JPH0576146B2 - - Google Patents

Info

Publication number
JPH0576146B2
JPH0576146B2 JP61105421A JP10542186A JPH0576146B2 JP H0576146 B2 JPH0576146 B2 JP H0576146B2 JP 61105421 A JP61105421 A JP 61105421A JP 10542186 A JP10542186 A JP 10542186A JP H0576146 B2 JPH0576146 B2 JP H0576146B2
Authority
JP
Japan
Prior art keywords
short
coil
heating coil
furnace frame
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61105421A
Other languages
Japanese (ja)
Other versions
JPS62262386A (en
Inventor
Fumihiro Maeda
Shinzo Ogura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10542186A priority Critical patent/JPS62262386A/en
Publication of JPS62262386A publication Critical patent/JPS62262386A/en
Publication of JPH0576146B2 publication Critical patent/JPH0576146B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えばスラブを加熱する誘導加熱装置
に関し、特に加熱装置の炉枠における漂遊損の低
減及び低騒音化を図るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an induction heating device for heating a slab, for example, and is particularly intended to reduce stray loss and noise in the furnace frame of the heating device.

〔従来技術〕[Prior art]

この種の従来の誘導加熱装置は例えば第3図に
示す如く、炉枠Aの側面を、水平部材1と直角で
一体的に取付けた垂直部材2とで格子状に構成
し、その炉枠Aの内面側には垂直部材2と対向す
る位置に絶縁支柱3を配置して炉枠Aに一体的に
固定し、この絶縁支柱3を用いて炉枠Aと同心配
置した矩形の加熱コイル4を配設して構成したも
のが、実公昭52−31449号により知られている。
In this kind of conventional induction heating device, for example, as shown in FIG. An insulating strut 3 is placed on the inner surface of the furnace at a position facing the vertical member 2 and is integrally fixed to the furnace frame A. Using this insulating strut 3, a rectangular heating coil 4 arranged concentrically with the furnace frame A is installed. The arrangement and configuration is known from Utility Model Publication No. 52-31449.

このような誘導加熱装置は、例えばスラブを加
熱する場合には、スラブを加熱コイル4内に挿入
して加熱コイル4に通電し、この加熱コイル4に
よつて発生した磁束でスラブに誘導電流を流しそ
のジユール熱によりスラブを加熱する。また加熱
コイル4の漏洩磁束は加熱コイル4の内側から外
側に出て、加熱コイル4の外側にある炉枠A等の
構造物を介して再び加熱コイル4に戻る。したが
つて炉枠Aにも大きな誘導電流が流れるが、一般
に炉枠Aは剛性の大きい鋼材等を使用しているた
め炉枠Aには漂遊損を生じて炉枠Aが温度上昇す
る。
For example, when heating a slab, such an induction heating device inserts the slab into the heating coil 4, energizes the heating coil 4, and applies an induced current to the slab using the magnetic flux generated by the heating coil 4. The slab is heated by the heat of the sink. Further, the leakage magnetic flux of the heating coil 4 exits from the inside of the heating coil 4 to the outside, and returns to the heating coil 4 via a structure such as the furnace frame A located outside the heating coil 4. Therefore, a large induced current also flows through the furnace frame A, but since the furnace frame A is generally made of steel or the like with high rigidity, a stray loss occurs in the furnace frame A and the temperature of the furnace frame A increases.

