびマンガンの濃度をそれぞれ
排水規制基準値である8mg/lおよび1mg/l以下
となるまで処理するものである。上記従来の廃水処理法
のフローシート図を図3に示す。
In such wastewater treatment, a method called neutralization treatment has been conventionally used. In this neutralization treatment, while adding slaked lime to the treated raw water to maintain the pH at 10 or more, aluminum sulfate is also used to produce a mixed precipitate of metal hydroxide and calcium fluoride, and a method such as filtration is used. By removing this mixed precipitate by using it, the concentration of fluorine and manganese dissolved in the discharged water is treated to be 8 mg / l and 1 mg / l or less, which are the drainage regulation standard values, respectively. A flow sheet diagram of the above conventional wastewater treatment method is shown in FIG.

【0004】また、前記処理原水に消石灰と前記硫酸ア
ルミニウムを加えて得た高濃度の沈殿物を含む懸濁液に
更に消石灰を添加した後、前記処理原水と混合攪拌して
混合懸濁液とし、この混合懸濁液を濾過するHDS法と
呼称される方法も知られている。HDS法の場合、前記
沈澱物を再度アルカリ処理することにより、沈澱物粒子
の表面に新たに弗素が吸着されるという利点がある。
Further, slaked lime is further added to a suspension containing a high-concentration precipitate obtained by adding slaked lime and aluminum sulphate to the treated raw water, and then mixed and stirred with the treated raw water to form a mixed suspension. A method called an HDS method for filtering this mixed suspension is also known. In the case of the HDS method, there is an advantage that fluorine is newly adsorbed on the surface of the precipitate particles by subjecting the precipitate to the alkali treatment again.

【0005】更に、中和処理の応用によるマンガン含有
廃水の処理方法として、特公昭61−156号に開示さ
れている方法がある。これは、石灰石等の中和剤とマン
ガンとを混合して両者の結合体を得、これを前記処理原
水に添加して前記結合体と前記処理原水中のマンガンと
の混合懸濁液とし、この混合懸濁液を濾過するものであ
る。
Further, as a method for treating manganese-containing wastewater by applying the neutralization treatment, there is a method disclosed in Japanese Patent Publication No. 61-156. This is a mixture of a neutralizing agent such as limestone and manganese to obtain a combined body of both, which is added to the treated raw water to form a mixed suspension of the combined body and manganese in the treated raw water, The mixed suspension is filtered.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記の
中和処理方法においては、生成される金属水酸化物と弗
化カルシウムの混合沈殿物が極めて微細なため、沈降圧
密による濃縮が困難で、しかも、沈殿物の粘性が高いの
で、その脱水処理が困難であるという問題があった。
However, in the above-mentioned neutralization treatment method, since the mixed precipitate of metal hydroxide and calcium fluoride produced is extremely fine, it is difficult to concentrate by sedimentation consolidation, and However, there is a problem that the dehydration treatment is difficult because the viscosity of the precipitate is high.

【0007】一方、前記HDS法において、沈降分離に
より高濃度に濃縮された懸濁液を処理原水に還流させ、
更に中和処理を行う場合、硫酸アルミニウムの添加等を
せずに排出水中に溶存する弗素およびマンガンの濃度を
ともに上記排水規制基準値以下とするためには、前記中
和処理工程におけるpHを8.5ないし10の範囲に維
持する必要がある。
On the other hand, in the HDS method, the suspension concentrated to a high concentration by sedimentation is refluxed to the treated raw water,
In the case where the neutralization treatment is further performed, the pH in the neutralization treatment step is set to 8 in order to keep both the concentrations of fluorine and manganese dissolved in the discharged water below the drainage regulation standard value without adding aluminum sulfate. It should be maintained in the range of 0.5 to 10.

