JPH0576486B2 - - Google Patents

Info

Publication number
JPH0576486B2
JPH0576486B2 JP2403585A JP2403585A JPH0576486B2 JP H0576486 B2 JPH0576486 B2 JP H0576486B2 JP 2403585 A JP2403585 A JP 2403585A JP 2403585 A JP2403585 A JP 2403585A JP H0576486 B2 JPH0576486 B2 JP H0576486B2
Authority
JP
Japan
Prior art keywords
monomer
supply
amount
weight
methyl methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2403585A
Other languages
Japanese (ja)
Other versions
JPS61183307A (en
Inventor
Tomoyuki Emura
Hiroaki Maruyama
Masahisa Ookawa
Seiki Nakajo
Tsutomu Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2403585A priority Critical patent/JPS61183307A/en
Publication of JPS61183307A publication Critical patent/JPS61183307A/en
Publication of JPH0576486B2 publication Critical patent/JPH0576486B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔〕 産業上の利用分野 本発明はアクリル系共重合体の製造方法に関す
る。更に詳しくは透明性及び機械的強度の優れた
アクリル系共重合体の製造方法に関するものであ
る。 〔〕 従来の技術及び問題点 メタクリル酸メチル重合体は優れた透明性と耐
候性を有しており、キヤスト板、押出板、各種射
出成形品等として用途の屋内屋外の別を問わず広
く用いられているが、欠点として極めて脆弱であ
り特に厚みの比較的薄いシート、フイルム、成形
品等の用途にそのままの形では使用できないとい
う難点を有している。メタクリル酸メチル重合体
に限らず一般に硬度、剛性の高い硬質系熱可塑性
樹脂においてその脆弱な性質を改良する方法とし
てゴム弾性重合体を利用することが一般的であり
特にゴム状弾性体の存在下にグラフト重合を行な
う方法が多数提案されている。 メタクリル酸メチル系重合体に関するものとし
ては、例えば架橋化したアクリル酸エステル系の
ゴム状弾性体の存在下にメタクリル酸メチルとア
クリル酸エステルとの混合比率を変えて多段的に
逐次グラフト重合を行なう方法(特公昭52−
14269号公報、特開昭48−43444号公報等)、更に
は弾性重合体の存在下にアクリル酸エステル及び
メタクリル酸エステルを連続的に添加してグラフ
ト重合する方法(特公昭48−36947号公報)など
が挙げられる。 これらの方法はゴム弾性体の組成、架橋化度あ
るいは粒子径の最適化方法に重点を置くものとゴ
ム状弾性体に対してグラフト重合される樹脂相部
分の組成、グラフト化度(化学的結合度)あるい
はグラフト重合の仕方等、ゴム状弾性体部分とグ
ラフトさせる樹脂相部分との相溶性、結合状態の
最適化方法に重点を置くものと大別されるが、い
ずれの方法に於てもゴム状弾性体と樹脂相部分と
の間に緊密な結合がなされていることが重要であ
るとする点では同じである。 しかるにグラフト重合法と呼ばれているこれら
の方法の重合の過程においてゴム状弾性体とグラ
フト化重合される樹脂相部分(あるいは組成的に
ゴム状弾性との差がつきすぎることを避けるため
に軟質単量体成分を比較的多く含むように設計さ
れる中間相部分)との化学的結合度が十分に行わ
れているか否かを示すことは一般に困難である。
グラフト化重合法という手段が性質を異にする二
つの相の間の化学的結合度を高め両相の相溶性を
上げるのに有効であると言われているが、肝腎の
グラフト化反応が満足しうる程度に行われている
か否かははつきりしていないのが実状である。一
般に透明性と機械的強度とは相反し、両立させる
ことが難かしくかかるグラフト重合法で改良せら
れたアクリル系グラフト共重合体の透明性と機械
的強度のバランスは必ずしも満足しうるレベルに
達しているとは言えない。 かかる事実に鑑み本発明者らはグラフト共重合
による方法の問題点がゴム状弾性体と樹脂相部分
あるいは上記の中間相部分との間の化学的結合度
の不十分さ及び各部分の相溶性の不十分さに基く
ものと考え鋭意検討した結果、本発明に到達し
た。 〔〕 問題点を解決するための手段 本発明は、(A)メタクリル酸メチルあるいは10重
量%以下の量のエチレン系モノ不飽和単量体を含
んでなるメタクリル酸メチルの混合物(以下単量
体(A)と称す)、50〜90重量部;(B)炭素数1〜8の
1価アルコールと、アクリル酸またはメタクリル
酸とのエステルであつて、メタクリル酸メチルを
除くアクリル系単量体の1種または2種以上(以
下単量体(B)と称す)、10〜50重量部;及び(C)エチ
レン系多官能単量体の1種又は2種以上(以下単
量体(C)と称す)を0.005〜3重量部とを乳化共重
合するに当り、連続的に単量体(A)と単量体(B)及び
単量体(C)の組成を変化させながら重合の系に供給
し、該供給形態として供給開始は、単量体(A)と
単量体(B)及び単量体(C)とを同時に行い、供給開
始の時点における単量体(A)の全単量体中に占める
割合は、8〜35重量%であり、単量体(B)及び単
量体(C)は、供給時間の経過と共に単位時間当りの
添加量を連続的に減少させ供給終了の時点におい
て、該添加量がゼロとなるようにし、単量体(B)
及び単量体(C)の供給は、単量体(A)の供給期間内に
行うことを特徴とするアクリル系共重合体の製造
方法に関するものである。 本発明において用いられる単量体(A)は50〜90重
量部、単量体(B)は10〜50重量部の範囲である。 単量体(A)の量が50重量部未満では得られる共重
合体の軟化温度が低くなり硬度及び引張り物性が
低下するので好しくない。また単量体(A)の量が90
重量部を超えると脆弱になり衝撃強度が低くなる
ので好しくない。好ましくは、単量体(A)が、60〜
80重量部であり、単量体(B)が20〜40重量部であ
る。各単量体の重合の系への供給方法は以下に述
べる方法による。単量体(A)は重合の開始の時点か
ら添加を始め、またその時点における添加量は供
給単量体の総量に対して8〜85重量%の範囲の量
が添加される。単量体(A)の供給開始時における添
加量が8重量%未満では重合の安定性が悪くな
り、得られる共重合体の粒子径が大きくなる傾向
であり透明性が低下する。逆に35重量%を超える
場合には衝撃強度が低くなる。 時々刻々における単量体(A)の添加量は、最終的
に得られる共重合体に含ませるべき設計量と設計
供給期間の長さおよび供給開始の時点における設
計添加量とから決定されるが一般に添加量を重合
時間の関数として表現し、実際における添加量の
調整は、該関数の積分式によつて5分以内位の区
間の積分値に基づいて行うのが実用的である。 また実施の一形態として単量体(A)の単位時間当
りの添加量を一定に保つようにすることも可能で
ある。単量体(A)の供給時間については特に制限は
ないが単量体(B)との反応性を考慮し、単量体(A)と
単量体(B)の供給累積量比と生成する共重合体中の
単量体組成比との間に大きな差を生じないよう
に、また反応性の小さい単量体の未反応量が増加
しないように、さらには重合槽の除熱能力、添加
設備の能力、経済性等も勘案し任意の値に決める
ことが出来る。一方単量体(B)は重合の開始の時点
から添加を始め、時々刻々における添加量は供給
の経過時間の増加に伴つて連続的に減少するよう
にし、かつ供給終了の時点においては添加量がゼ
ロになるようにする(供給終了時点以前でゼロに
なる場合も含まれる)。また単量体(B)の供給は単
量体(A)の供給期間内に行われる。しかしながら単
量体(B)の供給期間を余り短かくすると重合の安定
性を悪くし透明性を損う傾向があるので単量体(A)
の供給期間の長さの1/8以上にするのがよく、逆
に単量体(B)の供給終了時期を単量体(A)の供給終了
時期より後に設定すると衝撃強度が低くなり軟化
温度も低下する傾向があるので単量体(B)の供給は
単量体(A)の供給終了と同時期又はそれより早い時
期に終るようにする。時々刻々における単量体(B)
の添加量は最終的に得られる共重合体に含ませる
べき設計量と設計供給期間の長さおよび最終的に
得られる共重合体中に含ませるべき設計量と供給
開始の時点における単量体(A)と単量体(B)の設計比
率とによつて添加開始時点を起点とする供給経過
時間の関数として決められ、単量体(A)の場合と同
様にして添加量を調整する。 本発明において単量体(A)成分を構成するメタク
リル酸メチル以外の単量体としては、例えばスチ
レン、ビニルトルエン、α−メチルスチレン等の
芳香族ビニル化合物、アクリル酸メチル、アクリ
ル酸エチル、アクリル酸プロピル、アクリル酸イ
ソプロピル、アクリル酸n−ブチル、アクリル酸
イソブチル、アクリル酸シクロヘキシル、アクリ
ル酸2−エチルヘキシル、アクリル酸グリシジ
ル、アクリル酸ヒドロキシエチル、アクリル酸ヒ
ドロキシプロピル、アクリル酸ヒドロキシブチル
等のアクリル酸エステル類及びメタクリル酸エチ
ル、メタクリル酸n−ブチル、メタクリル酸イソ
ブチル、メタクリル酸n−ヘキシル、メタクリル
酸2−エチルヘキシル、メタクリル酸グリシジル
等のメタクリル酸エステル類、アクリル酸、メタ
クリル酸、アクリル酸又はメタクリル酸のアルカ
リ金属塩類、アクリル酸アミド、メタクリル酸ア
ミド、ジメチルアミノアクリルアミド等のアクリ
ル酸又はメタクリル酸のアミド類及びその窒素置
換化合物、アクリロニトリル、メタクリロニトリ
ル等の不飽和ニトリル化合物、酢酸ビニル、プロ
ピオン酸ビニル等のビニルエステル類、塩化ビニ
ル、塩化ビニリデン等のハロゲン化ビニル化合物
及びビニリデン化合物等が挙げられる。好ましく
は、芳香族ビニル化合物、アクリル酸エステル類
又はメタクリル酸エステル類である。これらの単
量体は通常メタクリル酸メチルに対して10重量%
以下、好しくは8重量%以下の量が用いられる。 本発明において単量体(B)を構成するアクリル酸
エステル及びメタクリル酸エステル(メタクリル
酸メチルを除く)としてはアルキル基の炭素数が
1〜8の範囲のものであつて例えばアクリル酸メ
チル、アクリル酸エチル、アクリル酸n−プロピ
ル、アクリル酸イソプロピル、アクリル酸n−ブ
チル、アクリル酸イソブチル、アクリル酸n−ヘ
キシル、アクリル酸シクロヘキシル、アルリル酸
n−オクチル、アクリル酸2−エチルヘキシル等
のアクリル酸エステル類、メタクリル酸エチル、
メタクリル酸n−プロピル、メタクリル酸イソプ
ロピル、メタクリル酸n−ブチル、メタクリル酸
イソブチル、メタクリル酸n−ヘキシル、メタク
リル酸シクロヘキシル、メタクリル酸2−エチル
ヘキシル等のメタクリル酸エステル類が挙げられ
る。 本発明において用いられる単量体(C)としては一
般にその分子量、分子中の官能基の数、官能基の