そのため、このような漂遊損を低減するため
に、加熱コイル4の外周側に珪素鋼板を積層した
鉄心を配置して、漏洩磁束をこの鉄心に導く構造
は例えば実公昭52−43012号により知られている。
即ち第4図に示す如く、炉枠Aの内壁に複数本の
絶縁支柱3と、鉄心5とを交互に炉枠Aと直交し
て配設し、これらの絶縁支柱3と鉄心5を利用し
て炉枠Aと同心配置した矩形状の加熱コイル4を
支持した構造となつている。
Therefore, in order to reduce such stray loss, a structure is known, for example, from Utility Model Publication No. 52-43012, in which an iron core made of laminated silicon steel plates is arranged on the outer circumferential side of the heating coil 4, and leakage magnetic flux is guided to this iron core. ing.
That is, as shown in FIG. 4, a plurality of insulating columns 3 and iron cores 5 are arranged alternately orthogonally to the furnace frame A on the inner wall of the furnace frame A, and these insulating columns 3 and iron cores 5 are used. It has a structure in which a rectangular heating coil 4 that is arranged concentrically with the furnace frame A is supported.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述したように、従来の誘導加熱装置では炉枠
に生じる漂遊損を低減するために加熱コイルの外
側に鉄心を設けるが、この鉄心の磁束密度が高い
場合には鉄損が増えることになり、また漏洩磁束
も増えるので、鉄心を設けた効果が半減する。そ
れ故、磁束密度を低減させるために鉄心の断面積
を大きく、また鉄心の数を多くした構造とする
と、装置が大型化し且つ全体の重量が増加する。
そして鉄心の数が増えることによる鉄心を支持す
る構成部品等が増加して保守、点検性が阻害され
る等の問題がある。更に、鉄心が振動して発する
騒音が極めて大きくなり、作業上あるいは周辺地
域に騒音公害が生じる等の問題がある。
As mentioned above, in conventional induction heating equipment, an iron core is provided outside the heating coil in order to reduce stray loss occurring in the furnace frame, but if the magnetic flux density of this iron core is high, iron loss will increase. Furthermore, since leakage magnetic flux also increases, the effect of providing an iron core is halved. Therefore, if a structure is adopted in which the cross-sectional area of the iron core is increased and the number of iron cores is increased in order to reduce the magnetic flux density, the device becomes larger and the overall weight increases.
Further, as the number of iron cores increases, the number of components supporting the iron core increases, resulting in problems such as maintenance and inspection performance being hindered. Furthermore, the noise generated by the vibration of the iron core becomes extremely large, causing problems such as noise pollution during work or in the surrounding area.

本発明は、前述した問題に鑑み炉枠における漂
遊損が少なく、簡単な構造で重量を増すことな
く、騒音も少ない誘導加熱装置を提供することを
目的とする。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide an induction heating device that has less stray loss in a furnace frame, has a simple structure, does not increase weight, and produces less noise.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の誘導加熱装置は、炉枠内に配設した加
熱コイルの漏洩磁束を、炉枠を構成する第2枠材
と対向し、加熱コイルの一方の軸端部側に配設し
た第1短絡コイルと、他方の軸端部側に配設した
第2短絡コイルと、加熱コイルの軸方向の中間
で、加熱コイルと炉枠との間に配設した第3短絡
コイルとにより、可及的に炉枠に到達させないよ
うに構成する。
In the induction heating device of the present invention, the leakage magnetic flux of the heating coil disposed within the furnace frame can be reduced by using the first The short-circuit coil, the second short-circuit coil disposed on the other shaft end side, and the third short-circuit coil disposed between the heating coil and the furnace frame in the middle of the heating coil in the axial direction The structure is configured so that it does not reach the furnace frame.

〔作用〕[Effect]