【0008】しかしながら、前記HDS法による中和処
理では、高濃度沈殿物の懸濁液に消石灰を添加するた
め、前記懸濁液がpH=10.5程度の高アルカリ性と
なり、前記高濃度沈殿物に含有される弗化カルシウムの
一部が再溶解し、前記懸濁液中の弗素イオン濃度が増加
するという問題があった。その結果、前記混合懸濁液の
中和反応においても、これらの弗素イオンを弗化カルシ
ウムとして固定することは極めて困難で、硫酸アルミニ
ウムの添加あるいは活性炭処理が不可欠となり、ランニ
ングコストの上昇を招いていた。また、沈降圧密による
沈殿物の濃縮も困難であった。
[0008] However, in the neutralization treatment by the HDS method, since slaked lime is added to the suspension of high-concentration precipitate, the suspension becomes highly alkaline with a pH of about 10.5, and the high-concentration precipitate There is a problem that part of the calcium fluoride contained in the solution is redissolved and the concentration of fluorine ions in the suspension increases. As a result, even in the neutralization reaction of the mixed suspension, it is extremely difficult to fix these fluorine ions as calcium fluoride, and the addition of aluminum sulfate or the treatment with activated carbon is indispensable, which causes an increase in running cost. It was It was also difficult to concentrate the precipitate by settling consolidation.

【0009】更に、前記処理原水への消石灰の添加量を
減少し、前記懸濁液中のpHを低下させた場合には、弗
素の沈澱形成は比較的容易となるものの、マンガンが沈
澱を形成しなくなるという問題があった。
Further, when the amount of slaked lime added to the treated raw water is reduced and the pH of the suspension is lowered, the precipitation of fluorine becomes relatively easy, but manganese forms a precipitate. There was a problem that it would stop.

【0010】なお、マンガンと中和剤との結合体を前記
処理原水に添加する方法においては、予め中和剤にマン
ガンを添加する必要があるため、処理に要する経費が増
大する他、弗素の処理効率が相対的に低いという問題が
あった。
In addition, in the method of adding the combination of manganese and the neutralizing agent to the raw water for treatment, it is necessary to add manganese to the neutralizing agent in advance. There was a problem that the processing efficiency was relatively low.

【0011】本発明は、上記事情に鑑みてなされたもの
で、弗素およびマンガン等の成分イオンを溶存する酸性
廃水の中和処理において、高濃度で脱水性に優れた沈殿
物を得るとともに、反応処理条件の異なる弗素とマンガ
ンを上記pH条件下において処理することにより、排出
水中に溶存する弗素およびマンガンの濃度をともに排水
上のせ規制基準値以下とする廃水処理法を提供すること
を課題とする。
The present invention has been made in view of the above circumstances, and in the neutralization treatment of acidic wastewater in which component ions such as fluorine and manganese are dissolved, a precipitate having a high concentration and excellent in dehydration property is obtained, and the reaction is performed. An object of the present invention is to provide a wastewater treatment method in which fluorine and manganese under different treatment conditions are treated under the above-mentioned pH conditions so that the concentrations of fluorine and manganese dissolved in the discharged water are both below the regulation standard value on the wastewater. ..

【課題を解決するための手段】[Means for Solving the Problems]

【0012】上記課題を解決するため、本発明に係る弗
素およびマンガン含有廃水の処理方法では、
In order to solve the above problems, the method for treating wastewater containing fluorine and manganese according to the present invention comprises:

【0013】前記廃水および下記第3工程で生成する懸
濁液を消石灰とともに混合攪拌して混合懸濁液とする第
1工程と、前記第1工程で生成する混合懸濁液に少量の
凝集剤を添加し、沈殿物を沈降濃縮するとともに少量の
前記沈殿物を含んだ溢流水を排出させる第2工程と、前
記第2工程で濃縮された沈殿物を前記廃水に還流する第
3工程と、前記第2工程で排出された前記溢流水を濾過
装置に導入して微細な沈殿物を捕収し、清澄な処理水を
排出する第4工程と、上記第4工程で濾過装置の逆洗に
よって排出された微細な沈殿物を前記廃水に還流する第
5工程より構成されるとともに、
The waste water and the suspension produced in the following third step are mixed and stirred with slaked lime to form a mixed suspension, and a small amount of a coagulant is added to the mixed suspension produced in the first step. And a second step of condensing and concentrating the precipitate and discharging overflow water containing a small amount of the precipitate, and a third step of refluxing the precipitate concentrated in the second step to the wastewater, By introducing the overflow water discharged in the second step into a filter device to collect fine precipitates and discharging clear treated water, and by backwashing the filter device in the fourth step. In addition to the fifth step of refluxing the discharged fine precipitate to the wastewater,

