JP2019009272A - electromagnet - Google Patents

electromagnet Download PDF

Info

Publication number
JP2019009272A
JP2019009272A JP2017123386A JP2017123386A JP2019009272A JP 2019009272 A JP2019009272 A JP 2019009272A JP 2017123386 A JP2017123386 A JP 2017123386A JP 2017123386 A JP2017123386 A JP 2017123386A JP 2019009272 A JP2019009272 A JP 2019009272A
Authority
JP
Japan
Prior art keywords
refrigerant liquid
coil
rectifying plate
electromagnet
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017123386A
Other languages
Japanese (ja)
Other versions
JP6502423B2 (en
Inventor
慶治 服巻
Keiji Fukumaki
慶治 服巻
渡邉 隆司
Takashi Watanabe
隆司 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON MAGNETICS KK
Original Assignee
NIPPON MAGNETICS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON MAGNETICS KK filed Critical NIPPON MAGNETICS KK
Priority to JP2017123386A priority Critical patent/JP6502423B2/en
Priority to PCT/JP2018/023781 priority patent/WO2018235940A1/en
Priority to CN201880003840.XA priority patent/CN109844874B/en
Priority to KR1020197005158A priority patent/KR101999825B1/en
Publication of JP2019009272A publication Critical patent/JP2019009272A/en
Application granted granted Critical
Publication of JP6502423B2 publication Critical patent/JP6502423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Electromagnets (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

To provide an electromagnet capable of improving cooling efficiency of a coil.SOLUTION: An electromagnet including a coil laminate 20 formed by laminating multiple coils 21, where a conductor is wound into multiple doughnut shapes and integrated, in a vertical direction via a spacer 22, a coil case 30 having a coil housing part of a doughnut-shape for housing the coil laminate, and a refrigerant liquid circulation cooling mechanism for introducing refrigerant liquid from a refrigerant liquid inlet 31e provided in the coil case, and draining the refrigerant liquid from a refrigerant liquid outlet 31f provided in the coil case 30, and then introducing the cooled refrigerant liquid again from the refrigerant liquid inlet 31e, is further provided with a first distributor 41 for restraining the refrigerant liquid, introduced from the refrigerant liquid inlet 31e, from flowing along an outer peripheral surface of the coil laminate 20, a second distributor 42 for restraining the refrigerant liquid from flowing along an upper surface of the coil laminate 20, and a third distributor 43 for restraining the refrigerant liquid from springing up from the center of the coil laminate 20.SELECTED DRAWING: Figure 1

Description

本発明は電磁石に関し、特にその冷却構造に関する。   The present invention relates to an electromagnet, and more particularly to its cooling structure.

電磁石を用いた機器は、その用途に関わらず、コイルを構成する導線に電流を流す構造上、発熱量は概ね体積に比例して寸法比の3乗で増大する一方、表面積は寸法比の2乗しか増大しないので、表面を放熱面とすると、冷却効率が悪化する。そこで従前より、表面以外に放熱面積を増やすために、導線(コイル)を分割しその周辺に冷媒を流す構造(特許文献1)や、冷媒を流すことが可能な中空導線と中実導線を組み合わせた構造(特許文献2)が提案されている。   Regardless of its application, the device using an electromagnet has a structure in which an electric current is passed through a conductive wire constituting a coil, and the calorific value increases in proportion to the volume to the cube of the dimensional ratio, while the surface area is 2 of the dimensional ratio. Since only the power is increased, the cooling efficiency is deteriorated if the surface is a heat radiating surface. Therefore, conventionally, in order to increase the heat radiation area other than the surface, a structure in which a conductor (coil) is divided and a refrigerant flows around it (Patent Document 1), or a hollow conductor capable of flowing a refrigerant and a solid conductor are combined. Another structure (Patent Document 2) has been proposed.

ここで、発熱体から冷媒への熱の伝わり易さを表す熱伝達係数は、冷媒の種類と流速によって大きく変化する。冷媒として気体を選択した場合、流れている空気では、10〜250kcal/(m・h・℃)程度である。また、流れている油で50〜1500kcal/(m・h・℃)程度、流れている水で250〜5000kcal/(m・h・℃)程度である。すなわち、冷媒としては気体よりも液体を用いる方が冷却効率が良い。このことから、電磁石のコイルを冷却する冷媒としては、液体の冷媒(冷媒液)を用いるのが一般的であり、特にコイルの絶縁性確保の点から絶縁油が多用されている。 Here, the heat transfer coefficient representing the ease of heat transfer from the heating element to the refrigerant varies greatly depending on the type and flow rate of the refrigerant. When gas is selected as the refrigerant, it is about 10 to 250 kcal / (m 2 · h · ° C.) in flowing air. The flows in the oil are 50~1500kcal / (m 2 · h · ℃) about a 250~5000kcal / (m 2 · h · ℃) about in flowing water. That is, the cooling efficiency is better when the liquid is used as the refrigerant than the gas. For this reason, it is common to use a liquid refrigerant (refrigerant liquid) as a refrigerant for cooling the coil of the electromagnet, and in particular, insulating oil is frequently used from the viewpoint of ensuring the insulation of the coil.

しかし、前記特許文献1の構造において冷媒として冷媒液を用いると、前記特許文献1の構造では、コイルが分割され、コイルの外周に冷媒液の通路が施されているものの、循環手段が強制循環でも自然循環でも、このような構造では、冷媒液が流れやすい場所と流れにくい場所が生じて、冷却のバラツキが生じ、冷却効率が低下する問題点がある。また、前記特許文献2の構造の場合、中空コイル導線内の冷媒のみ強制循環されているので、中空コイル導線は良く冷却されるが、中空コイル導線の外側であるコイル収容空間は強制循環なされておらず、この場合も、冷却のバラツキが生じて冷却効率が低下する問題点がある。   However, when the refrigerant liquid is used as the refrigerant in the structure of Patent Document 1, the coil is divided and the refrigerant liquid passage is provided on the outer periphery of the coil in the structure of Patent Document 1, but the circulation means is forced circulation. However, even with natural circulation, in such a structure, there are places where the refrigerant liquid easily flows and places where it is difficult to flow, causing variations in cooling and reducing cooling efficiency. In the case of the structure of Patent Document 2, only the refrigerant in the hollow coil conductor is forcibly circulated, so that the hollow coil conductor is well cooled, but the coil housing space outside the hollow coil conductor is forcibly circulated. In this case as well, there is a problem that the cooling efficiency is lowered due to variations in cooling.