加熱コイルで発生した磁束は加熱コイル内に挿
入されたスラブに大きい誘導電流を流して、この
スラブをジユール熱により加熱する。加熱コイル
の漏洩磁束は加熱コイルの各軸端部側に設けた第
1短絡コイル及び第2短絡コイルと鎖交し、第1
短絡コイル及び第2短絡コイルに誘導電流を流
す。第1短絡コイル及び第2短絡コイルに流れた
誘導電流により反発磁界が生じて加熱コイルから
漏洩する磁束の向きを変える。また加熱コイルの
漏洩磁束は第3短絡コイルとも鎖交し、第3短絡
コイルに誘導電流が流れる。第3短絡コイルに流
れた誘導電流により反発磁界が生じて、加熱コイ
ルの漏洩磁束は第3短絡コイルの内周側を通るよ
うに向きを変える。これにより漏洩磁束が炉枠等
の構造物に流れ込むことがなく漂遊損が生じな
い。また炉枠の第1枠材は非磁性金属となつて漂
遊損が減少する。
The magnetic flux generated by the heating coil causes a large induced current to flow through the slab inserted into the heating coil, thereby heating the slab with Joule heat. The leakage magnetic flux of the heating coil interlinks with the first short-circuit coil and the second short-circuit coil provided at each axial end side of the heating coil, and
An induced current is passed through the short circuit coil and the second short circuit coil. The induced current flowing through the first short-circuit coil and the second short-circuit coil generates a repulsive magnetic field to change the direction of the magnetic flux leaking from the heating coil. Further, the leakage magnetic flux of the heating coil also interlinks with the third short circuit coil, and an induced current flows through the third short circuit coil. A repulsion magnetic field is generated by the induced current flowing through the third short-circuit coil, and the leakage magnetic flux of the heating coil changes its direction so as to pass through the inner peripheral side of the third short-circuit coil. This prevents leakage magnetic flux from flowing into structures such as the furnace frame, and no stray loss occurs. Furthermore, the first frame material of the furnace frame is made of non-magnetic metal, reducing stray loss.

〔実施例〕〔Example〕

以下に本発明をその実施例を示す図面によつて
詳述する。第1図は本発明に係る誘導加熱装置の
正面垂直断面図である。第1図において炉枠Aの
側枠は、正背面方向(紙面表裏方向)に適長離隔
して並設しているステンレススチール、アルミニ
ウム等の非磁性金属からなる第1枠材である垂直
部材6と、それらの垂直部材6の上端部及び下端
部に跨つて前記垂直部材6と直交させて一体的に
取付けている第2枠材である水平部材1とにより
枠組みされている。そして、このように構成した
側枠を四面用いて枠状に組み炉枠Aを組立てい
る。左右の側枠の垂直部材6の長さ方向中央寄り
には、適長短寸で等長の2本の絶縁支持部材7が
垂直部材6の長さ方向に適長離隔させて炉枠Aの
内側に向けて延出させて取付けられている。絶縁
支持部材7には、炉枠Aと同心的に配置され巻線
導体を角筒状に巻回して形成した加熱コイル4が
取付けられており、加熱コイル4の軸方向は垂直
部材6と平行している。この加熱コイル4の上端
部及び下端部は水平部材1が設けられた位置より
適長だけ垂直部材6の長さ方向中央寄りに位置し
ている。また加熱コイル4の上下の両軸端部に接
近して、加熱コイル4と対向するよう同寸法で1
ターンを形成している上部短絡導体8及び下部短
絡導体9を、加熱コイル4と同心的に対向配置し
ている。垂直部材6の上端部及び下端部に設けた
水平部材1と対向する位置の炉枠Aの内側には、
この水平部材1の高さ寸法と等しい高さ寸法を有
する厚さがやや厚い銅帯板を炉枠Aに沿わせて所
定ターン数で矩形渦巻状に巻回し、巻始め端部と
巻終わり端部とを接続して短絡させた第1短絡コ
イルである上部短絡コイル10及び第2短絡コイ
ルである下部短絡コイル11を夫々配設し、適宜
の取付手段により炉枠Aに支持されている。即
ち、炉枠Aの上側開口部及び下側開口部を、上部
短絡コイル10及び下部短絡コイル11により覆
つている。また同様にして、垂直部材6の長さ方
向中央部の高さ位置で、炉枠Aの内側と前記加熱
コイル4との間には所定ターン数の第3短絡コイ
ルである中間短絡コイル12を配設している。こ
の短絡コイル12は適宜手段により炉枠Aに支持
されて取付けられている。なお13は加熱コイル
4の内側に挿入したスラブ等の被加熱材である。