【0014】前記第1工程における混合懸濁液のpHを
8.5ないし10の範囲に維持し、しかも前記第3工程
および第5工程において還流される沈澱物の質量を、前
記第2工程において生じた沈澱物の質量に対して50倍
以上とすることを特徴としている。
The pH of the mixed suspension in the first step is maintained in the range of 8.5 to 10, and the mass of the precipitate refluxed in the third step and the fifth step is adjusted to the mass in the second step. It is characterized by being 50 times or more the mass of the generated precipitate.

【0015】[0015]

【実施例】以下、本発明の実施例について、図1および
図2とともに説明する。ここで、図1は実施例の廃水処
理法のフローシート図、図2は図1のフローシートに相
当する廃水処理装置の系統図である。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2. Here, FIG. 1 is a flow sheet diagram of the waste water treatment method of the embodiment, and FIG. 2 is a system diagram of a waste water treatment apparatus corresponding to the flow sheet of FIG.

【0016】本実施例の廃水処理法においては、まず、
第1工程として、中和槽1内において、酸性の処理原水
と、溶解槽2内で調製された消石灰の乳液と、沈降槽3
から還流ポンプ4により還流される高濃度懸濁液とを混
合攪拌する。また、前記消石灰乳液の添加量は、前記処
理原水をpH=8.5ないし10に中和するに必要な量
とする。
In the wastewater treatment method of this embodiment, first,
As the first step, in the neutralization tank 1, acidic treated raw water, an emulsion of slaked lime prepared in the dissolution tank 2, and a sedimentation tank 3
To the high-concentration suspension which is refluxed by the reflux pump 4 from above. The amount of the slaked lime emulsion added is an amount necessary for neutralizing the treated raw water to pH = 8.5 to 10.

【0017】次いで、第2工程として、中和反応処理後
の混合懸濁液を凝集槽5に導入する。そして、下記第4
工程における砂濾過槽6の逆洗の結果流出する懸濁液を
注入し、更に、少量の高分子凝集剤を添加し、緩連攪拌
を行い前記懸濁液中の沈殿物を凝集させる。その後、前
記懸濁液を沈降槽3に導入して凝集沈殿物を沈降濃縮さ
せるとともに、一部微細化した少量の沈殿物を含む溢流
水を排出する。
Then, as a second step, the mixed suspension after the neutralization reaction treatment is introduced into the flocculation tank 5. And the following fourth
The suspension flowing out as a result of the backwashing of the sand filter tank 6 in the step is injected, and a small amount of the polymer coagulant is further added, and the mixture is slowly stirred to coagulate the precipitate in the suspension. After that, the suspension is introduced into the settling tank 3 to settle and concentrate the aggregated precipitate, and the overflow water containing a small amount of partially fined precipitate is discharged.

【0018】更に、第3工程として、沈降槽3で濃縮さ
れた沈殿物の高濃度懸濁液を沈降槽3の底部から連続的
に抜出して還流ポンプ4を用いて中和槽1に還流させ
る。なお、この高濃度懸濁液は中和処理工程が定常状態
になった段階でも60〜80g/lの濃度なので、通常
のスラリーポンプでも容易に流送が可能である。
Further, as a third step, a high-concentration suspension of the precipitate concentrated in the settling tank 3 is continuously withdrawn from the bottom of the settling tank 3 and is recirculated to the neutralization tank 1 using a reflux pump 4. .. Since this high-concentration suspension has a concentration of 60 to 80 g / l even when the neutralization treatment step is in a steady state, it can be easily sent by an ordinary slurry pump.