反応性等によつて最適添加量が変るが、0.005〜
3重量部好しくは0.01〜2.5重量部の範囲で用い
られる。単量体(C)の量が0.005重量部未満でも逆
に3重量部を超える場合でも得られる共重合体の
衝撃強度及び透明性が低下する。また単量体(C)の
添加時期については単量体(B)の供給期間と同一と
し、具体的には、あらかじめ単量体(B)に混合して
おいて添加するのが好ましい。 単量体(C)を構成するエチレン系多官能単量体と
しては例えば、コハク酸ジアリル、フタル酸ジア
リル、アジピン酸ジアリル、マレイン酸ジアリ
ル、フマル酸ジアリル等の2価カルボン酸のジア
リルエステル類、アクリル酸又はメタクリル酸の
アリルエステル、モノ又はポリエチレングリコー
ル、プロピレングリコール、1,4−ブタンジオ
ール、1,10−デカンジオール等の2価アルコー
ルのジアクリル酸エステル類又はジメタクリル酸
エステル類、1,10−デカンジオールジビニルエ
ーテル、1,12−オクタデカンジオールジビニル
エーテル等のジビニルエーテル類、ジビニルベン
ゼン、トリアリルシアヌレート、トリアリルイソ
シアヌレート、トリメチロールプロパントリメタ
クリレート等が挙げられる。好ましくは、2価カ
ルボン酸のジアリルエステル類、2価アルコール
のジアクリル酸エステル類又はジメタクリル酸エ
ステル類である。又、本発明において連鎖移動剤
を用いることも可能で、通常アクリル酸エステル
又はメタクリル酸エステル等の重合に用いられる
ものが使える。例えばオクチルメルカプタン、ド
デシルメルカプタン等のアルキルメルカプタン
類、チオグリコール酸n−ブチル、チオグリコー
ル酸オクチル、チオグリコール酸、チオフエノー
ル、メルカプトエタノール等が挙げられる。特に
制限はないが連鎖移動剤の使用量は単量体(A)に対
して0.05〜1.5重量%の範囲で用いるのが好しく
単量体(A)と共に単量体(B)の供給終了後に添加する
等、添加時期を調節し可能な限り少い量にするの
が望ましい。 本発明において用いられる重合開始剤として
は、一般にアクリル酸エステル、又はメタクリル
酸エステルの乳化重合に用いられるものが使われ
る。例えば過硫酸カリウム、過硫酸アンモニウム
等の水溶性開始剤、過酸化水素−ロンガリツト系
又は過硫酸カリウム、チオ硫酸ナトリウム系等の
水溶性レドツクス開始剤系あるいはキユメンハイ
ドロパーオキサイド−ナトリウムビサルフエート
系等の油溶性レドツクス開始剤系等が挙げられ
る。 本発明において用いられる乳化剤としては通常
アクリルエステル又はメタクリル酸エステルの乳
化重合に用いられるものでよく例えばオレイン酸
ナトリウム、ステアリン酸カリウム等のアルカリ
金属石鹸類、ドデシルベンゼンスルホン酸ナトリ
ウム等のアルキルベンゼンスルホン酸塩類、ジブ
チルスルホコハク酸ナトリウム、ジオクチルスル
ホコハク酸ナトリウム等のジアルキルスルホコハ
ク酸塩類、アルキルジフエニルエーテルジスルホ
ン酸塩類、ラウリル硫酸ナトリウム等のアルキル
硫酸塩類等のアニオン乳化剤が用いられまたこれ
らの2種以上を併用することも可能である。更に
乳化安定助剤として少量のノニオン乳化剤、カチ
オン乳化剤の併用も可能である。又得られる共重
合体の粒子径の調節を行なうことを目的として乳
化剤の一部を重合の進行に応じて途中で分割添加
することも一般によく行われるが本発明において
もそれらの方法を行なうことが可能である。 本発明の機構は定かではないが、ゴム状弾性を
示す共重合体部分の生成過程と剛性を有する共重
合体部分の生成の過程が間断なく終始連続して行
なわれるために、グラフト共重合の場合のように
ゴム状弾性体部分形成の工程と樹脂相部分あるい
は中間相部分の重合工程との間に切目がなく、従
つて弾性を有する部分と剛性を示す部分との間に
は明らかな境界が存在せず二つの部分が相溶性上
無理なく一体化されメタクリル酸メチル重合体の
持つ優れた透明性を大きく損わずに脆弱さが著し
く改良されるものと推測される。 〔〕 実施例 以下に実施例を挙げて、本発明を説明するが本
発明はこれらの実施例によつて限定されるもので
はない。 実施例 1 100オートクレープに脱イオン水50を仕込
み、窒素バブリングを10分間行い、ジブチルスル
ホコハク酸ナトリウム200g、過硫酸カリウム60
gを加えて密閉し、槽内空間部の窒素置換を行つ
た後撹拌を開始し、内温を上昇させた。70℃に達
して後、メタクリル酸メチル13Kgを〔975t+
1300〕で表わされる添加量に従つて、またアクリ
ル酸ブチル7Kgを〔−2240t+5600〕で表わされ
る添加量に従つて、同時にオートクレーブへの供
給を開始した。尚上記〔 〕内の式中のtは添加
開始時点を起点とする経過時間(hr)を表わし、
〔 〕で表わされる添加量の単位は重量(g)で
ある。また添加量の調整は、1.2分間毎の積分添
加量に基いて条件変更する方法で行つた。アクリ
ル酸ブチルの全添加時間は2.5時間とし、メタク
リル酸アリル100gをあらかじめアクリル酸ブチ
ルに均一に溶解しておいた。一方メタクリル酸メ
チルは、添加の開始から2.5時間までの期間は単
独で供給し、残りのメタクリル酸メチルはチオグ
リコール酸オクチル75gを均一に溶解した混合物
として1.5時間かけて供給した。 その後1時間は、そのままの温度でかくはんを
継続した。引続き撹拌下に内温を85℃まで昇温
し、85℃に達してから更に1時間撹拌を続け、重
合を完了した。 重合の過程で採取した樹脂の物性を第1表に示
した。得られた樹脂分散液に210の脱イオン水
を加え、撹拌下で80℃に保ちながら、塩化アルミ
ニウム2%水溶液を徐々に滴下して塩析を行い、
冷却、脱水、乾燥し、樹脂19.6Kgを得た。優れた
樹脂を210℃の条件でプレス成形したシートの機
械的強度、及び光学的性質を第2表に示した。 実施例 2 乳化剤としてジブチルスルホコハク酸ナトリウ
ムの代わりに、ラテムル ASK〔特殊カルボン
酸型乳化剤(花王石鹸(株)製)〕を60g用いたこと
以外は実施例1と全く同様に行つて樹脂19.6Kgを
得た。重合途中で採取した試料の物性を第1表
に、また得られた樹脂のプレスシートの物性を第
2表に示した。 比較例 1 実施例1に於いて、アクリル酸ブチルの添加速
度を一定にして〔0t+2800〕で表される添加量に
したこと以外は同様に行つて樹脂19.5Kgを得た。
重合途中で採取した樹脂の物性を第1表に、得ら
れた樹脂のプレスシートの物性を第2表に示し
た。 比較例 2 100オートクレーブに脱イオン水50を仕込
み、窒素バブリングを10分間行い、続いてジオク
チルスルホコハク酸ナトリウム150g、過硫酸カ
リウム60g、アクリル酸ブチル20Kg、メタクリル
酸アリル280gを仕込み、密閉後窒素置換を行つ
た。昇温、撹拌を開始し、内温を70℃に3時間保
持し、その後85℃に上げて更に1時間反応し、ア
クリル酸ブチル重合体を調整した。 別のオートクレーブに脱イオン水29.3を仕込
み窒素置換を行つてから、先に調整したアクリル
酸ブチル重合体ラテツクス20.7、過硫酸カリウ
ム40gを加え、密閉後空間部の窒素置換を行い、
昇温、撹拌を開始した。内温が70℃に達して後、
メタクリル酸メチル13Kg〔2889t+0〕で表され
る添加量に従つて、またアクリル酸ブチル1Kg
を、その供給時間を1時間とし、〔−2000t+
2000〕で表される添加量に従つて、同時にオート
クレーブへ供給開始した。添加量の調整は実施例
1と同じ要領でおこなつた。また供給開始より1
時間後に残つたメタクリル酸メチルに対してチオ
グリコール酸オクチル75gを均一に混合して、更
に3時間、添加を継続した。単量体の供給完了後
1時間は、70℃に保ち、その後85℃に昇温して、
さらに1時間反応を続けて重合を終えた。重合の
途中で採取した樹脂の物性は第1表に示す通りで
あつた。また、得られた樹脂分散液を実施例1と
同様に処理して得た乾燥樹脂のプレスシートの物
性を第2表に示した。 比較例 3 オートクレーブに脱イオン水29.3を仕込み、
窒素バブリングを行い、比較例2で調整したアク
リル酸ブチル重合体ラテツクス20.7と、過硫酸
カリウム5gを加え、密閉、窒素置換を行つてか
ら昇温、撹拌を開始した。内温が70℃に達してか
ら、アクリル酸ブチル800gと、メタクリル酸メ
チル200gとの混合物を徐々に30分間で添加し、
更に30分間反応した。 次いで過硫酸カリウム5g(5%の水溶液)を
加え、アクリル酸ブチル200gとメタクリル酸メ
チル800gとの混合物を徐々に30分かけて添加し、
更に30分間反応した。続いて、過硫酸カリウム40
g(5%水溶液として)を加え、メタクリル酸メ
チル12Kgとチオグリコール酸オクチル75gとの混
合物を一定速度で2時間にわたり添加した。その
後、85℃に昇温して1時間保持し、重合を終了し
た。重合の途中で採取した樹脂の物性を第1表
に、また最終的に得られた樹脂のプレスシートの
物性を第2表に示した。 比較例 4 比較例2に於てジオクチルスルホコハク酸ナト
リウムに代えてラウリル硫酸ナトリウム70gにし
たこと以外は全く同様に行つて樹脂を得た。得ら
れた樹脂のプレスシートの物性を第2表に示し
た。
[] Industrial Application Field The present invention relates to a method for producing an acrylic copolymer. More specifically, the present invention relates to a method for producing an acrylic copolymer having excellent transparency and mechanical strength. [] Conventional technology and problems Methyl methacrylate polymer has excellent transparency and weather resistance, and is widely used as cast boards, extruded boards, various injection molded products, etc., regardless of whether they are used indoors or outdoors. However, it has the disadvantage that it is extremely brittle and cannot be used in its original form, especially for applications such as relatively thin sheets, films, and molded products. It is common to use rubber-elastic polymers as a way to improve the brittle properties of rigid thermoplastic resins, not limited to methyl methacrylate polymers, which have high hardness and rigidity, especially in the presence of rubber-like elastic bodies. Many methods of graft polymerization have been proposed. Regarding methyl methacrylate-based polymers, for example, in the presence of a cross-linked acrylic ester-based rubber-like elastic body, graft polymerization is carried out sequentially in multiple stages by changing the mixing ratio of methyl methacrylate and acrylic ester. Method (Tokuko Showa 52-