特開昭52−57654号公報JP-A-52-57654 特開平6−286970号公報JP-A-6-286970

本発明が解決しようとする課題は、コイルの冷却効率を向上できる電磁石を提供することにある。   An object of the present invention is to provide an electromagnet that can improve the cooling efficiency of a coil.

この課題を解決するために本発明者らが、コイルを上下方向に複数積層したコイル積層体を備える従来の電磁石において、冷媒液によるコイル積層体の冷却状態について詳細に調査したところ、最も熱のこもりやすいコイル間を流れる冷媒液の流量が予想以上に少なく、結果として冷却のバラツキが生じて冷却効率が低下していることが判明した。そこで本発明者らは、冷媒液がコイル間を通過しやすくなる構造を志向し、本発明に想到した。   In order to solve this problem, the present inventors investigated in detail the cooling state of the coil laminate by the refrigerant liquid in a conventional electromagnet including a coil laminate in which a plurality of coils are laminated in the vertical direction. It has been found that the flow rate of the refrigerant liquid flowing between the coils that are likely to be confined is smaller than expected, resulting in variations in cooling and lowering the cooling efficiency. Therefore, the present inventors have devised a structure in which the refrigerant liquid can easily pass between the coils, and have arrived at the present invention.

すなわち、本発明の一観点によれば次の電磁石が提供される。
「導線をドーナッツ形状に複数巻いて一体にしたコイルを、スペーサを介して上下方向に複数積層してなるコイル積層体と、
このコイル積層体を収容するドーナッツ形状のコイル収容部を有するコイルケースと、
このコイルケースに設けた冷媒液入口から冷媒液を導入し、その冷媒液を前記コイルケースに設けた冷媒液出口から排出し、その冷媒液を冷却後再び前記冷媒液入口から導入する冷媒液循環冷却機構とを備える電磁石において、
前記冷媒液入口から導入された冷媒液が前記コイル積層体の外周面に沿って流れるのを抑制する第1の整流板と、
前記冷媒液が前記コイル積層体の上面に沿って流れるのを抑制する第2の整流板と、
前記冷媒液が前記コイル積層体の中心部から湧き上がるのを抑制する第3の整流板とを設けていることを特徴とする電磁石。」
That is, according to one aspect of the present invention, the following electromagnet is provided.
“A coil laminate formed by laminating a plurality of conductor wires in a donut shape and integrating them in a vertical direction via a spacer,
A coil case having a doughnut-shaped coil housing part for housing the coil laminate;
The refrigerant liquid is introduced from the refrigerant liquid inlet provided in the coil case, the refrigerant liquid is discharged from the refrigerant liquid outlet provided in the coil case, and the refrigerant liquid is cooled and then introduced again from the refrigerant liquid inlet. In an electromagnet comprising a cooling mechanism,
A first rectifying plate that suppresses the refrigerant liquid introduced from the refrigerant liquid inlet from flowing along the outer peripheral surface of the coil laminate;
A second rectifying plate for suppressing the refrigerant liquid from flowing along the upper surface of the coil laminate;
An electromagnet comprising a third rectifying plate for suppressing the refrigerant liquid from springing up from a central portion of the coil laminate. "

本発明によれば、前記第1〜3の整流板を設けたことで、冷媒液が、最も熱のこもりやすいコイル間を通過しやすくなり、冷却効率が向上する。
また、冷却効率が向上することで、一定の印加電圧のもとでは電流値の低下を抑制することができ、その結果、電磁石の磁束密度を高く維持できる。すなわち、冷却効率が向上することで、電磁石(コイル)の単位体積あたりの発熱量を上げることができるので、高磁束密度化や小型化が可能となる。
さらに、冷却効率が向上することで、ヒートスポットをなくすことができ、絶縁油等の冷媒液の劣化を抑制できるとともに、冷媒液の劣化によるスラッジの発生や絶縁抵抗の低下を抑制できる。
According to the present invention, the provision of the first to third rectifying plates makes it easier for the refrigerant liquid to pass between the coils where heat is most likely to be accumulated, thereby improving the cooling efficiency.
In addition, by improving the cooling efficiency, it is possible to suppress a decrease in the current value under a constant applied voltage, and as a result, the magnetic flux density of the electromagnet can be maintained high. That is, since the heat generation amount per unit volume of the electromagnet (coil) can be increased by improving the cooling efficiency, it is possible to increase the magnetic flux density and reduce the size.
Furthermore, by improving the cooling efficiency, heat spots can be eliminated, deterioration of refrigerant liquid such as insulating oil can be suppressed, and generation of sludge and reduction of insulation resistance due to deterioration of refrigerant liquid can be suppressed.

本発明の一実施形態である電磁石の要部を示す図で、(a)は斜視図、(b)はA−A矢視図、(c)はB−B矢視図である。It is a figure which shows the principal part of the electromagnet which is one Embodiment of this invention, (a) is a perspective view, (b) is an AA arrow directional view, (c) is a BB arrow directional view. 図1の電磁石が備えるコイル積層体を示す図で、(a)は斜視図、(b)は冷媒液入口側から見た図である。It is a figure which shows the coil laminated body with which the electromagnet of FIG. 1 is provided, (a) is a perspective view, (b) is the figure seen from the refrigerant | coolant liquid inlet side. 図1の電磁石が備えるコイルケースのケース本体を示す斜視図である。It is a perspective view which shows the case main body of the coil case with which the electromagnet of FIG. 1 is provided. 図2のコイル積層体を図3のケース本体に収容した状態を示す斜視図である。It is a perspective view which shows the state which accommodated the coil laminated body of FIG. 2 in the case main body of FIG. 整流板を設けていない場合の冷媒液の流れを示すイメージ図である。It is an image figure which shows the flow of the refrigerant | coolant liquid when the baffle plate is not provided. 第1の整流板と第4の整流板を設けた場合の冷媒液の流れを示すイメージ図である。It is an image figure which shows the flow of the refrigerant | coolant liquid at the time of providing a 1st baffle plate and a 4th baffle plate. 図6においてさらに第2の整流板を設けた場合の冷媒液の流れを示すイメージ図である。It is an image figure which shows the flow of the refrigerant | coolant liquid at the time of providing the 2nd baffle plate further in FIG. 図7においてさらに第3の整流板を設けた場合の冷媒液の流れを示すイメージ図である。It is an image figure which shows the flow of the refrigerant | coolant liquid at the time of providing the 3rd baffle plate further in FIG. 本発明の他の実施形態である電磁石の要部を示す斜視図である。It is a perspective view which shows the principal part of the electromagnet which is other embodiment of this invention. 本発明の他の実施形態である電磁石の要部を示す斜視図である。It is a perspective view which shows the principal part of the electromagnet which is other embodiment of this invention. 本発明の他の実施形態である電磁石の要部を示す斜視図である。It is a perspective view which shows the principal part of the electromagnet which is other embodiment of this invention. 本発明の一実施形態である電磁石を備える電磁分離機の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of an electromagnetic separator provided with the electromagnet which is one Embodiment of this invention.