【0019】そして、第4工程として、沈降槽3から溢
流した排水を砂濾過槽6に導入して濾過後、必要であれ
ば薄硫酸を添加してpHの範囲が7〜8となるよう中和
処理を行う。その結果、これらの処理水における弗素お
よびマンガンの濃度は、それぞれ排水規制基準値である
弗素8mg/l以下、マンガン1mg/l以下となる。
この処理水は、一旦濾過水槽7に貯留された後排出され
る。
Then, in the fourth step, the waste water overflowed from the settling tank 3 is introduced into the sand filter tank 6 and filtered, and if necessary, diluted sulfuric acid is added to adjust the pH range to 7-8. Perform neutralization treatment. As a result, the concentrations of fluorine and manganese in the treated water are 8 mg / l or less of fluorine and 1 mg / l or less of manganese, which are the wastewater regulation standard values, respectively.
The treated water is temporarily stored in the filtered water tank 7 and then discharged.

【0020】一方、第5工程として、砂濾過槽6で固一
液分離され洗着した微細な沈殿物を濾過水槽7内の処理
水で定時に逆洗処理し、逆洗水をポンプ8を用いて凝集
槽5に導入し、中和槽1から流入する沈殿物を含む懸濁
液と混合する。
On the other hand, in the fifth step, the fine precipitate solid-liquid separated and washed in the sand filter tank 6 is backwashed with the treated water in the filtered water tank 7 at a fixed time, and the backwash water is pumped by the pump 8. It is introduced into the flocculation tank 5 and mixed with the suspension containing the precipitate flowing from the neutralization tank 1.

【0021】また、沈降槽3の底部から抜出された前記
高濃度懸濁液の一部は、中和槽1に還流されることな
く、順次堆積場9に堆積される。そして、その状態で適
宜乾燥されるか、または脱水機(図示せず)により脱水
された後廃棄される。
A part of the high-concentration suspension withdrawn from the bottom of the settling tank 3 is sequentially deposited in the deposition site 9 without being returned to the neutralization tank 1. Then, it is appropriately dried in that state, or dehydrated by a dehydrator (not shown) and then discarded.

【0022】なお、上記実施例の廃水処理法では、図3
に示すような従来型の排水処理設備に、沈降槽から高濃
度懸濁液を中和槽に還流するための還流ポンプと、微細
な沈殿物を含む沈降槽溢流水を濾過する砂濾過槽と、こ
れらを逆洗処理した後の沈殿物を含む逆洗水を凝集反応
槽に注入するためのポンプとを設置するだけでこれらの
廃水処理が可能となっている。
In the wastewater treatment method of the above embodiment, the method shown in FIG.
In the conventional wastewater treatment equipment as shown in, a reflux pump for refluxing the high-concentration suspension from the sedimentation tank to the neutralization tank, and a sand filtration tank for filtering the overflow water of the sedimentation tank containing fine precipitates. The wastewater can be treated by simply installing a pump for injecting the backwashing water containing the precipitate after the backwashing into the flocculation reaction tank.

【0023】〔実験例〕次に、実験例を示し、本発明の
効果について説明する。本発明による処理が定常的に持
続している条件のもとで、同一水質の処理原水を、以下
の二つの方法で処理し、その結果を比較した。
[Experimental Example] Next, an experimental example will be shown to describe the effect of the present invention. Under the condition that the treatment according to the present invention is constantly maintained, treated raw water of the same water quality was treated by the following two methods, and the results were compared.

【0024】(1)比較例の処理方法 処理原水に一定量の硫酸アルミニウムを添加し、更に消
石灰溶解液と混合して中和槽において一定時間攪拌後、
沈澱物を含む懸濁液に凝集剤を添加して凝集反応を行っ
た。更に、沈降槽で固一液分離を行った後、残留沈澱物
殿物を沈降槽底部から抜き出して堆積物に流送した。一
方、沈降槽からの溢流水は、必要に応じ薄硫酸を添加
し、所定のpH範囲内になるまで中和処理を行った後排
出した。
(1) Treatment Method of Comparative Example A fixed amount of aluminum sulfate was added to the treated raw water, which was further mixed with a slaked lime solution and stirred in a neutralization tank for a certain period of time.
An aggregating agent was added to the suspension containing the precipitate to carry out an aggregating reaction. Further, after solid-liquid separation was performed in the settling tank, the residual precipitate precipitate was extracted from the bottom of the settling tank and sent to the sediment. On the other hand, the overflow water from the settling tank was added with diluted sulfuric acid as needed, neutralized until it was within a predetermined pH range, and then discharged.