14269, JP-A No. 48-43444, etc.), and a method of graft polymerization by continuously adding acrylic esters and methacrylic esters in the presence of an elastic polymer (Japanese Patent Publication No. 48-36947) ), etc. These methods focus on optimizing the composition, degree of crosslinking, or particle size of the rubbery elastic body, while others focus on optimizing the composition, degree of grafting (chemical bond There are two main types of methods: methods of graft polymerization, compatibility between the rubber-like elastic body part and the resin phase part to be grafted, and methods of optimizing the bonding state. They are the same in that it is important that a tight bond be formed between the rubber-like elastic body and the resin phase portion. However, in the polymerization process of these methods, which are called graft polymerization methods, the resin phase portion that is graft-polymerized with the rubber-like elastic material (or the resin phase that is soft and polymerized to avoid too much difference in composition from the rubber-like elastic material) is used. It is generally difficult to show whether or not the degree of chemical bonding with the mesophase portion (which is designed to contain a relatively large amount of monomer components) is sufficient.
It is said that the graft polymerization method is effective in increasing the degree of chemical bonding between two phases with different properties and increasing the compatibility of both phases, but the grafting reaction of the liver and kidneys is not satisfactory. The reality is that it is not clear whether this is being done to the extent that it could be done. Transparency and mechanical strength generally contradict each other and are difficult to balance. However, the balance between transparency and mechanical strength of acrylic graft copolymers improved by the graft polymerization method has not necessarily reached a satisfactory level. I can't say that it is. In view of these facts, the present inventors believe that the problems with the graft copolymerization method are the insufficient degree of chemical bonding between the rubber-like elastic body and the resin phase portion or the above-mentioned intermediate phase portion, and the compatibility of each portion. As a result of intensive study, we have arrived at the present invention, believing that this is due to the insufficiency of the above. [] Means for Solving the Problems The present invention provides (A) methyl methacrylate or a mixture of methyl methacrylate containing an ethylenically monounsaturated monomer in an amount of 10% by weight or less (hereinafter referred to as monomer (A)), 50 to 90 parts by weight; (B) An ester of a monohydric alcohol having 1 to 8 carbon atoms and acrylic acid or methacrylic acid, containing acrylic monomers excluding methyl methacrylate. 1 type or 2 or more types (hereinafter referred to as monomer (B)), 10 to 50 parts by weight; and (C) 1 type or 2 or more types of ethylene-based polyfunctional monomers (hereinafter referred to as monomer (C) In emulsion copolymerizing 0.005 to 3 parts by weight of 0.005 to 3 parts by weight, the polymerization system is In this supply mode, monomer (A), monomer (B), and monomer (C) are supplied simultaneously, and all of the monomer (A) at the time of the start of supply is The proportion of monomer in the monomer is 8 to 35% by weight, and monomer (B) and monomer (C) are supplied by continuously reducing the amount added per unit time as the supply time passes. At the time of completion, the amount added should be zero, and the monomer (B)
The present invention relates to a method for producing an acrylic copolymer, characterized in that the supply of the monomer (C) is carried out within the period of supply of the monomer (A). The monomer (A) used in the present invention is in the range of 50 to 90 parts by weight, and the monomer (B) is in the range of 10 to 50 parts by weight. If the amount of monomer (A) is less than 50 parts by weight, the resulting copolymer will have a low softening temperature and a decrease in hardness and tensile properties, which is not preferable. Also, the amount of monomer (A) is 90
Exceeding the weight part is not preferable because it becomes brittle and has low impact strength. Preferably, the monomer (A) is 60 to