図1に、本発明の一実施形態である電磁石10の要部を示しており、(b)はA−A矢視図、(c)はB−B矢視図である。図2には、電磁石10が備えるコイル積層体20を示しており、(a)は斜視図、(b)は冷媒液入口側から見た図である。図3には、電磁石10が備えるコイルケース30のケース本体31を示しており、図4には、コイル積層体20をケース本体31に収容した状態を示している。   The principal part of the electromagnet 10 which is one Embodiment of this invention is shown in FIG. 1, (b) is an AA arrow directional view, (c) is a BB arrow directional view. FIG. 2 shows a coil laminate 20 included in the electromagnet 10, wherein (a) is a perspective view and (b) is a view as seen from the refrigerant liquid inlet side. 3 shows a case main body 31 of a coil case 30 included in the electromagnet 10, and FIG. 4 shows a state where the coil laminate 20 is accommodated in the case main body 31.

図1に示している電磁石10は、コイル積層体20と、このコイル積層体20を収容するコイルケース30とを備える。   The electromagnet 10 shown in FIG. 1 includes a coil laminate 20 and a coil case 30 that accommodates the coil laminate 20.

コイル積層体20は図2に示しているように、銅線やアルミニウム線などの導線をドーナッツ形状に複数巻いて一体にしたコイル21を、スペーサ22を介して上下方向に複数(本実施形態では3枚)積層し、これを上下の押え板23a,23bで挟んで、これら上下の押え板23a,23bをボルト24で締結することにより、一体としたものである。なお、本実施形態において各コイルは電気的に直列に接続されているが、並列に接続してもよい。   As shown in FIG. 2, the coil laminate 20 includes a plurality of coils 21 that are integrally formed by winding a plurality of conductive wires such as copper wires and aluminum wires in a donut shape in a vertical direction via spacers 22 (in this embodiment, 3 pieces) are stacked, sandwiched between the upper and lower presser plates 23a and 23b, and the upper and lower presser plates 23a and 23b are fastened with bolts 24 to be integrated. In the present embodiment, the coils are electrically connected in series, but may be connected in parallel.

このコイル積層体20を収容するコイルケース30は、ケース本体31と上蓋32とを備える。ケース本体31は図3に示しているように、外筒部31aと内筒部31bと底部31cとを有し、これら外筒部31a、内筒部31b及び底部31cによって、コイル積層体20を収容するドーナッツ形状のコイル収容部31dが形成されている。このコイル収容部31dにコイル積層体20を収容後(図4参照)、上蓋32を被せることで、コイル積層体20がコイルケース30に収容される(図1参照)。なお、図示を省略しているが、コイル積層体20は、ケース本体31の外筒部31aの内周面に対して、ボルトなどの固定手段により位置決め固定されている、   A coil case 30 that accommodates the coil laminate 20 includes a case main body 31 and an upper lid 32. As shown in FIG. 3, the case main body 31 has an outer cylinder part 31a, an inner cylinder part 31b, and a bottom part 31c, and the coil laminate 20 is formed by the outer cylinder part 31a, the inner cylinder part 31b, and the bottom part 31c. A donut-shaped coil housing portion 31d for housing is formed. After accommodating the coil laminate 20 in the coil accommodating portion 31d (see FIG. 4), the coil laminate 20 is accommodated in the coil case 30 by covering the upper lid 32 (see FIG. 1). Although not shown, the coil laminate 20 is positioned and fixed to the inner peripheral surface of the outer cylindrical portion 31a of the case body 31 by a fixing means such as a bolt.

コイルケース30のケース本体31には、冷媒液入口31eと冷媒液出口31fが設けられている。これら冷媒液入口31eと冷媒液出口31fには、後述する冷媒液循環冷却機構50(図12参照)が接続される。すなわち、この冷媒液循環冷却機構50は、冷媒液入口31eからコイルケース30内に冷媒液を導入し、その冷媒液を冷媒液出口31fから排出し、その冷媒液を冷却後再び冷媒液入口31fから導入する。これにより、コイルケース30に収容されたコイル積層体20(各コイル21)が冷媒液によって冷却される。なお、冷媒液は、コイルケース30内においてコイル積層体20が浸かる程度に満たされるように循環する。また、冷媒液としては、鉱物油やシリコーンオイルなどの絶縁油が好適である。   The case body 31 of the coil case 30 is provided with a refrigerant liquid inlet 31e and a refrigerant liquid outlet 31f. A refrigerant liquid circulation cooling mechanism 50 (see FIG. 12) described later is connected to the refrigerant liquid inlet 31e and the refrigerant liquid outlet 31f. That is, the refrigerant liquid circulation cooling mechanism 50 introduces the refrigerant liquid into the coil case 30 from the refrigerant liquid inlet 31e, discharges the refrigerant liquid from the refrigerant liquid outlet 31f, cools the refrigerant liquid, and again cools the refrigerant liquid inlet 31f. Introduce from. Thereby, the coil laminated body 20 (each coil 21) accommodated in the coil case 30 is cooled by the refrigerant liquid. The refrigerant liquid circulates in the coil case 30 so as to be filled to the extent that the coil laminate 20 is immersed. Further, as the refrigerant liquid, an insulating oil such as mineral oil or silicone oil is suitable.

ここで、コイル積層体20の各コイル21間に設置しているスペーサ22について説明を加えると、本実施形態ではスペーサ22は図1(b)に示しているように、各コイル21間において所定の間隔をおいて複数条(本実施形態では5条)並べており、これら複数条のスペーサ22は冷媒液入口31eから冷媒液出口31fに向かう冷媒液の流れ方向(冷媒液出口31fを通るコイル積層体20の直径方向中心線L方向)に沿って互いに平行、かつコイル積層体20の直径方向中心線Lに対して線対称となるように並べている。これにより、各コイル21間には、冷媒液入口31eから冷媒液出口31fに向かう冷媒液の流れ方向(直径方向中心線L方向)に沿って平行に、複数の冷媒液の流路が均一に形成される。   Here, when the spacer 22 installed between the coils 21 of the coil laminate 20 is further described, in the present embodiment, the spacer 22 is predetermined between the coils 21 as shown in FIG. The plurality of spacers 22 are arranged at intervals of 5 (in this embodiment), and the plurality of spacers 22 are arranged in the direction of the refrigerant liquid flowing from the refrigerant liquid inlet 31e to the refrigerant liquid outlet 31f (coil stack passing through the refrigerant liquid outlet 31f). Are arranged so as to be parallel to each other along the diameter direction center line L of the body 20 and symmetrical with respect to the diameter direction center line L of the coil laminate 20. Thereby, between each coil 21, the flow path of a some refrigerant | coolant liquid is parallel along the flow direction (diameter direction centerline L direction) of the refrigerant | coolant liquid which goes to the refrigerant | coolant liquid outlet 31f from the refrigerant | coolant liquid inlet 31e. It is formed.