【0025】その結果、これらの廃水処理において生成
する沈殿物は、濃度が低く沈降槽での圧縮沈降による濃
度上昇がきわめて困難であり、最大10g/l程度であ
った。また、処理原水に硫酸バンドを添加し、更に、中
和槽の設定pHを調整したにもかかわらず、溢流水中の
溶存成分を弗素8mg/l以下、Mn1mg/l以下と
することはかなり困難をともなう状況であった。従っ
て、同方法においては、弗素およびマンガンの濃度を上
記基準値以下とするために、更なる処理を行う必要があ
った。なお、同方法において硫酸アルミニウムを併用し
ない場合には、溢流水の弗素濃度はかなり上昇する傾向
を示した。
As a result, the sediment produced in the treatment of these wastewaters had a low concentration and it was extremely difficult to increase the concentration by compression sedimentation in the sedimentation tank, and the maximum was about 10 g / l. In addition, it is quite difficult to reduce the dissolved components in the overflow water to fluorine 8 mg / l or less and Mn 1 mg / l or less in spite of adding a sulfuric acid band to the treated raw water and adjusting the set pH of the neutralization tank. It was a situation with. Therefore, in this method, it was necessary to perform further treatment in order to keep the concentrations of fluorine and manganese below the above-mentioned reference values. In the same method, when aluminum sulfate was not used together, the fluorine concentration in the overflow water tended to increase considerably.

【0026】(2)実施例の処理方法 処理原水に一定量の沈降槽濃縮沈殿物懸濁液を添加する
とともに消石灰溶解液と混合して中和槽において一定時
間攪拌後、これらの沈殿物を含む懸濁液を凝集槽で凝集
反応させ、更に、沈降槽において固一液分離を行い、残
留沈澱物は再度中和槽に流送した。
(2) Treatment Method of Example A fixed amount of sedimentation tank concentrated sediment suspension is added to the treated raw water and mixed with the slaked lime solution and stirred in the neutralization tank for a certain period of time. The suspension containing the liquid was subjected to a flocculation reaction in a flocculation tank, solid-liquid separation was further performed in the sedimentation tank, and the residual precipitate was sent again to the neutralization tank.

【0027】一方、沈降槽から溢流した排水は砂濾過槽
に導入して濾過し、必要に応じ薄硫酸を添加して所定の
pH範囲内になるまで中和処理を行った後排出した。
On the other hand, the waste water overflowed from the settling tank was introduced into a sand filter tank, filtered, and if necessary, diluted sulfuric acid was added to neutralize the solution until the pH was within a predetermined range and then discharged.

【0028】その結果、溢流水は少量の微細な沈殿物を
含み懸濁状を呈していたが、砂濾過槽による濾過処理を
行った結果、これらの濾過水の溶存成分は、弗素8mg
/l、マンガン1mg/lの基準値以下となっていた。
また、沈降槽において固一液分離されて得た残留沈殿物
の濃度は70g/lに増加しており、その脱水性も極め
て良好であった。
As a result, the overflow water contained a suspension containing a small amount of fine precipitates, but as a result of filtration treatment with a sand filtration tank, the dissolved component of the filtration water was 8 mg of fluorine.
/ L and manganese 1 mg / l were below the standard values.
Further, the concentration of the residual precipitate obtained by solid-liquid separation in the settling tank increased to 70 g / l, and its dehydrating property was also very good.