80 parts by weight, and 20 to 40 parts by weight of monomer (B). The method for supplying each monomer to the polymerization system is as described below. Monomer (A) is added starting from the start of polymerization, and the amount added at that point is in the range of 8 to 85% by weight based on the total amount of monomers supplied. If the amount added at the start of supply of monomer (A) is less than 8% by weight, the stability of polymerization will deteriorate, the particle size of the obtained copolymer will tend to increase, and transparency will decrease. On the other hand, if it exceeds 35% by weight, the impact strength will decrease. The amount of monomer (A) added at each moment is determined from the designed amount to be included in the final copolymer, the length of the designed supply period, and the designed amount added at the time of starting the supply. Generally, it is practical to express the amount added as a function of polymerization time, and to adjust the amount actually added based on the integral value of an interval of about 5 minutes using an integral expression of the function. Further, as one embodiment, it is also possible to keep the amount of monomer (A) added per unit time constant. There is no particular limit on the supply time of monomer (A), but considering the reactivity with monomer (B), the cumulative supply ratio of monomer (A) and monomer (B) and the production In order not to cause a large difference between the monomer composition ratio in the copolymer to be processed and to prevent an increase in the amount of unreacted monomers with low reactivity, the heat removal capacity of the polymerization tank, An arbitrary value can be determined by taking into consideration the capacity of the addition equipment, economic efficiency, etc. On the other hand, the monomer (B) is added from the beginning of polymerization, and the amount added at each moment is continuously decreased as the elapsed time of feeding increases, and at the end of the feeding, the amount added is so that it becomes zero (this includes cases where it becomes zero before the end of supply). Further, the monomer (B) is supplied within the monomer (A) supply period. However, if the supply period of monomer (B) is too short, the stability of polymerization tends to deteriorate and transparency tends to be impaired.
It is best to set the supply period to be at least 1/8 of the length of the monomer (B) supply period. Conversely, if the supply end time of monomer (B) is set after the supply end time of monomer (A), the impact strength will be lowered and softened. Since the temperature also tends to decrease, the supply of monomer (B) should be finished at the same time as the supply of monomer (A) or earlier. Monomer (B) from moment to moment
The amount of addition is based on the designed amount to be included in the final copolymer, the length of the designed supply period, the designed amount to be included in the final copolymer, and the monomer at the time of starting supply. It is determined by the design ratio of (A) and monomer (B) as a function of the supply elapsed time starting from the addition start point, and the addition amount is adjusted in the same way as for monomer (A). . In the present invention, monomers other than methyl methacrylate that constitute the monomer (A) component include aromatic vinyl compounds such as styrene, vinyltoluene, and α-methylstyrene, methyl acrylate, ethyl acrylate, and acrylic acid. Acrylic acid esters such as propyl acid, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, glycidyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, etc. and methacrylic acid esters such as ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, glycidyl methacrylate, acrylic acid, methacrylic acid, acrylic acid or methacrylic acid. Alkali metal salts, amides of acrylic acid or methacrylic acid such as acrylic acid amide, methacrylic acid amide, dimethylaminoacrylamide and their nitrogen-substituted compounds, unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile, vinyl acetate, vinyl propionate, etc. vinyl esters, halogenated vinyl compounds such as vinyl chloride, vinylidene chloride, and vinylidene compounds. Preferred are aromatic vinyl compounds, acrylic esters, and methacrylic esters. These monomers are usually 10% by weight relative to methyl methacrylate.
Hereinafter, preferably an amount of 8% by weight or less is used. In the present invention, the acrylic esters and methacrylic esters (excluding methyl methacrylate) constituting the monomer (B) are those in which the number of carbon atoms in the alkyl group ranges from 1 to 8, such as methyl acrylate, acrylic Acrylic acid esters such as ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, n-octyl allylate, 2-ethylhexyl acrylate, etc. , ethyl methacrylate,
Examples include methacrylic acid esters such as n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, and 2-ethylhexyl methacrylate. The optimum amount of the monomer (C) used in the present invention generally varies depending on its molecular weight, the number of functional groups in the molecule, the reactivity of the functional groups, etc., but it ranges from 0.005 to