以上の構成において本実施形態では、冷媒液が各コイル21間を通過しやすくなるように、第1〜4の整流板41〜44を設けている。以下、各整流板の作用効果について、図面を参照しつつ説明する。   In the above configuration, in the present embodiment, the first to fourth rectifying plates 41 to 44 are provided so that the refrigerant liquid can easily pass between the coils 21. Hereinafter, the effect of each current plate will be described with reference to the drawings.

図5に、整流板を設けていない場合の冷媒液の流れを示すイメージ図である。なお、このイメージ図は、コンピュータによる流体解析結果に基づき作成したもので、実線はコイル積層体の外側の流れ、破線はコイル積層体の内部(コイル間)の流れを示し、線の太さは流量の多さを表している。また、このイメージ図では、図3に示しているケース本体31の内筒部31bの上端に設けているフランジ部31b−1は、冷媒液の流れをわかりやすく示すために省略している。以下のイメージ図(図5〜11)でも同じである、   FIG. 5 is an image diagram showing the flow of the refrigerant liquid when no rectifying plate is provided. This image is created based on the results of fluid analysis by a computer. The solid line indicates the flow outside the coil stack, the broken line indicates the flow inside the coil stack (between the coils), and the thickness of the line indicates the flow rate. Represents the number of Further, in this image diagram, the flange portion 31b-1 provided at the upper end of the inner cylinder portion 31b of the case main body 31 shown in FIG. 3 is omitted for easy understanding of the flow of the refrigerant liquid. The same is true for the following image diagrams (FIGS. 5 to 11).

整流板を設けていない場合、図5に示しているように冷媒液は、最も通過面積の広い、コイル積層体の外周面に沿った流路1,2を通過するため、効率的な冷却がなされない。そこで本実施形態では、コイル積層体の外周面に沿った流路1,2への冷媒液の通過を抑制するために、流路1,2の途中にそれぞれ第1の整流板41を設けている(図6参照)。すなわち、第1の整流板41は、冷媒液がコイル積層体の外周面に沿って流れるのを抑制する。本実施形態において第1の整流板41は、図1(b)に示しているように、複数条のスペーサ22のうち最も外周側に位置する2つのスペーサ22A,22Aの、冷媒液入口31eに近い側の端部に連続するように設けている。これにより、冷媒液がコイル積層体の外周面に沿って流れるのをほほ完全に抑制することができる。このように第1の整流板41は、スペーサ22A,22Aの冷媒液入口31eに近い側の端部に連続するように設けることが最も好ましいが、前記流路1,2の途中に設けていれば前記流路1,2への冷媒液の通過を抑制する作用効果は得られる。ただし、前記流路1,2への冷媒液の通過を抑制する点からは、第1の整流板41は、複数条のスペーサ22のうち最も外周側に位置する2つスペーサ22A,22Aに近接して少なくとも2つ設けることが好ましく、本実施形態のように、スペーサ22A,22Aの冷媒液入口31eに近い側の端部に連続するように設けることが最も好ましい。   When the rectifying plate is not provided, as shown in FIG. 5, the refrigerant liquid passes through the flow paths 1 and 2 along the outer peripheral surface of the coil laminate having the widest passage area, so that efficient cooling is achieved. Not done. Therefore, in this embodiment, in order to suppress the passage of the refrigerant liquid to the flow paths 1 and 2 along the outer peripheral surface of the coil laminate, a first rectifying plate 41 is provided in the middle of the flow paths 1 and 2, respectively. (See FIG. 6). That is, the 1st baffle plate 41 suppresses that a refrigerant | coolant liquid flows along the outer peripheral surface of a coil laminated body. In the present embodiment, as shown in FIG. 1B, the first rectifying plate 41 is provided at the refrigerant liquid inlet 31 e of the two spacers 22 </ b> A and 22 </ b> A located on the outermost side among the plurality of spacers 22. It is provided so as to continue to the end on the near side. Thereby, it can suppress almost completely that a refrigerant | coolant liquid flows along the outer peripheral surface of a coil laminated body. As described above, the first rectifying plate 41 is most preferably provided so as to be continuous with the end portion of the spacers 22A and 22A on the side close to the refrigerant liquid inlet 31e, but may be provided in the middle of the flow paths 1 and 2. For example, the effect of suppressing the passage of the refrigerant liquid into the flow paths 1 and 2 can be obtained. However, the first rectifying plate 41 is close to the two outermost spacers 22 </ b> A and 22 </ b> A among the plurality of spacers 22 in terms of suppressing the passage of the refrigerant liquid to the flow paths 1 and 2. It is preferable to provide at least two, and it is most preferable to provide the spacers 22A and 22A so as to be continuous with the end portion on the side close to the refrigerant liquid inlet 31e as in this embodiment.

再び図6を参照すると、本実施形態では、冷媒液入口の近傍に、当該冷媒液入口から導入された冷媒液の流れをコイル積層体の外周方向に分流するために第4の整流板44を設けている。この第4の整流板44を設けることで冷媒液の流れをコイル積層体の外周方向に均等に分流することができる。ただし、第4の整流板44を設けなくとも、冷媒液の流れはコイル積層体の外周方向にある程度は分流されるので、第4の整流板44は省略可能である。   Referring to FIG. 6 again, in the present embodiment, a fourth rectifying plate 44 is provided in the vicinity of the refrigerant liquid inlet in order to divert the flow of the refrigerant liquid introduced from the refrigerant liquid inlet toward the outer periphery of the coil stack. Provided. By providing the fourth rectifying plate 44, the flow of the refrigerant liquid can be evenly divided in the outer circumferential direction of the coil laminate. However, even if the fourth rectifying plate 44 is not provided, the flow of the refrigerant liquid is diverted to some extent in the outer peripheral direction of the coil laminate, and therefore the fourth rectifying plate 44 can be omitted.