【0029】上記(1)(2)の実験に用いた処理原水
の水質を表1に示し、また、(1)の実験条件および測
定結果を表2に、(2)の実験条件および測定結果を表
2にそれぞれ示した。
The water quality of the treated raw water used in the experiments (1) and (2) is shown in Table 1, the experimental conditions and the measurement results of (1) are shown in Table 2, and the experimental conditions and the measurement results of (2). Are shown in Table 2, respectively.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】ここで、処理原水に添加した濃縮沈澱物の
濃度の単位はg/lとし、また、添加濃縮沈澱物の流量
比および処理原水に対する濃縮沈澱物の添加倍率はそれ
ぞれ以下の式に基づき算出した。
Here, the unit of the concentration of the concentrated precipitate added to the treated raw water is g / l, and the flow ratio of the added concentrated precipitate and the addition ratio of the concentrated precipitate to the treated raw water are based on the following formulas, respectively. Calculated.

【0034】 [0034]

【0035】 [0035]

【0036】以上の実験結果からわかる通り、本実施例
によれば、弗素とマンガンとをともに中和処理すること
が可能であり、しかも、硫酸アルミニウムを使用せず
に、排出水中の溶存成分を、目標値の弗素8mg/l以
下、マンガン1mg/l以下とすることが可能であっ
た。更に、沈降処理後の濃縮殿物濃度も70〜80g/
lと従来の処理方法に比較して格段に増加している他、
脱水性も良好で、ケーキ水分の低下によるスラッジの容
積減少にも効果のあることが認められた。
As can be seen from the above experimental results, according to this example, both fluorine and manganese can be neutralized, and the dissolved components in the discharged water can be removed without using aluminum sulfate. It was possible to reduce the target values of fluorine to 8 mg / l or less and manganese to 1 mg / l or less. Furthermore, the concentration of the concentrated precipitate after the sedimentation treatment is 70-80 g /
l, which is significantly higher than the conventional processing method,
The dewatering property was also good, and it was confirmed that it was effective in reducing the volume of sludge due to the decrease in cake water content.

【0037】[0037]

【発明の効果】以上説明した通り、本発明によれば、弗
素およびマンガン等の成分イオンを溶存する酸性廃水の
中和処理において、排出水中に溶存する弗素およびマン
ガンの濃度をともに排水規制基準値以下とすることが可
能で、更に、除去した弗素およびマンガンを、高濃度か
つ脱水性に優れた沈殿物として得ることができる。しか
も、処理に際し硫酸アルミニウムを使用する必要がない
ためランニングコストが低減され、また、従来の中和処
理設備に改造を施すだけで実現可能な発明であることか
ら、設備投資の低減にも効果がある。
As described above, according to the present invention, the concentration of fluorine and manganese dissolved in the discharged water are both the drainage regulation standard values in the neutralization treatment of the acidic wastewater in which the component ions such as fluorine and manganese are dissolved. It is possible to make the following, and further, the removed fluorine and manganese can be obtained as a precipitate having a high concentration and excellent dehydration property. Moreover, since it is not necessary to use aluminum sulfate in the treatment, the running cost is reduced, and since it is an invention that can be realized by simply modifying the conventional neutralization treatment facility, it is also effective in reducing the capital investment. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の廃水処理法の第一実施例のフローシー
ト図である。
FIG. 1 is a flow sheet diagram of a first embodiment of a wastewater treatment method of the present invention.

【図2】図1のフローシートに相当する廃水処理装置の
系統図である。
FIG. 2 is a system diagram of a wastewater treatment device corresponding to the flow sheet of FIG.

【図3】従来の廃水処理法のフローシート図である。FIG. 3 is a flow sheet diagram of a conventional wastewater treatment method.