It is used in an amount of 3 parts by weight, preferably 0.01 to 2.5 parts by weight. Even if the amount of monomer (C) is less than 0.005 parts by weight or conversely exceeds 3 parts by weight, the impact strength and transparency of the resulting copolymer are reduced. Further, the timing of addition of monomer (C) is the same as the period of supply of monomer (B), and specifically, it is preferable to mix it with monomer (B) in advance and add it. Examples of the ethylene-based polyfunctional monomer constituting the monomer (C) include diallyl esters of divalent carboxylic acids such as diallyl succinate, diallyl phthalate, diallyl adipate, diallyl maleate, and diallyl fumarate; Allyl esters of acrylic acid or methacrylic acid, diacrylic esters or dimethacrylic esters of dihydric alcohols such as mono- or polyethylene glycol, propylene glycol, 1,4-butanediol, 1,10-decanediol, 1,10 Divinyl ethers such as -decanediol divinyl ether and 1,12-octadecanediol divinyl ether, divinylbenzene, triallyl cyanurate, triallyl isocyanurate, trimethylolpropane trimethacrylate, and the like. Preferred are diallyl esters of dihydric carboxylic acids, diacrylic esters or dimethacrylic esters of dihydric alcohols. It is also possible to use a chain transfer agent in the present invention, and those commonly used in the polymerization of acrylic esters, methacrylic esters, etc. can be used. Examples include alkyl mercaptans such as octyl mercaptan and dodecyl mercaptan, n-butyl thioglycolate, octyl thioglycolate, thioglycolic acid, thiophenol, and mercaptoethanol. There is no particular limit, but the amount of chain transfer agent used is preferably in the range of 0.05 to 1.5% by weight based on monomer (A). Monomer (B) is supplied together with monomer (A). It is desirable to adjust the timing of addition and reduce the amount as much as possible, such as by adding later. As the polymerization initiator used in the present invention, those generally used for emulsion polymerization of acrylic esters or methacrylic esters are used. For example, water-soluble initiators such as potassium persulfate and ammonium persulfate, water-soluble redox initiators such as hydrogen peroxide-Rongalite type, potassium persulfate and sodium thiosulfate type, or cumene hydroperoxide-sodium bisulfate type, etc. oil-soluble redox initiator systems and the like. The emulsifier used in the present invention may be one commonly used in emulsion polymerization of acrylic ester or methacrylic ester, such as alkali metal soaps such as sodium oleate and potassium stearate, and alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate. Anionic emulsifiers such as dialkyl sulfosuccinates such as sodium dibutyl sulfosuccinate and sodium dioctyl sulfosuccinate, alkyl sulfates such as alkyl diphenyl ether disulfonates, and sodium lauryl sulfate are used, and two or more of these may be used in combination. is also possible. Furthermore, it is also possible to use a small amount of a nonionic emulsifier or a cationic emulsifier as an emulsion stabilizing aid. It is also common practice to add part of the emulsifier in portions as the polymerization progresses in order to adjust the particle size of the resulting copolymer; however, these methods may also be used in the present invention. is possible. Although the mechanism of the present invention is not clear, the process of producing a copolymer part exhibiting rubber-like elasticity and the process of producing a copolymer part having rigidity are carried out continuously from start to finish, so that graft copolymerization is possible. As in the case, there is no gap between the process of forming the rubber-like elastic body part and the polymerization process of the resin phase part or the intermediate phase part, so there is no clear boundary between the elastic part and the rigid part. It is presumed that the two parts are easily integrated due to their compatibility, and the brittleness is significantly improved without significantly impairing the excellent transparency of the methyl methacrylate polymer. [] Examples The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples. Example 1 Pour 50 g of deionized water into a 100 g autoclave, perform nitrogen bubbling for 10 minutes, and add 200 g of sodium dibutyl sulfosuccinate and 60 g of potassium persulfate.
g was added, the tank was sealed, and the internal space of the tank was replaced with nitrogen, and then stirring was started to raise the internal temperature. After reaching 70℃, add 13Kg of methyl methacrylate [975t+
At the same time, the supply of butyl acrylate (7 kg) to the autoclave was started according to the addition amount expressed as [-2240t+5600]. In addition, t in the formula in [ ] above represents the elapsed time (hr) starting from the start of addition,