前述のように第1の整流板41を設けることで、前記流路1,2への冷媒液の通過は抑制されるものの、このままでは図6に示しているように、コイル積層体の上面に沿った流路3への冷媒液の通過が増大する。そこで本実施形態では、この流路3への冷媒液の通過を抑制するために、図7に示しているように第2の整流板42を設けている。すなわち、第2の整流板42は、冷媒液がコイル積層体の上面に沿って流れるのを抑制する。本実施形態において第2の整流板42は、その両端部が2つの第1の整流板41,41に連続するように設けている。これにより、冷媒液がコイル積層体の上面に沿って流れるのをほほ完全に抑制することができる。このように第2の整流板42は、その両端部が2つの第1の整流板41,41に連続するように設けることが最も好ましいが、前記流路3の途中に設けていれば前記流路3への冷媒液の通過を抑制する作用効果は得られる。ただし、前記流路3への冷媒液の通過を抑制する点からは、第2の整流板42は、その両端部が2つの第1の整流板41,41に近接するように設けることが好ましく、本実施形態のように、その両端部が2つの第1の整流板41,41に連続するように設けることが最も好ましい。   By providing the first rectifying plate 41 as described above, the passage of the refrigerant liquid into the flow paths 1 and 2 is suppressed, but as it is, as shown in FIG. The passage of the refrigerant liquid to the flow path 3 along increases. Therefore, in this embodiment, in order to suppress the passage of the refrigerant liquid to the flow path 3, a second rectifying plate 42 is provided as shown in FIG. That is, the 2nd baffle plate 42 suppresses that a refrigerant | coolant liquid flows along the upper surface of a coil laminated body. In the present embodiment, the second rectifying plate 42 is provided so that both end portions thereof are continuous with the two first rectifying plates 41, 41. Thereby, it can suppress almost completely that a coolant liquid flows along the upper surface of a coil laminated body. As described above, the second rectifying plate 42 is most preferably provided so that both ends thereof are continuous with the two first rectifying plates 41, 41. However, if the second rectifying plate 42 is provided in the middle of the flow path 3, The effect of suppressing the passage of the refrigerant liquid to the path 3 is obtained. However, from the viewpoint of suppressing the passage of the refrigerant liquid to the flow path 3, the second rectifying plate 42 is preferably provided so that both end portions thereof are close to the two first rectifying plates 41, 41. As in the present embodiment, it is most preferable that both end portions are provided so as to be continuous with the two first rectifying plates 41, 41.

このように第1の整流板41と第2の整流板42を設けることで、前記流路1〜3への冷媒液の通過は抑制されるものの、これだけでは図7に示しているように、コイル積層体の中心部から湧き上がる方向の流路4への冷媒液の通過が増大する。そこで本実施形態では、この流路4への冷媒液の通過を抑制するために第3の整流板43を設けている(図8参照)。すなわち、第3の整流板43は、冷媒液がコイル積層体の中心部から湧き上がるのを抑制する。本実施形態において第3の整流板43は、コイル積層体の内孔面から連続して立ち上がる円筒形状を有する。第3の整流板43は円筒形状には限定されず、例えば前記流路4を塞ぐような円環形状とすることもできるが、コイル積層体のコイルケース(コイル収容部)への収容のしやすさの点からは本実施形態のように円筒形状とすることが好ましい。   By providing the first rectifying plate 41 and the second rectifying plate 42 in this way, the passage of the refrigerant liquid to the flow paths 1 to 3 is suppressed, but only as shown in FIG. The passage of the refrigerant liquid into the flow path 4 in the direction of rising from the center of the coil laminate increases. Therefore, in the present embodiment, a third rectifying plate 43 is provided in order to suppress the passage of the refrigerant liquid to the flow path 4 (see FIG. 8). That is, the 3rd baffle plate 43 suppresses that a refrigerant | coolant liquid springs up from the center part of a coil laminated body. In the present embodiment, the third rectifying plate 43 has a cylindrical shape that rises continuously from the inner hole surface of the coil laminate. The third rectifying plate 43 is not limited to a cylindrical shape, and may be, for example, an annular shape that closes the flow path 4, but the coil laminated body is not accommodated in the coil case (coil accommodating portion). From the viewpoint of easiness, it is preferable to use a cylindrical shape as in this embodiment.

このように本実施形態では、第1の整流板41,41、第2の整流板42及び第3の整流板43を設けていることで、前記流路1〜4への冷媒液の通過はほとんど抑制され、その結果、冷媒液は最も熱のこもりやすい各コイル21間(図8に示している流路5〜8)に冷媒液が通過するようになる。これにより、コイル積層体20(各コイル21)の冷却効率が向上するので電流値の低下を抑制することができ、その結果、電磁石10の磁束密度を高く維持できる。さらに、冷却効率が向上することで、ヒートスポットをなくすことができ、絶縁油等の冷媒液の劣化を抑制できるとともに、冷媒液の劣化によるスラッジの発生や絶縁抵抗の低下を抑制できる。実際、本発明者らの試験の結果、本実施形態の電磁石10によれば、整流板を設けていない従来の電磁石(図5)に比べ、電流値の低下は約20%から約10%に軽減した。また冷媒液(絶縁油)の温度は、最高温度が約120度から約40度に低減し、スラッジが発生するといわれている50度以下にすることができた。   As described above, in the present embodiment, the first rectifying plates 41, 41, the second rectifying plate 42, and the third rectifying plate 43 are provided, so that the refrigerant liquid passes through the flow paths 1 to 4. As a result, the refrigerant liquid passes through between the coils 21 (flow paths 5 to 8 shown in FIG. 8) where the refrigerant liquid is most likely to accumulate. Thereby, since the cooling efficiency of the coil laminated body 20 (each coil 21) improves, the fall of an electric current value can be suppressed, As a result, the magnetic flux density of the electromagnet 10 can be maintained high. Furthermore, by improving the cooling efficiency, heat spots can be eliminated, deterioration of refrigerant liquid such as insulating oil can be suppressed, and generation of sludge and reduction of insulation resistance due to deterioration of refrigerant liquid can be suppressed. In fact, as a result of the tests of the present inventors, according to the electromagnet 10 of the present embodiment, the current value decreases from about 20% to about 10% compared to the conventional electromagnet (FIG. 5) without the rectifying plate. Reduced. The maximum temperature of the refrigerant liquid (insulating oil) was reduced from about 120 degrees to about 40 degrees, and it was possible to reduce the temperature to 50 degrees or less, which is said to generate sludge.