【符号の説明】[Explanation of symbols]

1 中和槽 2 溶解槽 3 沈降槽 4 還流ポンプ 5 凝集槽 6 砂濾過槽 7 濾過水槽 8 ポンプ 9 堆積場 1 Neutralization tank 2 Dissolution tank 3 Settling tank 4 Reflux pump 5 Coagulation tank 6 Sand filtration tank 7 Filtration water tank 8 Pump 9 Sedimentation site

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 弗素、マンガン、および他の金属イオン
を含有する酸性廃水に消石灰を添加してアルカリ性と
し、生成する金属水酸化物と弗化カルシウムとの混合沈
殿物を分離することにより、排出水中の弗素およびマン
ガンを所定濃度以下に維持する弗素およびマンガン含有
廃水の処理方法であって、 前記廃水および下記第3工程で生成する懸濁液を消石灰
とともに混合攪拌して混合懸濁液とする第1工程と、 前記第1工程で生成する混合懸濁液に少量の凝集剤を添
加し、沈殿物を沈降濃縮するとともに少量の前記沈殿物
を含んだ溢流水を排出させる第2工程と、 前記第2工程で濃縮された沈殿物を前記廃水に還流する
第3工程と、 前記第2工程で排出された前記溢流水を濾過装置に導入
して微細な沈殿物を捕収し、清澄な処理水を排出する第
4工程と、 上記第4工程で濾過装置の逆洗によって排出された微細
な沈殿物を前記廃水に還流する第5工程より構成される
ことを特徴とする弗素およびマンガン含有廃水の処理方
法。
1. Emission by adding slaked lime to an alkaline wastewater containing fluorine, manganese, and other metal ions to make it alkaline and separating a mixed precipitate of metal hydroxide and calcium fluoride to be produced. A method for treating wastewater containing fluorine and manganese, which maintains fluorine and manganese in water at a predetermined concentration or less, wherein the wastewater and the suspension produced in the third step below are mixed and stirred with slaked lime to form a mixed suspension. A first step, and a second step of adding a small amount of a coagulant to the mixed suspension produced in the first step, concentrating the precipitate by sedimentation and discharging overflow water containing a small amount of the precipitate, A third step of refluxing the precipitate concentrated in the second step to the wastewater, and the overflow water discharged in the second step are introduced into a filtering device to collect fine precipitates and clarify Discharge treated water A method for treating wastewater containing fluorine and manganese, comprising: a fourth step, and a fifth step, in which the fine precipitate discharged by backwashing the filtration device in the fourth step is returned to the wastewater. ..
【請求項2】 前記第1工程における混合懸濁液のpH
を8.5ないし10の範囲に維持することを特徴とする
請求項1記載の弗素およびマンガン含有廃水の処理方
法。
2. The pH of the mixed suspension in the first step
The method for treating wastewater containing fluorine and manganese according to claim 1, characterized in that the water content is maintained in the range of 8.5 to 10.
【請求項3】 前記第3工程および第5工程において還
流される沈澱物の質量を、前記第2工程において生じた
沈澱物の質量に対して50倍以上とすることを特徴とす
る請求項1記載の弗素およびマンガン含有廃水の処理方
法。
3. The mass of the precipitate refluxed in the third step and the fifth step is 50 times or more the mass of the precipitate generated in the second step. A method for treating wastewater containing fluorine and manganese described in the above.
JP16851391A 1991-07-09 1991-07-09 Treatment of waste water containing fluorine and manganese Pending JPH0576876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16851391A JPH0576876A (en) 1991-07-09 1991-07-09 Treatment of waste water containing fluorine and manganese

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16851391A JPH0576876A (en) 1991-07-09 1991-07-09 Treatment of waste water containing fluorine and manganese

Publications (1)

Publication Number Publication Date
JPH0576876A true JPH0576876A (en) 1993-03-30

Family

ID=15869438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16851391A Pending JPH0576876A (en) 1991-07-09 1991-07-09 Treatment of waste water containing fluorine and manganese

Country Status (1)