The unit of the amount added expressed in [ ] is weight (g). Further, the amount of addition was adjusted by changing the conditions based on the integrated amount of addition every 1.2 minutes. The total addition time of butyl acrylate was 2.5 hours, and 100 g of allyl methacrylate was uniformly dissolved in butyl acrylate in advance. On the other hand, methyl methacrylate was supplied alone for a period of 2.5 hours from the start of addition, and the remaining methyl methacrylate was supplied over 1.5 hours as a mixture in which 75 g of octyl thioglycolate was uniformly dissolved. After that, stirring was continued at the same temperature for 1 hour. Subsequently, while stirring, the internal temperature was raised to 85°C, and after reaching 85°C, stirring was continued for an additional hour to complete the polymerization. Table 1 shows the physical properties of the resin sampled during the polymerization process. 210 deionized water was added to the obtained resin dispersion, and while keeping the temperature at 80°C with stirring, a 2% aluminum chloride aqueous solution was gradually added dropwise to perform salting out.
It was cooled, dehydrated, and dried to obtain 19.6 kg of resin. Table 2 shows the mechanical strength and optical properties of sheets press-molded from excellent resin at 210°C. Example 2 19.6 kg of resin was produced in exactly the same manner as in Example 1, except that 60 g of Latemul ASK [special carboxylic acid type emulsifier (manufactured by Kao Soap Co., Ltd.]) was used as an emulsifier instead of sodium dibutyl sulfosuccinate. Obtained. Table 1 shows the physical properties of the sample taken during the polymerization, and Table 2 shows the physical properties of the resin press sheet obtained. Comparative Example 1 19.5 kg of resin was obtained in the same manner as in Example 1, except that the addition rate of butyl acrylate was kept constant and the amount of addition was expressed as [0t+2800].
Table 1 shows the physical properties of the resin sampled during the polymerization, and Table 2 shows the physical properties of the pressed sheet of the resin obtained. Comparative Example 2 A 100ml autoclave was charged with 50ml of deionized water, and nitrogen bubbling was performed for 10 minutes, followed by 150g of sodium dioctyl sulfosuccinate, 60g of potassium persulfate, 20kg of butyl acrylate, and 280g of allyl methacrylate, and the autoclave was sealed and replaced with nitrogen. I went. Elevating the temperature and stirring were started, and the internal temperature was maintained at 70°C for 3 hours, and then raised to 85°C and reacted for an additional 1 hour to prepare a butyl acrylate polymer. Charge 29.3 of deionized water into another autoclave and perform nitrogen purge, then add 20.7 of the previously prepared butyl acrylate polymer latex and 40 g of potassium persulfate, and after sealing, purge the space with nitrogen.
The temperature was increased and stirring was started. After the internal temperature reaches 70℃,
According to the addition amount expressed as 13Kg of methyl methacrylate [2889t+0], and 1Kg of butyl acrylate.
, the supply time is 1 hour, [−2000t+
2000], the supply to the autoclave was started at the same time. The amount added was adjusted in the same manner as in Example 1. Also, from the start of supply, 1
After that time, 75 g of octyl thioglycolate was uniformly mixed with the remaining methyl methacrylate, and the addition was continued for an additional 3 hours. The temperature was maintained at 70°C for 1 hour after the monomer supply was completed, and then the temperature was raised to 85°C.
The reaction was continued for an additional hour to complete the polymerization. The physical properties of the resin sampled during the polymerization were as shown in Table 1. Table 2 shows the physical properties of a dried resin press sheet obtained by treating the obtained resin dispersion in the same manner as in Example 1. Comparative Example 3 Fill an autoclave with 29.3 ml of deionized water,
Nitrogen bubbling was carried out, 20.7 g of the butyl acrylate polymer latex prepared in Comparative Example 2 and 5 g of potassium persulfate were added, and after sealing and purging with nitrogen, heating and stirring were started. After the internal temperature reached 70°C, a mixture of 800 g of butyl acrylate and 200 g of methyl methacrylate was gradually added over 30 minutes.
The reaction was continued for an additional 30 minutes. Then 5 g of potassium persulfate (5% aqueous solution) was added, and a mixture of 200 g of butyl acrylate and 800 g of methyl methacrylate was gradually added over 30 minutes.
The reaction was continued for an additional 30 minutes. Followed by potassium persulfate 40
(as a 5% aqueous solution) and a mixture of 12 Kg of methyl methacrylate and 75 g of octyl thioglycolate was added at a constant rate over 2 hours. Thereafter, the temperature was raised to 85°C and maintained for 1 hour to complete the polymerization. Table 1 shows the physical properties of the resin sampled during the polymerization, and Table 2 shows the physical properties of the press sheet of the resin finally obtained. Comparative Example 4 A resin was obtained in exactly the same manner as in Comparative Example 2 except that 70 g of sodium lauryl sulfate was used in place of sodium dioctyl sulfosuccinate. Table 2 shows the physical properties of the obtained resin press sheet.