The present invention will be explained in detail below with reference to drawings showing embodiments thereof. FIG. 1 is a front vertical sectional view of an induction heating device according to the present invention. In Fig. 1, the side frames of the furnace frame A are vertical members that are first frame members made of non-magnetic metal such as stainless steel or aluminum and are arranged in parallel at appropriate lengths in the front-back direction (front and back direction of the page). 6, and a horizontal member 1, which is a second frame member, which is integrally attached to the vertical member 6 so as to extend over the upper and lower ends of the vertical member 6 and intersect with the vertical member 6 at right angles. Then, the furnace frame A is assembled into a frame shape using the four sides of the side frames configured in this manner. Near the center in the length direction of the vertical member 6 of the left and right side frames, two insulating support members 7 of equal length with appropriate length and shortness are spaced apart by an appropriate length in the length direction of the vertical member 6 and are installed inside the furnace frame A. It is installed to extend towards. A heating coil 4 formed by winding a wire-wound conductor into a rectangular tube shape and arranged concentrically with the furnace frame A is attached to the insulating support member 7, and the axial direction of the heating coil 4 is parallel to the vertical member 6. are doing. The upper and lower ends of this heating coil 4 are located closer to the center in the length direction of the vertical member 6 by an appropriate length than the position where the horizontal member 1 is provided. Also, one of the same dimensions is placed close to both the upper and lower ends of the heating coil 4 so as to face the heating coil 4.
An upper short-circuit conductor 8 and a lower short-circuit conductor 9 forming turns are arranged concentrically and oppositely to the heating coil 4. Inside the furnace frame A at a position facing the horizontal member 1 provided at the upper and lower ends of the vertical member 6,
A slightly thicker copper strip plate having a height equal to the height of the horizontal member 1 is wound along the furnace frame A in a rectangular spiral shape with a predetermined number of turns, and the winding start end and winding end end An upper short-circuit coil 10, which is a first short-circuit coil, and a lower short-circuit coil 11, which is a second short-circuit coil, are provided, and are supported by the furnace frame A by appropriate mounting means. That is, the upper opening and lower opening of the furnace frame A are covered by the upper shorting coil 10 and the lower shorting coil 11. Similarly, an intermediate short-circuit coil 12, which is a third short-circuit coil, having a predetermined number of turns is installed between the inside of the furnace frame A and the heating coil 4 at a height position in the longitudinal center of the vertical member 6. It is set up. This short circuit coil 12 is supported and attached to the furnace frame A by appropriate means. Note that 13 is a heated material such as a slab inserted inside the heating coil 4.

このように構成された誘導加熱装置の漏洩磁束
の状態を磁束の流れを模式的に示した第2図によ
つて説明する。第2図は誘導加熱装置の正面視右
側半截断面図である。
The state of leakage magnetic flux in the induction heating device configured as described above will be explained with reference to FIG. 2, which schematically shows the flow of magnetic flux. FIG. 2 is a right half-sectional view of the induction heating device as viewed from the front.

加熱コイル4に通電するこにより、加熱コイル
4で発生した磁束は被加熱材13を通るが、漏洩
磁束Φは上部短絡導体8と鎖交して反発磁界を発
生させる。
By energizing the heating coil 4, the magnetic flux generated by the heating coil 4 passes through the heated material 13, but the leakage magnetic flux Φ interlinks with the upper short-circuit conductor 8 to generate a repulsive magnetic field.

この上部短絡導体8による反発磁界により漏洩
磁束Φは、向きを変え上部短絡導体8と加熱コイ
ル4との間を通り抜けて上部側の水平部材1に向
かうが、炉枠Aの上側に設けている上部短絡コイ
ル10が前記上部短絡導体8における反発磁界と
同様の反発磁界を発生させて、磁束Φが下方に押
し戻されて垂直部材6に一旦入り下部側に向かう
が、垂直部材6の長さ方向の中央部に位置して設
けている中間短絡コイル12の前記同様の反発磁
界により、中間短絡コイル12の内周側に向きを
変えて入つた後、再び垂直部材6に入る。そして
垂直部材6の下部側に達した位置で、下部短絡コ
イル11による反発磁界により向きを変えて上方
へ押し戻されて、加熱コイル4の上端側における
場合と同様に加熱コイル4の下端部と下部短絡導
体9との間を通つて加熱コイル4の内周側に戻
る。なお、図示していない加熱コイル4の他の左
側半部側における磁束Φの流れも同様である。
The leakage magnetic flux Φ changes its direction due to the repulsion magnetic field generated by the upper short-circuit conductor 8, passes between the upper short-circuit conductor 8 and the heating coil 4, and heads toward the upper horizontal member 1. The upper shorting coil 10 generates a repulsive magnetic field similar to the repelling magnetic field in the upper shorting conductor 8, and the magnetic flux Φ is pushed back downward and once enters the vertical member 6 and heads toward the lower side, but in the longitudinal direction of the vertical member 6. Due to the similar repulsive magnetic field of the intermediate short-circuiting coil 12 provided at the center of the magnetic field, the magnetic field changes direction and enters the inner circumferential side of the intermediate short-circuiting coil 12, and then enters the vertical member 6 again. Then, at the position reaching the lower side of the vertical member 6, the direction is changed by the repulsive magnetic field from the lower short-circuiting coil 11 and pushed back upwards, and the lower end and lower part of the heating coil 4 are It passes between the short circuit conductor 9 and returns to the inner peripheral side of the heating coil 4. Note that the magnetic flux Φ flows in the same manner on the other left half side of the heating coil 4 (not shown).

ところで、加熱コイル4で発生する磁束量は被
加熱材13を加熱する量によつて決るため、加熱
コイル4の外側を通る漏洩磁束Φの影響を殆どう
けない。即ち、加熱コイル4の漏洩磁束は略一定
である。それ故、上、下部短絡導体8,9、上、
下部短絡コイル10,11及び中間短絡コイル1
2に流れる誘導電流はこれらの上、下部短絡導体
8,9及び上、下部短絡コイル10,11、更に
は中間短絡コイル12が存在しない状態で水平部
材1,1に流れる誘導電流と略等しい。従つて、
上、下部短絡導体8,9及び上、下部と中間の
夫々の短絡コイル10,11,12を低抵抗値の
例えば銅帯板で構成することによりそれらに発生
するジユール熱が極めて少なくなる。
By the way, since the amount of magnetic flux generated by the heating coil 4 is determined by the amount of heating of the heated material 13, it is hardly affected by the leakage magnetic flux Φ passing outside the heating coil 4. That is, the leakage magnetic flux of the heating coil 4 is approximately constant. Therefore, the upper and lower short circuit conductors 8, 9, upper,
Lower short circuit coils 10, 11 and intermediate short circuit coil 1
The induced current flowing in the horizontal members 2 is approximately equal to the induced current flowing in the horizontal members 1, 1 in the absence of the upper and lower shorting conductors 8, 9, the upper and lower shorting coils 10, 11, and the intermediate shorting coil 12. Therefore,
By constructing the upper and lower shorting conductors 8, 9 and the upper, lower, and middle shorting coils 10, 11, and 12 from low-resistance copper strips, for example, the Joule heat generated therein is extremely reduced.

このため上、下部短絡導体8,9及び上、下部
と中間短絡コイル10,11,12の温度上昇を
大幅に抑制することができる。また、漏洩磁束の
磁路を形成する鉄心が存在しないから電磁振動は
生じず騒音は極めて少なくなる。更に、中間短絡
コイル12が存在しない位置では、磁束Φが垂直
部材6に入るが、垂直部材6は非磁性金属である
から流入する磁束量は少なく、それによる温度上
昇は僅かであり、また漂遊損も極めて少ない。
Therefore, the temperature rise of the upper and lower shorting conductors 8 and 9 and the upper and lower and intermediate shorting coils 10, 11, and 12 can be significantly suppressed. Furthermore, since there is no iron core that forms a magnetic path for leakage magnetic flux, no electromagnetic vibration occurs and noise is extremely reduced. Furthermore, at a position where the intermediate short-circuit coil 12 does not exist, magnetic flux Φ enters the vertical member 6, but since the vertical member 6 is made of non-magnetic metal, the amount of magnetic flux flowing in is small, the temperature rise due to this is small, and stray Losses are also extremely small.

なお、前述した実施例では上、下部短絡導体
8,9及び上、下部と中間短絡コイル10,1
1,12に銅帯板を使用したが、銅管又は銅撚線
を使用してもよい。また、上、下部短絡導体8,
9及び中間短絡コイル12を導体内部に通水し得
る構造として、その温度上昇をより抑制すれば抵
抗値の増加をより抑えて温度上昇が殆ど生じない
ようにすることができる。
In addition, in the above-mentioned embodiment, the upper and lower short circuit conductors 8 and 9 and the upper and lower short circuit coils 10 and 1
Although copper strips were used for Nos. 1 and 12, copper tubes or copper stranded wires may also be used. In addition, upper and lower short circuit conductors 8,
9 and the intermediate short-circuit coil 12 have a structure that allows water to flow inside the conductor, and if the temperature rise is further suppressed, the increase in resistance value can be further suppressed and almost no temperature rise will occur.

更に上、下部短絡導体8,9は1ターンとした
が、数ターン程度にしてもよい。
Further, although the upper and lower short-circuiting conductors 8 and 9 have one turn, they may have several turns.

更にまた実施例では加熱コイル4の両軸端部側
に接近して短絡導体8,9を設けたが、設けなく
ても効果に大差が生じない。
Furthermore, in the embodiment, the shorting conductors 8 and 9 are provided close to both axial ends of the heating coil 4, but even if they are not provided, there is no significant difference in the effect.

〔効果〕〔effect〕

以上詳述したように本発明は、炉枠を構成して
いる第2枠材と対向し、炉枠内に配設した加熱コ
イルの各軸端部側に配設した第1短絡コイル及び
第2短絡コイルと、加熱コイルの軸方向の中間
で、加熱コイルと炉枠との間に配設した第3短絡
コイルとを設けたので、加熱コイルの漏洩磁束
を、炉枠へ可及的に到達させないように閉じ込め
ることができ、また炉枠を構成している第1枠材
に非磁性金属を用いる簡単な構造により装置を大
型化せずに炉枠の漂遊損を抑制して炉枠の温度上
昇を防ぐことができる。しかも、漏洩磁束の磁路
を形成する鉄心を用いないから、電磁振動による
騒音がなく、漂遊損の少ない低騒音の誘導加熱装
置を提供できる。
As described in detail above, the present invention provides a first short-circuit coil and a short-circuit coil disposed on each axial end side of a heating coil disposed within the furnace frame, facing the second frame member constituting the furnace frame. Two short-circuit coils and a third short-circuit coil are installed between the heating coil and the furnace frame at the axial center of the heating coil, so that leakage magnetic flux from the heating coil can be directed to the furnace frame as much as possible. In addition, the simple structure of using non-magnetic metal for the first frame material that makes up the furnace frame suppresses stray loss of the furnace frame without increasing the size of the equipment. It can prevent temperature rise. Furthermore, since no iron core is used to form a magnetic path for leakage magnetic flux, there is no noise due to electromagnetic vibration, and a low-noise induction heating device with little stray loss can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る誘導加熱装置の正面垂直
断面図、第2図は漏洩磁束の状態を示す誘導加熱
装置の右側半截断面図、第3図及び第4図は従来
の誘導加熱装置の外観斜視図である。 1……第2枠材、4……加熱コイル、6……第
1枠材、8……上部短絡導体、9……下部短絡導
体、10……上部短絡コイル、11……下部短絡
コイル、12……中間短絡コイル、A……炉枠、
なお、図中、同一符号は同一、又は相当部分を示
す。
FIG. 1 is a front vertical sectional view of an induction heating device according to the present invention, FIG. 2 is a right half sectional view of the induction heating device showing the state of leakage magnetic flux, and FIGS. 3 and 4 are of a conventional induction heating device. It is an external perspective view. 1... Second frame material, 4... Heating coil, 6... First frame material, 8... Upper short circuit conductor, 9... Lower short circuit conductor, 10... Upper short circuit coil, 11... Lower short circuit coil, 12... Intermediate short circuit coil, A... Furnace frame,
In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 非磁性金属の第1枠材と、この第1枠材の両
端に直交して取付けた第2枠材とで構成された炉
枠と、軸方向を前記第1枠材と平行させ前記炉枠
内側に配設した加熱コイルと、前記第2枠材と対
向し、前記加熱コイルの一方の軸端部側に配設し
た第1短絡コイルと、他方の軸端部側に配設した
第2短絡コイルと、前記加熱コイルの軸長方向の
中間で該加熱コイルと前記炉枠との間に配設した
第3短絡コイルとを備えて構成してあることを特
徴とする誘導加熱装置。 2 短絡コイルを銅の帯板、銅管又は銅撚線で形
成している特許請求の範囲第1項記載の誘導加熱
装置。 3 短絡コイルが強制水冷構造である特許請求の
範囲第1項記載の誘導加熱装置。
[Scope of Claims] 1. A furnace frame composed of a first frame member made of a non-magnetic metal and a second frame member attached perpendicularly to both ends of the first frame member; a heating coil disposed inside the furnace frame parallel to the material; a first short-circuit coil disposed on one shaft end side of the heating coil facing the second frame material; and the other shaft end. A second short-circuit coil disposed on the side, and a third short-circuit coil disposed between the heating coil and the furnace frame in the middle of the heating coil in the axial direction. induction heating device. 2. The induction heating device according to claim 1, wherein the short-circuit coil is formed of a copper strip, a copper tube, or a copper stranded wire. 3. The induction heating device according to claim 1, wherein the short circuit coil has a forced water cooling structure.
JP10542186A 1986-05-08 1986-05-08 Induction heater Granted JPS62262386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10542186A JPS62262386A (en) 1986-05-08 1986-05-08 Induction heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10542186A JPS62262386A (en) 1986-05-08 1986-05-08 Induction heater

Publications (2)

Publication Number Publication Date
JPS62262386A JPS62262386A (en) 1987-11-14
JPH0576146B2 true JPH0576146B2 (en) 1993-10-22

Family

ID=14407132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10542186A Granted JPS62262386A (en) 1986-05-08 1986-05-08 Induction heater

Country Status (1)

Country Link
JP (1) JPS62262386A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672302A (en) * 1996-10-09 1997-09-30 Eastman Kodak Company In-situ surface nitridation of zirconia ceramics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844834A (en) * 1971-10-05 1973-06-27
JPS59122885A (en) * 1982-12-28 1984-07-16 三菱電機株式会社 Induction heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844834A (en) * 1971-10-05 1973-06-27
JPS59122885A (en) * 1982-12-28 1984-07-16 三菱電機株式会社 Induction heater

Also Published As

Publication number Publication date
JPS62262386A (en) 1987-11-14

Similar Documents

Publication Publication Date Title
US3431524A (en) Polyphase electrical transformer construction having vertically superposed winding structures with cooling ducts
US3551863A (en) Transformer with heat dissipator
TWI595517B (en) Ground induction electrical appliances
US3577109A (en) Magnetic shielding construction for electric transformers
US4115712A (en) High power and high speed linear motor
JP5930780B2 (en) Reactor
JPH0576146B2 (en)
JP3995869B2 (en) Transformer
JP4711568B2 (en) Transformer
US3967226A (en) Electrical inductive apparatus having magnetic shielding cores and a gapped main core structure
JPS5826500Y2 (en) liquid cooled wound core
JPH0576147B2 (en)
KR102555275B1 (en) iron core structure of transformer
JPS6317222Y2 (en)
US4630018A (en) Molded case circuit breaker current transformer with spiral bus
RU2144229C1 (en) Three-phase balanced transformer
EP0092204A2 (en) Inductance coil
JP2019009272A (en) electromagnet
JP2834527B2 (en) High frequency high voltage transformer for X-ray power supply
JP3427629B2 (en) Electromagnetic induction equipment
JP3671778B2 (en) Transformer
JPH0582364A (en) Reactor
JPH05326292A (en) Gas insulated transformer
JPH05326293A (en) Gas insulated transformer
JPH054435U (en) Oil-filled transformer winding

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term