Country Link
JP (1) JPH0576876A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0607760A2 (en) * 1993-01-19 1994-07-27 Marcello Iacomelli Method and plant for the treatment of water used in washing filters and the like
KR100448629B1 (en) * 2000-12-19 2004-09-13 주식회사 포스코 A denitrification method of wastewater containing high concentration fluoride and nitrate
JP2007196177A (en) * 2006-01-30 2007-08-09 Nippon Steel & Sumikin Stainless Steel Corp Method for treating fluorine-containing liquid waste
CN100415338C (en) * 2007-06-01 2008-09-03 华电水处理技术工程有限公司 Method and equipment for purifying recirculated cooling water or town B-grade sewage
JP2010099552A (en) * 2008-10-21 2010-05-06 Mitsubishi Materials Techno Corp Wastewater treatment method
CN102441297A (en) * 2011-10-10 2012-05-09 浙江省海洋开发研究院 Sludge refluxing and flocculating precipitation tank
CN102897938A (en) * 2011-07-28 2013-01-30 江苏南方涂装环保股份有限公司 Heavy-metal waste water treatment device
KR101340161B1 (en) * 2011-12-15 2013-12-10 노바테크 (주) High Concentration Hydrofluoric Acid Waste Liquor treatment Method
CN109336297A (en) * 2018-12-13 2019-02-15 湖南大辰环保科技有限公司 High pure and ultra-fine rutile TiO2Produce waste water high-efficiency processing system and method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0607760A2 (en) * 1993-01-19 1994-07-27 Marcello Iacomelli Method and plant for the treatment of water used in washing filters and the like
EP0607760A3 (en) * 1993-01-19 1995-01-25 Marcello Iacomelli Method and plant for the treatment of water used in washing filters and the like.
KR100448629B1 (en) * 2000-12-19 2004-09-13 주식회사 포스코 A denitrification method of wastewater containing high concentration fluoride and nitrate
JP2007196177A (en) * 2006-01-30 2007-08-09 Nippon Steel & Sumikin Stainless Steel Corp Method for treating fluorine-containing liquid waste
CN100415338C (en) * 2007-06-01 2008-09-03 华电水处理技术工程有限公司 Method and equipment for purifying recirculated cooling water or town B-grade sewage
JP2010099552A (en) * 2008-10-21 2010-05-06 Mitsubishi Materials Techno Corp Wastewater treatment method
CN102897938A (en) * 2011-07-28 2013-01-30 江苏南方涂装环保股份有限公司 Heavy-metal waste water treatment device
CN102441297A (en) * 2011-10-10 2012-05-09 浙江省海洋开发研究院 Sludge refluxing and flocculating precipitation tank
KR101340161B1 (en) * 2011-12-15 2013-12-10 노바테크 (주) High Concentration Hydrofluoric Acid Waste Liquor treatment Method
CN109336297A (en) * 2018-12-13 2019-02-15 湖南大辰环保科技有限公司 High pure and ultra-fine rutile TiO2Produce waste water high-efficiency processing system and method

Similar Documents

Publication Publication Date Title
CN107935294A (en) Wet desulphurization slurry solid-liquid separating method and three header process modification methods
JPH0576876A (en) Treatment of waste water containing fluorine and manganese
US8202426B2 (en) Membrane station waste treatment process
JPH09192675A (en) Treatment of waste water
JPH1034161A (en) Treatment of silica-containing waste water
JPH03137987A (en) Treatment of waste water
JPH0679286A (en) Treatment of selenium-containing waste water
JP3709156B2 (en) Treatment method for fluorine-containing wastewater
JP2861371B2 (en) Wastewater treatment method
CN211871618U (en) Device for treating desulfurization wastewater by composite method
JPH1177062A (en) Flocculation-separation
JP2861370B2 (en) Wastewater treatment method
JP2930594B2 (en) Coagulation settling equipment
JPH0880488A (en) Complete treatment of organic sewage
CN116606018A (en) Copper-containing wastewater treatment method
JP4626268B2 (en) Method for treating copper-containing liquid
JP2005007246A (en) Treatment method for organic waste water
JP2937438B2 (en) Sludge dewatering method
JP3225425B2 (en) Simultaneous removal of oil and phosphorus in sewage treatment
JP2715616B2 (en) Purification treatment method for paint sewage
JP4016564B2 (en) Treatment method for fluorine-containing wastewater
JPH0310396B2 (en)
JPS6061013A (en) Solid/liquid separating apparatus
JP2002126755A (en) Coagulating separation method and coagulating separation treatment device
JP2005177600A (en) Coagulation treatment method and apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000111