【表】【table】

【表】 実施例 3 実施例1において、メタクリル酸メチルの使用
量を12.35Kgに変え、またアクリル酸エチル0.65
Kgを併用し、チオグリコール酸オクチルの使用量
を15Kgとしたこと以外は同様にして樹脂を得た。
得られた樹脂のプレスシート物性を第3表に示し
た。 実施例 4 実施例1に於いて、アクリル酸ブチルの供給時
間を3.5時間とし、添加量の調整を〔−1142.9t+
4000〕で行つたこと以外は全く同様にして樹脂を
得た。得られた樹脂のプレスシート物性を、第3
表に示した。 実施例 5 実施例1に於いて、アクリル酸ブチルの供給時
間を3時間とし、添加量の調整を〔−388.9t2
3500〕でおこなつたこと以外は全く同様にした。
得られた樹脂のプレスシート物性を第3表に示し
た。 実施例 6 実施例1に於いて、メタクリル酸メチルの使用
量を5Kgとし添加量の調整を〔1125t+1500〕、ア
クリル酸ブチルの使用量を5Kgとし添加量の調整
を〔−1600t+4000〕で行い、メタクリル酸アリ
ルの使用量を71.4gとし、またはチオグリコール
酸オクチルの使用量を86.5gとしたこと以外は同
様にして、樹脂を得た。得られた樹脂のプレスシ
ート物性を第3表に示した。 実施例 7 実施例1に於いて、ジブチルスルホコハク酸ナ
トリウムの使用量を300gに変え、更にメタクリ
ル酸メチルの使用量を12.4Kgとし、添加量の調整
を〔−62t+3224〕としアクリル酸ブチル等の使
用量を7.6Kgとし添加量の調整を〔−11400t+
11400〕で行い、供給時間を1時間にしたこと、
及びメタクリル酸アルルに代えてマレイン酸ジア
リルを114gとし、又チオグリコール酸オクチル
に代えてドデシルメルカブタンを用い、その使用
量を87gとしたこと以外は同様に行つて樹脂を得
た。得られた樹脂のプレスシートの物性を第3表
に示した。
[Table] Example 3 In Example 1, the amount of methyl methacrylate used was changed to 12.35 kg, and the amount of ethyl acrylate was changed to 0.65 kg.
A resin was obtained in the same manner except that Kg was used in combination and the amount of octyl thioglycolate was 15 Kg.
Table 3 shows the pressed sheet physical properties of the obtained resin. Example 4 In Example 1, the supply time of butyl acrylate was set to 3.5 hours, and the addition amount was adjusted to [-1142.9t+
A resin was obtained in exactly the same manner except that the same procedure was used for [4000]. The press sheet physical properties of the obtained resin were measured in the third
Shown in the table. Example 5 In Example 1, the supply time of butyl acrylate was set to 3 hours, and the addition amount was adjusted to [-388.9t 2 +
3500] was done in exactly the same way except for what was done with [3500].
Table 3 shows the pressed sheet physical properties of the obtained resin. Example 6 In Example 1, the amount of methyl methacrylate used was 5 kg and the amount added was adjusted to [1125t + 1500], the amount of butyl acrylate used was 5 kg and the amount added was adjusted to [-1600t + 4000], Resins were obtained in the same manner except that the amount of allyl acid used was 71.4 g or the amount of octyl thioglycolate was 86.5 g. Table 3 shows the pressed sheet physical properties of the obtained resin. Example 7 In Example 1, the amount of sodium dibutyl sulfosuccinate used was changed to 300 g, the amount of methyl methacrylate used was changed to 12.4 Kg, and the amount added was adjusted to [-62t + 3224] to use butyl acrylate, etc. Adjust the amount to 7.6Kg [-11400t+
11400] and the supply time was set to 1 hour.
A resin was obtained in the same manner except that 114 g of diallyl maleate was used instead of allyl methacrylate, and dodecylmercabutane was used instead of octyl thioglycolate, and the amount used was 87 g. Table 3 shows the physical properties of the obtained resin press sheet.