以上、本発明の実施形態を説明したが、本発明はこれには限定されない。例えば図9に示しているように第2の整流板42−1を、第3の整流板43と一体に設けることができる。また、図10に示しているように整流板42−2を、コイル積層体の内孔よりも冷媒液出口側に設けることもできる。この整流板42−2は、冷媒液がコイル積層体の上面に沿って流れるのを抑制する作用効果とともに、冷媒液がコイル積層体の内孔(中心部)から湧き上がるのを抑制する作用効果も奏する。すなわち、整流板42−2は、本発明でいう「第2の整流板」として機能するとともに「第3の整流板」としても機能する。言い換えれば、この整流板42−2は、本発明でいう「第2の整流板」と「第3の整流板」の両方に相当し、この図10の実施形態でも「第2の整流板」と「第3の整流板」を設けていることとなる。このように「第2の整流板」は、冷媒液がコイル積層体の上面に沿って流れるのを抑制することができるなら、その形状や位置は限定されず、「第3の整流板」も、冷媒液がコイル積層体の中心部(内孔)から湧き上がるのを抑制することができるなら、その形状や位置は限定されない。同様に「第1の整流板」についても、冷媒液がコイル積層体の外周面に沿って流れるのを抑制することができるなら、その形状や位置は限定されない。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this. For example, as shown in FIG. 9, the second rectifying plate 42-1 can be provided integrally with the third rectifying plate 43. Further, as shown in FIG. 10, the rectifying plate 42-2 may be provided on the refrigerant liquid outlet side with respect to the inner hole of the coil laminate. This current plate 42-2 has the effect of suppressing the refrigerant liquid from flowing along the upper surface of the coil laminate, and the effect of suppressing the refrigerant liquid from rising from the inner hole (center portion) of the coil laminate. Also play. That is, the current plate 42-2 functions as a “second current plate” as well as a “third current plate” in the present invention. In other words, the rectifying plate 42-2 corresponds to both the “second rectifying plate” and the “third rectifying plate” referred to in the present invention. In the embodiment of FIG. And “third current plate” are provided. As described above, the shape and position of the “second rectifying plate” are not limited as long as the refrigerant liquid can be prevented from flowing along the upper surface of the coil laminate, and the “third rectifying plate” is also included. As long as the refrigerant liquid can be suppressed from rising from the center (inner hole) of the coil laminate, its shape and position are not limited. Similarly, the shape and position of the “first rectifying plate” are not limited as long as the refrigerant liquid can be suppressed from flowing along the outer peripheral surface of the coil laminate.

また、図11に示しているように、冷媒液入口31eは複数設けることもできる。この場合、各冷媒液入口31eは、冷媒液出口31fを通る直径方向中心線に対して線対称となるように設けることが好ましい。また、図11のように冷媒液入口31eを複数設ける場合、第4の整流板44は、冷媒液の流れをコイル積層体の外周方向に2分(2分割)するように、冷媒液出口31fを通過する直径方向中心線上に設けることが好ましい。なお、冷媒液入口31fも複数設けることができる。   As shown in FIG. 11, a plurality of refrigerant liquid inlets 31e can be provided. In this case, each refrigerant liquid inlet 31e is preferably provided so as to be axisymmetric with respect to the diametrical center line passing through the refrigerant liquid outlet 31f. In addition, when a plurality of refrigerant liquid inlets 31e are provided as shown in FIG. 11, the fourth rectifying plate 44 allows the refrigerant liquid outlet 31f to divide the flow of the refrigerant liquid into two parts (divided into two) in the outer circumferential direction of the coil stack. It is preferable to provide it on the diametrical centerline passing through. A plurality of refrigerant liquid inlets 31f can also be provided.

次に、図1に示した実施形態の電磁石10の適用例として電磁分離機について説明する。図12に、本実施形態の電磁石10を備える電磁分離機60の構成を概略断面により示している。また図12には、電磁石10の構成要素である冷媒液循環冷却機構50も示している。この冷媒液循環冷却機構50は、電磁石10のコイルケース30に設けている冷媒液入口31eと冷媒液出口31fに接続されている。そしてこの冷媒液循環冷却機構50は、冷媒液入口31eからコイルケース30内に冷媒液を導入し、その冷媒液を冷媒液出口31fから排出し、その冷媒液を冷却後再び冷媒液入口31fから導入するために、ポンプ51と熱交換器52を備える。この冷媒液循環冷却機構50により、コイルケース30に収容されたコイル積層体20(各コイル21)が冷媒液によって冷却される。なお、図12において電磁石10の構成は簡略化して示しており、例えば前述の各整流板やスペーサは省略している。   Next, an electromagnetic separator will be described as an application example of the electromagnet 10 of the embodiment shown in FIG. In FIG. 12, the structure of the electromagnetic separator 60 provided with the electromagnet 10 of this embodiment is shown by the schematic cross section. FIG. 12 also shows a refrigerant liquid circulation cooling mechanism 50 that is a component of the electromagnet 10. The refrigerant liquid circulation cooling mechanism 50 is connected to a refrigerant liquid inlet 31e and a refrigerant liquid outlet 31f provided in the coil case 30 of the electromagnet 10. Then, the refrigerant liquid circulation cooling mechanism 50 introduces the refrigerant liquid into the coil case 30 from the refrigerant liquid inlet 31e, discharges the refrigerant liquid from the refrigerant liquid outlet 31f, cools the refrigerant liquid, and again returns from the refrigerant liquid inlet 31f. In order to introduce, a pump 51 and a heat exchanger 52 are provided. By this refrigerant liquid circulation cooling mechanism 50, the coil laminate 20 (each coil 21) accommodated in the coil case 30 is cooled by the refrigerant liquid. In FIG. 12, the configuration of the electromagnet 10 is shown in a simplified manner, and for example, the above-described current plates and spacers are omitted.

図12の電磁分離機60では、電磁石10のコイルケース30が有する内筒部31bの中に筒61が配置され、この筒61の中に板状の磁性材料からなるスクリーン62がスクリーン保持棒63に上下方向に重ねられて多層に配置されている。筒61の外周には上下方向に所定間隔をおいて突縁64を設け、上下の突縁64の間に、筒61の外周を取り囲み、かつ相互間に小間隙を保持する状態で電磁石10がスプリング65を介して取り付けられている。筒61の下部にはバイブレータ66が装着されている。   In the electromagnetic separator 60 of FIG. 12, a cylinder 61 is disposed in an inner cylinder portion 31 b of the coil case 30 of the electromagnet 10, and a screen 62 made of a plate-like magnetic material is placed in the cylinder 61 in a screen holding rod 63. Are arranged in multiple layers. Protrusions 64 are provided on the outer periphery of the cylinder 61 at a predetermined interval in the vertical direction, and the electromagnet 10 surrounds the outer periphery of the cylinder 61 between the upper and lower protrusion edges 64 and holds a small gap therebetween. It is attached via a spring 65. A vibrator 66 is attached to the lower part of the tube 61.

この電磁分離機60において、バイブレータ66を始動させることにより筒61にバイブレーションを与えるとともに、電磁石10に通電を開始すれば、筒61内の各スクリーン62は磁性材料でありかつ電磁石10の磁界内に位置しているために磁化する。そこで、筒61の上端開口より粉体を導入すれば、この粉体は筒61内をバイブレーションの作用にて拡散されつつ各スクリーン62を上方から順次通過しながら落下し、この間に磁性異物は磁化している各スクリーン62により吸着されて残存し、磁性異物が除去された粉体は筒61の下端開口部より導出される。一定量又は一定時間の分離操作が終わると、粉体の供給を停止したのち、電磁石10への通電を断つと、大部分の磁性異物は落下し排出される。そして、バイブレータ66への通電を断ったのち、スクリーン62を保持している保持棒63の上端を持ってこれを上方に引き出す。保持棒63には、スクリーン62のすべてが保持されているため、保持棒63と共に全スクリーン22は筒61の内部から同時に取り出されることになる。取り出されたスクリーン62は清掃されて、さらに磁性異物が除去される。清掃されたスクリーン62は、再び筒61の内部に戻されて粉体が供給されて磁性異物の除去作業が開始される。   In this electromagnetic separator 60, when the vibrator 66 is started to vibrate the cylinder 61 and energization of the electromagnet 10 is started, each screen 62 in the cylinder 61 is made of a magnetic material and enters the magnetic field of the electromagnet 10. It is magnetized because it is located. Therefore, if the powder is introduced from the upper end opening of the cylinder 61, the powder falls while passing through the screens 62 sequentially from above while being diffused in the cylinder 61 by the action of vibration. The powder that remains adsorbed by each screen 62 and from which the magnetic foreign matter has been removed is led out from the lower end opening of the cylinder 61. When the separation operation for a certain amount or a certain time is finished, the supply of powder is stopped, and then, when the electromagnet 10 is de-energized, most of the magnetic foreign material falls and is discharged. Then, after the power to the vibrator 66 is cut off, the upper end of the holding rod 63 holding the screen 62 is held and pulled out upward. Since all of the screen 62 is held on the holding bar 63, all the screens 22 are taken out from the inside of the cylinder 61 together with the holding bar 63. The screen 62 taken out is cleaned to further remove magnetic foreign matters. The cleaned screen 62 is returned to the inside of the cylinder 61 again, and the powder is supplied to start the magnetic foreign matter removing operation.

なお、本実施形態の電磁石10は、この電磁分離機60以外の電磁分離機にも当然適用可能であり、電磁分離機以外、例えば前記特許文献1、2に開示されている吊下電磁石に適用することもできる。   The electromagnet 10 of the present embodiment is naturally applicable to electromagnetic separators other than the electromagnetic separator 60, and is applicable to other suspended electromagnetic magnets disclosed in Patent Documents 1 and 2 other than the electromagnetic separator, for example. You can also

10 電磁石
20 コイル積層体
21 コイル
22 スペーサ
23a,23b 押え板
24 ボルト
30 コイルケース
31 ケース本体
31a 外筒部
31b 内筒部
31b−1 フランジ部
31c 底部
31d コイル収容部
31e 冷媒液入口
31f 冷媒液出口
32 上蓋
41 第1の整流板
42,42−1 第2の整流板
42−2 第2の整流板(第3の整流板)
43 第3の整流板
44 第4の整流板
50 冷媒液循環冷却機構
51 ポンプ
52 熱交換器
60 電磁分離機
61 筒
62 スクリーン
63 スクリーン保持棒
64 突縁
65 スプリング
66 バイブレータ
DESCRIPTION OF SYMBOLS 10 Electromagnet 20 Coil laminated body 21 Coil 22 Spacer 23a, 23b Holding plate 24 Bolt 30 Coil case 31 Case main body 31a Outer cylinder part 31b Inner cylinder part 31b-1 Flange part 31c Bottom part 31d Coil accommodating part 31e Refrigerant liquid inlet 31f Refrigerant liquid outlet 32 Upper lid 41 First rectifying plate 42, 42-1 Second rectifying plate 42-2 Second rectifying plate (third rectifying plate)
43 Third straightening plate 44 Fourth straightening plate 50 Refrigerant liquid circulation cooling mechanism 51 Pump 52 Heat exchanger 60 Electromagnetic separator 61 Tube 62 Screen 63 Screen holding rod 64 Projection edge 65 Spring 66 Vibrator

Claims (5)

導線をドーナッツ形状に複数巻いて一体にしたコイルを、スペーサを介して上下方向に複数積層してなるコイル積層体と、
このコイル積層体を収容するドーナッツ形状のコイル収容部を有するコイルケースと、
このコイルケースに設けた冷媒液入口から冷媒液を導入し、その冷媒液を前記コイルケースに設けた冷媒液出口から排出し、その冷媒液を冷却後再び前記冷媒液入口から導入する冷媒液循環冷却機構とを備える電磁石において、
前記冷媒液入口から導入された冷媒液が前記コイル積層体の外周面に沿って流れるのを抑制する第1の整流板と、
前記冷媒液が前記コイル積層体の上面に沿って流れるのを抑制する第2の整流板と、
前記冷媒液が前記コイル積層体の中心部から湧き上がるのを抑制する第3の整流板とを設けていることを特徴とする電磁石。
A coil laminate formed by laminating a plurality of coils in a donut shape and integrating them in a vertical direction via a spacer;
A coil case having a doughnut-shaped coil housing part for housing the coil laminate;
The refrigerant liquid is introduced from the refrigerant liquid inlet provided in the coil case, the refrigerant liquid is discharged from the refrigerant liquid outlet provided in the coil case, and the refrigerant liquid is cooled and then introduced again from the refrigerant liquid inlet. In an electromagnet comprising a cooling mechanism,
A first rectifying plate that suppresses the refrigerant liquid introduced from the refrigerant liquid inlet from flowing along the outer peripheral surface of the coil laminate;
A second rectifying plate for suppressing the refrigerant liquid from flowing along the upper surface of the coil laminate;
An electromagnet comprising a third rectifying plate for suppressing the refrigerant liquid from springing up from a central portion of the coil laminate.
前記スペーサは間隔をおいて複数条並べており、これら複数条のスペーサは前記冷媒液入口から前記冷媒液出口に向かう冷媒液の流れ方向に沿って互いに平行、かつ前記コイル積層体の直径方向中心線に対して線対称となるように並べており、
前記第1の整流板は、前記複数条のスペーサのうち最も外周側に位置する2つのスペーサに近接して少なくとも2つ設け、
前記第2の整流板は、その両端部が前記2つの第1の整流板に近接するように設けている、請求項1に記載の電磁石。
The plurality of spacers are arranged at intervals, and the plurality of spacers are parallel to each other along the flow direction of the refrigerant liquid from the refrigerant liquid inlet to the refrigerant liquid outlet, and the diametrical centerline of the coil stack Are arranged in line symmetry with respect to
The first rectifying plate is provided in the vicinity of two spacers located on the outermost side among the plurality of spacers,
The electromagnet according to claim 1, wherein the second rectifying plate is provided so that both end portions thereof are close to the two first rectifying plates.
前記第1の整流板は、前記複数条のスペーサのうち最も外周側に位置する2つのスペーサにおいて前記冷媒液入口に近い側の端部に連続するように少なくとも2つ設け、
前記第2の整流板は、その両端部が前記2つの第1の整流板に連続するように設けている、請求項2に記載の電磁石。
The first rectifying plate is provided at least two so as to be continuous with the end portion on the side close to the refrigerant liquid inlet in the two spacers located on the outermost peripheral side among the plurality of spacers,
The electromagnet according to claim 2, wherein the second rectifying plate is provided so that both end portions thereof are continuous with the two first rectifying plates.
前記第3の整流板は、前記コイル積層体の内孔面から連続して立ち上がる円筒形状を有する、請求項1〜3のいずれかに記載の電磁石。   The electromagnet according to any one of claims 1 to 3, wherein the third rectifying plate has a cylindrical shape that rises continuously from an inner hole surface of the coil laminate. 前記冷媒液入口の近傍に、当該冷媒液入口から導入された冷媒液の流れを前記コイル積層体の外周方向に分流又は2分する第4の整流板を設けている、請求項1〜4のいずれかに記載の電磁石。   The 4th baffle plate which branches or divides the flow of the refrigerant liquid introduced from the refrigerant liquid inlet into the direction of the perimeter of the coil laminated body is provided near the refrigerant liquid inlet. The electromagnet according to any one.
JP2017123386A 2017-06-23 2017-06-23 electromagnet Active JP6502423B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017123386A JP6502423B2 (en) 2017-06-23 2017-06-23 electromagnet
PCT/JP2018/023781 WO2018235940A1 (en) 2017-06-23 2018-06-22 Electromagnet
CN201880003840.XA CN109844874B (en) 2017-06-23 2018-06-22 Electromagnet
KR1020197005158A KR101999825B1 (en) 2017-06-23 2018-06-22 Electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017123386A JP6502423B2 (en) 2017-06-23 2017-06-23 electromagnet

Publications (2)

Publication Number Publication Date
JP2019009272A true JP2019009272A (en) 2019-01-17
JP6502423B2 JP6502423B2 (en) 2019-04-17

Family

ID=64737590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017123386A Active JP6502423B2 (en) 2017-06-23 2017-06-23 electromagnet

Country Status (4)

Country Link
JP (1) JP6502423B2 (en)
KR (1) KR101999825B1 (en)
CN (1) CN109844874B (en)
WO (1) WO2018235940A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110124200B (en) * 2019-04-01 2023-07-18 天津博雅信息科技有限公司 Double-sided liquid cooling device of magnetic stimulation coil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546526A (en) * 1978-09-29 1980-04-01 Hitachi Ltd Transformer winding
JPS6084808A (en) * 1983-10-17 1985-05-14 Japan Atom Energy Res Inst Superconducting coil
JPH044710U (en) * 1990-04-26 1992-01-16
JPH04297002A (en) * 1987-06-30 1992-10-21 Toshiba Corp Superconducting coil

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257654A (en) 1975-11-05 1977-05-12 Nippon Steel Corp Lifting electro-magnet
JPH0795967B2 (en) * 1988-08-03 1995-10-18 コクヨ株式会社 Chair with backrest
JPH06286970A (en) 1993-04-02 1994-10-11 Kohan Sendan Kikai Kk Lifting electromagnet
JP4603433B2 (en) * 2005-07-11 2010-12-22 日東工器株式会社 Electromagnetic reciprocating fluid device
JP4796393B2 (en) * 2006-01-17 2011-10-19 株式会社日立製作所 Superconducting magnet
KR101367142B1 (en) * 2011-10-12 2014-02-26 삼성전자주식회사 Superconductive electromagnet apparatus
JP5852425B2 (en) * 2011-12-01 2016-02-03 株式会社日立製作所 Superconducting electromagnet apparatus, cooling method thereof, and magnetic resonance imaging apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546526A (en) * 1978-09-29 1980-04-01 Hitachi Ltd Transformer winding
JPS6084808A (en) * 1983-10-17 1985-05-14 Japan Atom Energy Res Inst Superconducting coil
JPH04297002A (en) * 1987-06-30 1992-10-21 Toshiba Corp Superconducting coil
JPH044710U (en) * 1990-04-26 1992-01-16

Also Published As

Publication number Publication date
JP6502423B2 (en) 2019-04-17
KR101999825B1 (en) 2019-07-12
CN109844874A (en) 2019-06-04
WO2018235940A1 (en) 2018-12-27
KR20190025030A (en) 2019-03-08
CN109844874B (en) 2020-03-13

Similar Documents

Publication Publication Date Title
US7129808B2 (en) Core cooling for electrical components
JP6055306B2 (en) Reactor
CA2918311A1 (en) Air-cooled reactor
JP2019009272A (en) electromagnet
EP3499528B1 (en) Air core reactor unit and power source device having air core reactor unit
JP5930780B2 (en) Reactor
CN213277725U (en) Solid core inductance coil
US9466414B2 (en) Vibration stabilizer for enclosure cooling fins
KR20140005166U (en) Power transformaer
WO2019181152A1 (en) Stationary induction apparatus
CN114175191A (en) Insulating member
JP5717426B2 (en) Static induction machine
JP5566418B2 (en) Heating device with cooler
JP7065711B2 (en) Static inducer
JP2018046054A (en) Stationary induction apparatus
JP2021158293A (en) Static induction electric device
JPS62262386A (en) Induction heater
JPH06333749A (en) Transformer
JPH0766048A (en) Cooling structure of coil of stationary induction machine
JPS5932117A (en) Winding of induction electric apparatus
JP2018160644A (en) Stationary induction machine
JPH04298011A (en) Core for stationary induction apparatus
JPH04180207A (en) Disk winding for induction electric apparatus
JPS588230B2 (en) Kanjiyouchiyokusengatayuudoudenjipump
JPH0969446A (en) Gas insulated transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190213

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190213

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190320

R150 Certificate of patent or registration of utility model

Ref document number: 6502423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250