【表】 〔〕 発明の効果 以上から明らかな如く、本発明の製造方法によ
り、透明性の低下を伴なわずに衝撃強度等の物性
が著しく向上した所謂透明性と強度のバランスに
優れたアクリル系共重合体が提供される。
[Table] [Effects of the Invention] As is clear from the above, the production method of the present invention has produced an acrylic material with an excellent balance between transparency and strength, in which physical properties such as impact strength have been significantly improved without a decrease in transparency. copolymers are provided.

Claims (1)

【特許請求の範囲】 1 (A) メタクリル酸メチルあるいは10重量%以
下の量のエチレン系モノ不飽和単量体を含んで
なるメタクリル酸メチルの混合物(以下単量体
(A)と称す)、50〜90重量部 (B) 炭素数1〜8の1価アルコールと、アクリル
酸またはメタクリル酸とのエステルであつて、
メタクリル酸メチルを除くアクリル系単量体の
1種または2種以上(以下単量体(B)と称す)、
10〜50重量部及び (C) エチレン系多官能単量体の1種又は2種以上
(以下単量体(C)と称す)を0.005〜3重量部、 とを乳化共重合するに当り、連続的に単量体(A)と
単量体(B)及び単量体(C)の組成を変化させながら重
合の系に供給し、該供給形態として 供給開始は、単量体(A)と単量体(B)及び単量体
(C)とを同時に行い、 供給開始の時点における単量体(A)の全単量体
中に占める割合は、8〜35重量%であり、 単量体(B)及び単量体(C)は、供給時間の経過と
共に単位時間当りの添加量を連続的に減少させ
供給終了の時点において、該添加量がゼロとな
るようにし、 単量体(B)及び単量体(C)の供給は、単量体(A)の
供給期間内に行うことを特徴とするアクリル系
共重合体の製造方法。
[Scope of Claims] 1 (A) Methyl methacrylate or a mixture of methyl methacrylate containing an ethylenically unsaturated monomer in an amount of 10% by weight or less (hereinafter referred to as monomer)
(A)), 50 to 90 parts by weight (B) An ester of a monohydric alcohol having 1 to 8 carbon atoms and acrylic acid or methacrylic acid,
One or more acrylic monomers excluding methyl methacrylate (hereinafter referred to as monomer (B)),
For emulsion copolymerization of 10 to 50 parts by weight and (C) 0.005 to 3 parts by weight of one or more ethylene-based polyfunctional monomers (hereinafter referred to as monomer (C)), Monomer (A), monomer (B), and monomer (C) are supplied to the polymerization system while changing their compositions continuously. and monomer (B) and monomer
(C) at the same time, and the proportion of monomer (A) in the total monomers at the start of supply is 8 to 35% by weight, and monomer (B) and monomer (C ) of monomer (B) and monomer (C) by continuously reducing the amount added per unit time as the supply time elapses so that the amount added becomes zero at the end of the supply. A method for producing an acrylic copolymer, characterized in that the supply is carried out within the supply period of the monomer (A).
JP2403585A 1985-02-08 1985-02-08 Production of acrylic copolymer Granted JPS61183307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2403585A JPS61183307A (en) 1985-02-08 1985-02-08 Production of acrylic copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2403585A JPS61183307A (en) 1985-02-08 1985-02-08 Production of acrylic copolymer

Publications (2)

Publication Number Publication Date
JPS61183307A JPS61183307A (en) 1986-08-16
JPH0576486B2 true JPH0576486B2 (en) 1993-10-22

Family

ID=12127250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2403585A Granted JPS61183307A (en) 1985-02-08 1985-02-08 Production of acrylic copolymer

Country Status (1)

Country Link
JP (1) JPS61183307A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100582A (en) * 1989-12-28 1992-03-31 Nalco Chemical Company Water soluble polymer as water-in-oil demulsifier
IT1317833B1 (en) * 2000-02-15 2003-07-15 Ausimont Spa THERMO-PROCESSABLE FLUORINATED POLYMERS.
JP2010229308A (en) * 2009-03-27 2010-10-14 Sumitomo Chemical Co Ltd Methacrylic resin composition for film production, and impact resistance improver for film
JP2011153291A (en) * 2009-12-28 2011-08-11 Sumitomo Chemical Co Ltd Multilayered polymer particle
JP5860260B2 (en) * 2011-10-11 2016-02-16 テクノポリマー株式会社 Thermoplastic resin composition and molded article

Also Published As

Publication number Publication date
JPS61183307A (en) 1986-08-16

Similar Documents

Publication Publication Date Title
US5399621A (en) Process for the preparation of a graft copolymer latex of core/shell dispersion particles having improved phase binding between core and shell
JP4901468B2 (en) Acrylic copolymer composition, method for preparing acrylic copolymer, and vinyl chloride resin composition containing acrylic copolymer
JPH0576486B2 (en)
JPS6261048B2 (en)
JP2005206815A (en) Flexible vinyl chloride-based copolymerized resin, resin composition and manufacturing method thereof
CN102030867B (en) Method for preparing vinyl chloride graft copolymer resins
JPH0611831B2 (en) Vinyl chloride resin composition
JP3212471B2 (en) Vinyl chloride resin
JPH1025321A (en) Crosslinked methacrylate-based resin particle and acrylic resin composition using the same
JPH03281509A (en) Fluorinated acrylic polymer having lubricating effect and thermoplastic resin composition containing the same
JP3262700B2 (en) Vinyl chloride resin
JPH1087762A (en) Vinyl chloride-based graft copolymer and its production
JPH06122827A (en) Thermoplastic resin composition
JP2002088216A (en) Vinyl chloride resin composition
JPH08188604A (en) Production of aqueous resin dispersion
JPH10218948A (en) Vinyl-chloride-grafted copolymer resin
JPS62280247A (en) Polyvinyl chloride resin composition
JPH10168135A (en) Vinyl chloride graft copolymer
JP3325404B2 (en) Method for producing vinyl chloride resin
JPH09309932A (en) Vinyl chloride resin
JPH08337622A (en) Molded synthetic resin product
JP2001106852A (en) Vinyl chloride based resin and molded product
KR20080022751A (en) Acryl-vinylacetate-vinylchloride graft copolymer having improved adhesion and method for preparing the same
JPH1087761A (en) Vinyl chloride-based graft copolymer and its production
JPH0710936A (en) Production of vinyl chloride copolymer composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees