JPH0576136A - Power supply system - Google Patents
Power supply systemInfo
- Publication number
- JPH0576136A JPH0576136A JP3234407A JP23440791A JPH0576136A JP H0576136 A JPH0576136 A JP H0576136A JP 3234407 A JP3234407 A JP 3234407A JP 23440791 A JP23440791 A JP 23440791A JP H0576136 A JPH0576136 A JP H0576136A
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- supply system
- circuit breaker
- opening
- power transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/22—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/005—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection avoiding undesired transient conditions
Landscapes
- Emergency Protection Circuit Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は過電圧抑制機能を備えた
電力供給系統に係り、特に遮断器動作時の該系統におけ
る過電圧を抑制することができる電力供給系統に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply system having an overvoltage suppressing function, and more particularly to a power supply system capable of suppressing an overvoltage in the system when a breaker operates.
【0002】[0002]
【従来技術】遮断器の動作時の過電圧としては、投入時
に送電線の充電電圧が進行波となって往復反射し過電圧
となる投入サージと、地絡事故遮断時に送電線の電圧降
下分がやはり進行波となって往復反射して過電圧となる
遮断サージとがある。これらの過電圧は、高いものでは
相電圧の3倍にも達する場合がある。従来、この過電圧
に対し抵抗投入式遮断器及び抵抗遮断式遮断器を用いる
と共に、送電線の絶縁レベルをこのような過電圧に対し
て十分耐えるような設計が為されてきた。2. Description of the Related Art As an overvoltage during the operation of a circuit breaker, a charging surge of a transmission line charging voltage at the time of closing makes a round trip and is reflected back and forth to become an overvoltage, and a voltage drop of the transmission line at the time of ground fault interruption is still the same. There is a breaking surge that becomes a traveling wave and is reflected back and forth, resulting in overvoltage. These overvoltages can be as high as three times the phase voltage at high ones. Conventionally, a resistance closing type circuit breaker and a resistance breaking type circuit breaker have been used against this overvoltage, and a design has been made to sufficiently withstand the insulation level of the transmission line against such overvoltage.
【0003】[0003]
【発明が解決しようとする課題】近年、電力需要の増大
に伴い送電能力の増大を図るため、1000kV送電シ
ステムが計画されるようになった。このような超超高圧
の送電線では、遮断器動作時の過電圧に十分耐えるよう
送電線を建設することは、経済的に困難になる。そこ
で、過電圧抑制装置にてこれらの遮断器動作時の過電圧
をできるかぎり低く押さえ、経済的な送電線を建設する
ことが考えられる。例えば、1000kVシステムでは
相電圧波高値の1.6 倍以下に抑制することが要求され
ている。ところで、遮断器投入時の過電圧に対しては、
抵抗を介して投入し、進行波のエネルギーを吸収する抵
抗投入式遮断器がこれより電圧の低い送電システムにて
使用されている。しかし、この方式は遮断時の過電圧に
対しては効果が無い。そこで、遮断に対しても抵抗を介
して遮断する抵抗遮断式遮断器が提案されている。しか
し、今日主流の遮断時のパッファ形ガス遮断器では抵抗
へ通電する時間が30ms程度と長く、また遮断器の電圧
的責務が2倍になる脱調投入遮断の責務に耐えねばなら
ないので、抵抗体が極めて大型化する上、抵抗投入部や
抵抗遮断部を駆動するために複雑な遅延操作機構が必要
である。さらになお、抵抗体や操作機構が事故を起こす
と母線事故ということになり変電所機能が麻痺してしま
うという信頼性上極めて大きな問題を抱えていた。In recent years, a 1000 kV power transmission system has been planned in order to increase the power transmission capacity as the demand for electric power increases. In such an ultra-high voltage transmission line, it is economically difficult to construct the transmission line so as to sufficiently withstand the overvoltage during breaker operation. Therefore, it is possible to construct an economical power transmission line by suppressing the overvoltage during the operation of the circuit breaker as low as possible by the overvoltage suppressing device. For example, in a 1000 kV system, it is required to suppress the peak value of the phase voltage to 1.6 times or less. By the way, for the overvoltage when the breaker is turned on,
A resistance closing type circuit breaker, which is closed via a resistor and absorbs energy of traveling waves, is used in a power transmission system having a voltage lower than that. However, this method has no effect on the overvoltage at the time of interruption. Therefore, a resistance interrupting type circuit breaker has also been proposed which interrupts the interruption through a resistor. However, in the case of puffer type gas circuit breakers, which are the mainstream breakers today, the time to energize the resistor is as long as about 30 ms, and the voltage duty of the circuit breaker must be doubled. In addition to making the body extremely large, a complicated delay operation mechanism is required to drive the resistance closing unit and the resistance breaking unit. Furthermore, if a resistor or an operating mechanism causes an accident, it causes a busbar accident, and the function of the substation is paralyzed.
【0004】本発明の目的は、上記した従来技術の問題
点を解決し、過電圧を大幅に抑制でき、且つ信頼性の極
めて高い電力供給系統を提供することにある。An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a highly reliable power supply system capable of greatly suppressing overvoltage.
【0005】[0005]
【課題を解決するための手段】本発明は、上記の目的を
達成するために、電源側系統と遮断器を有する複数の送
電側系統とを母線によって接続した電力供給系統におい
て、前記遮断器の母線側あるいは送電線側または両側と
大地との間に、開閉手段とインピーダンスとからなる過
電圧抑制装置を設けたことを特徴とするものである。In order to achieve the above-mentioned object, the present invention provides a power supply system in which a power supply system and a plurality of power transmission systems having circuit breakers are connected by a bus bar. It is characterized in that an overvoltage suppressing device including an opening / closing means and an impedance is provided between the busbar side or the power transmission line side or both sides and the ground.
【0006】[0006]
【作用】本発明によれば、遮断器の母線側あるいは送電
線側または両側と大地との間に接続した過電圧抑制装置
を、遮断器の動作する時だけ、電力主回路に接続するよ
うにしたので、この過電圧抑制装置により、過電圧抑制
レベルを大幅に低減することができる。その結果、過電
圧による健全な送電系統への悪影響を抑えることがで
き、信頼性の高い電力供給系統を提供することができ
る。According to the present invention, the overvoltage suppressing device connected between the busbar side or the transmission line side or both sides of the circuit breaker and the ground is connected to the power main circuit only when the circuit breaker operates. Therefore, this overvoltage suppressing device can significantly reduce the overvoltage suppressing level. As a result, it is possible to suppress the adverse effect on the sound transmission system due to overvoltage, and it is possible to provide a highly reliable power supply system.
【0007】[0007]
【実施例】図1は本発明の一実施例を示すもので、この
図において、電力システム1は、電源側系統となる発電
機6に接続された電源変圧器5に遮断器4を介して母線
10が接続されている。この母線10には、遮断器3
a,3bを介して2組の送電線2a,2bが接続されて
いる。送電線の引込み口には避雷器9a,9bが設置さ
れている。遮断器3a,3bと送電線2a,2bを結ぶ
主回路と大地間に開閉器7a,7bを介して抵抗体8
a,8bが設けられ、過電圧抑制装置を構成している。
送電線2aに地絡事故30が生じると、変流器等の検出
器35に接続した継電器等の事故検出器31からの信号
12(図2に示す)により、先ず健全回線の開閉器7b
が図2に示すストローク特性14をもって投入され、そ
の後、事故回線の遮断器3aが図2に示すストローク特
性13をもって遮断動作を行なう。そして、事故検出器
31からの信号の1部はタイマー32に入り、数サイク
ル後、タイマー32の出力により開閉器7bは開放され
るよう構成されている。たとえば、送電線2aの中央の
一つの相で、地絡事故が起きた場合を考える。地絡事故
が発生すると、直接接地系では大きな地絡電流が流れ、
電源電圧の振幅は、電源インピーダンスのために、図3
の曲線20に示すように低下し、事故線路2aの遮断器
3a端子電圧は曲線21のようにVOからVTへ低下す
る。この時、健全な送電線2bでは事故送電線2aから
の電磁誘導により事故点に対応するところでは、図3に
示すように、更にdVだけ電圧降下し、VMとなってい
る。そのような状態で、遮断器3aにより地絡電流が遮
断される。そうすると電源電圧20はもとの電圧に復旧
するが、この時電源系の過渡振動のため、電圧VSまで
上昇する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention. In this figure, a power system 1 includes a power transformer 5 connected to a generator 6 serving as a power source side system and a circuit breaker 4 interposed therebetween. Bus bar 10 is connected. This bus bar 10 has a circuit breaker 3
Two sets of power transmission lines 2a and 2b are connected via a and 3b. Lightning arresters 9a and 9b are installed at the entrance of the power transmission line. The resistor 8 is provided between the main circuit connecting the circuit breakers 3a, 3b and the power transmission lines 2a, 2b and the ground via the switches 7a, 7b.
a and 8b are provided to constitute an overvoltage suppressing device.
When a ground fault 30 occurs in the power transmission line 2a, a signal 12 (shown in FIG. 2) from an accident detector 31 such as a relay connected to a detector 35 such as a current transformer is first used to switch the sound line.
Is turned on with the stroke characteristic 14 shown in FIG. 2, and then the circuit breaker 3a of the fault circuit performs the breaking operation with the stroke characteristic 13 shown in FIG. Then, a part of the signal from the accident detector 31 enters the timer 32, and after several cycles, the switch 7b is opened by the output of the timer 32. For example, consider a case where a ground fault occurs in one phase in the center of the power transmission line 2a. When a ground fault occurs, a large ground fault current flows in the direct grounding system,
The amplitude of the power supply voltage is shown in FIG.
The voltage of the circuit breaker 3a on the fault line 2a decreases from VO to VT as shown by the curve 21. At this time, in the sound power transmission line 2b, at a place corresponding to the accident point by electromagnetic induction from the accident power transmission line 2a, as shown in FIG. 3, the voltage further drops by dV and becomes VM. In such a state, the circuit breaker 3a cuts off the ground fault current. Then, the power supply voltage 20 is restored to the original voltage, but at this time, due to the transient vibration of the power supply system, it rises to the voltage VS.
【0008】一方、遮断された送電線が有していた電圧
は送電線の中で往復振動する。ところで、健全であった
送電線も誘導によりdVの電圧降下があったから、これ
が送電線の中で往復反射し振動する。その上、遮断され
た事故送電線の電圧往復振動からの誘導による振動が重
畳する。その結果、dVよりもはるかに大きい高周波振
動が重畳することになる。それ故、健全な送電線2bの
事故対応位置では、最大電圧は、VS+kdVにまで上
昇し、過大なサージ電圧となる。On the other hand, the voltage possessed by the interrupted power transmission line oscillates back and forth in the power transmission line. By the way, since a healthy transmission line also has a voltage drop of dV due to induction, this is reflected back and forth in the transmission line and vibrates. In addition, the induced vibration from the voltage reciprocal vibration of the interrupted transmission line is superimposed. As a result, a high frequency vibration much larger than dV is superimposed. Therefore, the maximum voltage rises to VS + kdV at the faulty position of the healthy power transmission line 2b, resulting in an excessive surge voltage.
【0009】しかるに、本発明では、遮断器動作時に
は、健全回線対大地に抵抗8bが挿入され、事故回線に
は抵抗体8aが接続されている。そのため、電源側の過
渡振動は、健全送電線に接続された抵抗体8bによって
制動され振幅が下がる。そして健全送電線内の電圧往復
振動もこれによって制動される。また、事故送電線側の
往復反射振動は、抵抗体8aによって制動されるため、
事故送電線より健全送電線への電圧往復振動による誘導
は小さくなる。その結果として、地絡遮断サージは従来
に比べ格段に小さくなる。In the present invention, however, the resistor 8b is inserted between the sound line and the ground and the resistor 8a is connected to the fault line when the circuit breaker operates. Therefore, the transient vibration on the power supply side is damped by the resistor 8b connected to the healthy power transmission line, and the amplitude is reduced. The voltage reciprocating vibration in the healthy power transmission line is also damped by this. Further, since the reciprocating reflection vibration on the accident power transmission line side is damped by the resistor 8a,
The induction due to voltage reciprocal oscillation from the faulty transmission line to the healthy transmission line becomes smaller. As a result, the ground-fault shut-off surge is significantly smaller than in the past.
【0010】図4は本発明において、抵抗体8aの抵抗
値を変えた場合の健全相事故対応点の過電圧倍数を調べ
たものである。いずれも抵抗の無い場合の1.69 倍に
較べて小さくなっており、特に抵抗値が1.5 kΩ以下
では過電圧が効果的に抑制されていることが判る。FIG. 4 shows an examination of the overvoltage multiple of the point corresponding to the sound phase accident when the resistance value of the resistor 8a is changed in the present invention. Both are smaller than 1.69 times that without resistance, and it can be seen that the overvoltage is effectively suppressed especially when the resistance value is 1.5 kΩ or less.
【0011】図5は本発明の他の実施例を示すもので、
この図において、図1と同符号ものは同一部分または相
当する部分である。この実施例は過電圧抑制装置を構成
する抵抗体8a,8bとして非直線抵抗を用いた例であ
る。当然の事ながら遠方端の変電所にもこれと同じもの
が設けられる。前述した実施例と同様に送電線2aのあ
る相で地絡事故が発生し、これを遮断器3aで遮断する
場合、先行して健全回線の開閉器7bが投入され、非直
線抵抗体8bが大地間に挿入される。遠方端の開閉器も
同じく動作し、遠方端でも大地間に非直線抵抗が挿入さ
れる。FIG. 5 shows another embodiment of the present invention.
In this figure, the same symbols as those in FIG. 1 indicate the same or corresponding portions. This embodiment is an example in which a non-linear resistance is used as the resistors 8a and 8b which constitute the overvoltage suppressing device. As a matter of course, the same one is installed in the substation at the far end. When a ground fault occurs in a certain phase of the power transmission line 2a and is broken by the circuit breaker 3a as in the above-described embodiment, the switch 7b of the sound line is turned on in advance and the nonlinear resistor 8b is turned on. It is inserted between the ground. The switch at the far end operates in the same manner, and a nonlinear resistance is inserted between the ground even at the far end.
【0012】その結果、自変電所及び遠方端の電源電圧
の過渡振動は非直線抵抗により低く抑制され、健全回線
の中央付近の遮断サージは十分に低く抑制される。そし
て、その後、非直線抵抗体が熱的に破壊しないように、
開閉器により非直線抵抗体は切り離される。非直線抵抗
体の制限電圧は出来るかぎり小さい方が効果があるが、
通常、送電線路の進行波の電流は、10kA以下である
から、10kA時の制限電圧を相電圧波高値の1.4倍
以下に設定すれば、過電圧は確実に1.4倍以下となっ
て、効果が確実になる。As a result, the transient vibration of the power supply voltage at the substation and the far end is suppressed to a low level by the non-linear resistance, and the interruption surge near the center of the healthy line is suppressed to a sufficiently low level. And after that, to prevent the non-linear resistor from being thermally destroyed,
The switch disconnects the non-linear resistor. It is effective that the limiting voltage of the non-linear resistor is as small as possible,
Normally, the traveling wave current of the transmission line is 10 kA or less, so if the limiting voltage at 10 kA is set to 1.4 times or less of the phase voltage peak value, the overvoltage surely becomes 1.4 times or less. , The effect becomes certain.
【0013】上記の実施例において、開閉器の投入指令
は、遮断器の引き外し指令信号を共用して高速で投入
し、遮断器の最短遮断時間以内に投入を完了させるよう
にすることもでき、電力システムの安定度を下げること
無く過電圧を抑制することが出来る。In the above embodiment, the closing command of the switch can be shared at the same time as the tripping command signal of the circuit breaker, and the closing can be completed within the shortest breaking time of the circuit breaker. The overvoltage can be suppressed without lowering the stability of the power system.
【0014】一方、開閉器の操作は遮断器の操作器に連
動させることも可能であり、開閉器そのものを遮断器の
容器の中に設置することもできる。また、上記実施例に
おいて、開閉器の替わりにギャップ装置、特にトリガー
ギャップ装置を使用することも可能であり、さらには半
導体スイッチを使用することも可能である。特にトリガ
ーギャップ装置や、半導体スイッチは高速動作が可能
で、遮断器の遮断直後の過渡回復電圧の立上り部にて抵
抗体あるいは非直線抵抗を大地間に挿入出来、高速で開
放できるので、抵抗体や非直線抵抗の熱的耐量を低減で
き、抵抗体や非直線抵抗体の小型化を図ることが出来
る。その他、開閉器としては可動式のギャップを使用す
ることもでき、動作させるときだけギャップを小さくし
て放電させれば良い。On the other hand, the operation of the switch can be linked to the operation device of the circuit breaker, and the switch itself can be installed in the container of the circuit breaker. Further, in the above-described embodiment, it is possible to use a gap device, particularly a trigger gap device, instead of the switch, and it is also possible to use a semiconductor switch. In particular, the trigger gap device and the semiconductor switch can operate at high speed, and a resistor or a non-linear resistor can be inserted between the ground at the rising edge of the transient recovery voltage immediately after the breaker breaks, and the resistor can be opened at high speed. The thermal resistance of the non-linear resistor can be reduced, and the resistor and the non-linear resistor can be downsized. In addition, a movable gap may be used as the switch, and the gap may be made small and discharged only when operating.
【0015】また、上記開閉手段を構成する開閉機能装
置又は開閉機能素子は、動作を送電線の地絡事故又は短
絡事故に限定することもできる。そうすることにより、
不要な動作が無くなりこの装置の長寿命化を図ることが
出来る。さらには、事故が1相だけで遮断器は1相しか
動作しなくても開閉装置あるいは開閉機能装置は3相と
も動作させる事もできる。あるいは、遮断器の動作する
相だけに限定することもできる。又送電線の両端で同時
に動作させることも出来る。Further, the operation of the opening / closing function device or the opening / closing function element constituting the opening / closing means can be limited to the ground fault or short circuit accident of the power transmission line. By doing so,
Unnecessary operations are eliminated and the life of this device can be extended. Furthermore, even if the accident has only one phase and the circuit breaker operates only one phase, the switchgear or switchgear can operate all three phases. Alternatively, it may be limited to only the operating phase of the circuit breaker. It is also possible to operate both ends of the transmission line at the same time.
【0016】図6は本発明のさらに他の実施例を示すも
ので、この図において、図1と同符号ものは同一部分ま
たは相当する部分である。この実施例はに示すように開
閉器7および抵抗体8からなる過電圧抑制装置を母線側
に設けたものである。FIG. 6 shows still another embodiment of the present invention. In this figure, the same reference numerals as those in FIG. 1 designate the same or corresponding parts. In this embodiment, as shown in, an overvoltage suppressing device including a switch 7 and a resistor 8 is provided on the bus bar side.
【0017】この実施例によれば、設置する過電圧抑制
装置の数を最小限に溜めることができる。一方、非直線
抵抗体は、線形抵抗と酸化亜鉛系の非直線抵抗との直列
接続又は並列接続であっても良い。これにより、非直線
抵抗の小型化が図れる。さらには、これら抵抗体あるい
は非直線抵抗体は、正の温度係数を持たせることもでき
る。特に正特性サーミスタは温度上昇により抵抗値が大
きくなって、エネルギー入力を制限するので、抵抗体や
非直線抵抗体の小型化が図れる。According to this embodiment, the number of overvoltage suppressing devices to be installed can be minimized. On the other hand, the non-linear resistor may be a series connection or a parallel connection of a linear resistance and a zinc oxide-based non-linear resistance. As a result, the size of the non-linear resistance can be reduced. Furthermore, these resistors or non-linear resistors can have a positive temperature coefficient. In particular, the positive temperature coefficient thermistor has a large resistance value due to temperature rise and limits energy input, so that it is possible to miniaturize the resistor and the non-linear resistor.
【0018】以上の説明は、遮断器の遮断動作時につい
て説明したが、遮断器の投入時において、遮断器の投入
に先立ち、開閉器7a,7bを投入し、遮断器が投入を
完了した後にすぐ開閉器を開放することもできる。この
場合には、投入時の過電圧も有効に抑制できる効果があ
る。The above description has been made with respect to the breaking operation of the circuit breaker. However, when the circuit breaker is turned on, the switches 7a and 7b are turned on before the circuit breaker is turned on, and after the circuit breaker completes the closing. The switch can be opened immediately. In this case, there is an effect that the overvoltage at the time of closing can be effectively suppressed.
【0019】図7は本発明の他の実施例を示すもので、
この図において、図1と同符号ものは同一部分または相
当する部分である。この実施例は、送電線の引込み口に
避雷器の無い変電所に開閉器7a,7bおよび抵抗体8
a,8bからなる過電圧抑制装置を遮断器3a,3bの
送電側に設けた例である。FIG. 7 shows another embodiment of the present invention.
In this figure, the same symbols as those in FIG. 1 indicate the same or corresponding portions. In this embodiment, switches 7a and 7b and a resistor 8 are installed in a substation where a surge arrester is not provided at a lead-in port of a transmission line.
This is an example in which the overvoltage suppressing device composed of a and 8b is provided on the power transmission side of the circuit breakers 3a and 3b.
【0020】この実施例によれば、雷の予想される時
に、開閉器7aまたは7bを投入することにより、抵抗
体8a,8bを避雷器として使用できるメリットがあ
る。According to this embodiment, there is an advantage that the resistors 8a and 8b can be used as a lightning arrester by turning on the switch 7a or 7b at the time of expected lightning.
【0021】図8は本発明のさらに他の実施例を示すも
ので、この図において、図1と同符号ものは同一部分ま
たは相当する部分である。この実施例は、送電線の引込
み口の避雷器にタップを設け、このタップによって区切
られた1部分に並列に開閉器7a,7bを設けたもの
で、避雷器と非直線抵抗を兼用できるという利点があ
る。FIG. 8 shows still another embodiment of the present invention. In this figure, the same reference numerals as those in FIG. 1 designate the same or corresponding parts. In this embodiment, a tap is provided on the lightning arrester at the entrance of the power transmission line, and switches 7a and 7b are provided in parallel in one part divided by the tap, which is advantageous in that the lightning arrester can also be used as a non-linear resistance. is there.
【0022】図9は本発明の他の実施例を示すもので、
この図において、図1と同符号ものは同一部分または相
当する部分である。この実施例は、図8の実施例を母線
側に適用してタップと開閉器を低圧側に設けた例であ
り、開閉器に電圧の低い階級のものを使用できる利点が
ある。FIG. 9 shows another embodiment of the present invention.
In this figure, the same symbols as those in FIG. 1 indicate the same or corresponding portions. This embodiment is an example in which the tap and the switch are provided on the low voltage side by applying the embodiment of FIG. 8 to the bus bar side, and there is an advantage that a switch having a low voltage class can be used.
【0023】図10は本発明のさらに他の実施例を示す
もので、この図において、図1と同符号ものは同一部分
または相当する部分である。この実施例は、図9の実施
例においてタップで仕切られた部分に直列に開閉器47
を設け、タップで仕切られた部分と開閉器47に並列に
ギャップ48を設けたもので、事故時には遮断器3の引
き外し命令を分けて開閉器47の遮断指令とする。開閉
器47の電流は数Aと小さいから遮断器3よりも短いア
ーク時間で先に遮断する。その結果、ギャップ48に高
電圧が印加されて放電し、ギャップ48が投入されたこ
とになり、図9の開閉器7と同じ働きをすることにな
る。この実施例では、高速の投入を行開閉器の代わり
に、従来より実績のある、高信頼性の遮断器を開閉器と
して使用することができる利点がある。特に、アーク時
間が短くて遮断できる真空スイッチは、この遮断器とし
て最適である。FIG. 10 shows still another embodiment of the present invention. In this figure, the same reference numerals as in FIG. 1 denote the same or corresponding parts. In this embodiment, a switch 47 is connected in series with a portion partitioned by taps in the embodiment of FIG.
The switch 48 is provided with a gap 48 in parallel with the switch 47 and the switch 47. In the event of an accident, the breaker 3 trip command is divided and used as the switch 47 cutoff command. Since the current of the switch 47 is as small as several amperes, it is cut off earlier in an arc time shorter than that of the circuit breaker 3. As a result, a high voltage is applied to the gap 48 to cause discharge, and the gap 48 is turned on, which has the same function as the switch 7 of FIG. 9. This embodiment has the advantage that a high-reliability circuit breaker, which has a proven record in the past, can be used as the switch instead of the high-speed closing switch. In particular, a vacuum switch that has a short arc time and can be interrupted is the most suitable as the circuit breaker.
【0024】そして、以上説明した実施例では、万が
一、抵抗体或は非直線抵抗体が故障しても、これを開閉
機能装置或は開閉機能装置にて切離し、送電を続行する
ことが可能である。その間に故障した抵抗体或は非直線
抵抗体は、予備品と速やかに交換することができる。さ
らには開閉機能装置或は開閉機能素子と抵抗体或は非直
線抵抗体の組合せを2組設けて、切り替えて使用するこ
とも可能である。この様に本発明は、電力システムとし
て極めて高い信頼性を提供する効果もある。In the above-described embodiment, even if the resistor or the non-linear resistor fails, it can be separated by the switching function device or the switching function device to continue power transmission. is there. Resistors or non-linear resistors that have failed during that time can be quickly replaced with spare parts. Further, it is possible to provide two sets of a switching function device or switching function element and a resistor or a non-linear resistor, and switch and use them. Thus, the present invention also has the effect of providing extremely high reliability as an electric power system.
【0025】以上説明したように、本発明の実施例によ
れば、電力用遮断器を介して送電線に接続されてなる電
力供給系統において、遮断器の少なくとも母線側あるい
は送電線側または両側に、開閉手段を介して、直線抵抗
あるいは非直線抵抗体が大地間に設けられてなるもので
あるから、小型で低抵抗の直線抵抗体あるいは制限電圧
を相電圧波高値近くまで下げた非直線抵抗体を、遮断器
の動作する時だけ、電力主回路に接続することが可能と
なり、過電圧抑制レベルを大幅に低減でき、また極めて
短時間だけ主回路に繋がれるだけであるのでエネルギー
耐量が小さく小型にでき、そして直線抵抗体あるいは非
直線抵抗体が事故を起こしても開閉機能装置又は開閉機
能素子がこれを切り離せば送電にはなんら支障はなく、
本質的に電力供給系統の信頼性を高めることができる。As described above, according to the embodiment of the present invention, in the power supply system connected to the power transmission line via the power circuit breaker, at least the bus bar side or the power transmission line side or both sides of the circuit breaker are connected. Since a linear resistance or a non-linear resistance is provided between the ground through the switching means, a small, low resistance linear resistance or a non-linear resistance in which the limiting voltage is lowered to near the phase voltage peak value The body can be connected to the power main circuit only when the circuit breaker is operating, the overvoltage suppression level can be greatly reduced, and the main circuit can be connected to the power circuit for an extremely short time. Even if a linear resistor or a non-linear resistor causes an accident, if the switching function device or switching function element disconnects this, there will be no hindrance to power transmission.
Essentially, the reliability of the power supply system can be improved.
【0026】[0026]
【発明の効果】本発明によれば、遮断器の母線側あるい
は送電線側または両側と大地との間に接続した過電圧抑
制装置を、遮断器の動作する時だけ、電力主回路に接続
するようにしたので、この過電圧抑制装置により、過電
圧抑制レベルを大幅に低減することができる。その結
果、過電圧による健全な送電系統への悪影響を抑えるこ
とができ、信頼性の高い電力供給系統を提供することが
できる。According to the present invention, the overvoltage suppressing device connected between the busbar side or the transmission line side or both sides of the circuit breaker and the ground is connected to the power main circuit only when the circuit breaker operates. Therefore, the overvoltage suppressing device can greatly reduce the overvoltage suppressing level. As a result, it is possible to suppress the adverse effect on the sound transmission system due to overvoltage, and it is possible to provide a highly reliable power supply system.
【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.
【図2】本発明の動作を説明するための動作特性図であ
る。FIG. 2 is an operational characteristic diagram for explaining the operation of the present invention.
【図3】本発明の動作を説明するための電圧特性図であ
る。FIG. 3 is a voltage characteristic diagram for explaining the operation of the present invention.
【図4】本発明を構成する抵抗体の抵抗値を変えた時の
過電圧倍数を示す特性図である。FIG. 4 is a characteristic diagram showing an overvoltage multiple when a resistance value of a resistor constituting the present invention is changed.
【図5】本発明の他の実施例を示す構成図である。FIG. 5 is a configuration diagram showing another embodiment of the present invention.
【図6】本発明のさらに他の実施例を示す構成図であ
る。FIG. 6 is a configuration diagram showing still another embodiment of the present invention.
【図7】本発明の他の実施例を示す構成図である。FIG. 7 is a configuration diagram showing another embodiment of the present invention.
【図8】本発明のさらに他の実施例を示す構成図であ
る。FIG. 8 is a configuration diagram showing still another embodiment of the present invention.
【図9】本発明の他の実施例を示す構成図である。FIG. 9 is a configuration diagram showing another embodiment of the present invention.
【図10】本発明のさらに他の実施例を示す構成図であ
る。FIG. 10 is a configuration diagram showing still another embodiment of the present invention.
1…電力供給系統、2a,2b…送電線、3a,3b,
4…遮断器、5…変圧器、6…発電機、7a,7b…開
閉器、8a,8b…抵抗体、9a,9b…避雷器、31
…事故検出器、32…タイマー。1 ... Power supply system, 2a, 2b ... Power transmission line, 3a, 3b,
4 ... Circuit breaker, 5 ... Transformer, 6 ... Generator, 7a, 7b ... Switch, 8a, 8b ... Resistor, 9a, 9b ... Lightning arrester, 31
… Accident detector, 32… Timer.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西田 功 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 浅井 義人 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 山極 時生 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Isao Nishida 1-1-1 Kokubun-cho, Hitachi-shi, Ibaraki Inside Kokubun factory, Hitachi, Ltd. (72) Inventor Yoshihito Asai 1-1-1 Kokubun-cho, Hitachi-shi, Ibaraki No. 1 inside the Kokubun Plant of Hitachi, Ltd. (72) Inventor Tokio Yamagoku 1-1-1 Kokubuncho, Hitachi City, Ibaraki Prefecture Inside the Kokubun Plant of Hitachi Ltd.
Claims (13)
系統とを母線によって接続した電力供給系統において、
前記遮断器の母線側あるいは送電線側または両側と大地
との間に、開閉手段とインピーダンスとからなる過電圧
抑制装置を設けたことを特徴とする電力供給系統。1. A power supply system in which a power supply side system and a plurality of power transmission side systems having breakers are connected by a bus bar,
An electric power supply system characterized in that an overvoltage suppressing device including an opening / closing means and an impedance is provided between the busbar side or the power transmission line side or both sides of the circuit breaker and the ground.
系統とを母線によって接続した電力供給系統において、
前記遮断器の母線側あるいは送電線側または両側と大地
との間に、開閉手段とインピーダンスとからなる過電圧
抑制装置を設け、前記開閉手段に、前記遮断器の電流遮
断完了前に投入制御され、所定時間後に開放制御される
手段を接続したことを特徴とする電力供給系統。2. A power supply system in which a power supply system and a plurality of power transmission systems having circuit breakers are connected by a bus bar,
Between the busbar side or the power transmission line side or both sides of the circuit breaker and the ground, an overvoltage suppressing device consisting of a switching means and an impedance is provided, and the switching means is controlled to be closed before the completion of the current interruption of the circuit breaker, An electric power supply system characterized in that means for controlling the opening after a predetermined time is connected.
系統とを母線によって接続した電力供給系統において、
前記遮断器の母線側あるいは送電線側または両側と大地
との間に、開閉手段とインピーダンスとからなる過電圧
抑制装置を設け、前記開閉手段に、前記遮断器の引き外
し命令をもって前記開閉手段に閉動作命令を与え、前記
遮断器の最短遮断時間(開極時間と最小アーク時間)以
内に開閉手段の閉動作を完了させる手段を接続したこと
を特徴とする電力供給系統。3. A power supply system in which a power supply system and a plurality of power transmission systems having breakers are connected by a bus bar,
An overvoltage suppressing device including an opening / closing means and an impedance is provided between the busbar side or the transmission line side or both sides of the breaker and the ground, and the opening / closing means is closed to the opening / closing means by a trip command of the breaker. A power supply system characterized in that a means for giving an operation command and for completing the closing operation of the opening / closing means within the shortest breaking time (opening time and minimum arc time) of the circuit breaker is connected.
系統とを母線によって接続した電力供給系統において、
前記遮断器の母線側あるいは送電線側または両側と大地
との間に、開閉手段とインピーダンスとからなる過電圧
抑制装置を設け、前記開閉手段を、前記遮断器の遮断直
後の過渡回復電圧の立上り時に閉動作する開閉器で構成
したことを特徴とする電力供給系統。4. A power supply system in which a power supply system and a plurality of power transmission systems having breakers are connected by a bus bar,
Between the busbar side or the power transmission line side or both sides of the circuit breaker and the ground, an overvoltage suppressing device composed of a switching means and an impedance is provided, and the switching means is provided when the transient recovery voltage immediately after the circuit breaker rises. An electric power supply system characterized by comprising a switch that operates in a closed manner.
系統とを母線によって接続した電力供給系統において、
前記遮断器の母線側あるいは送電線側または両側と大地
との間に、開閉手段とインピーダンスとからなる過電圧
抑制装置を設け、前記開閉手段に、短絡事故又は地絡事
故の信号によって、前記遮断器の電流遮断完了前に前記
開閉手段を投入し、所定時間後に開放させる手段を接続
したことを特徴とする電力供給系統。5. A power supply system in which a power supply system and a plurality of power transmission systems having breakers are connected by a bus bar,
Between the busbar side or the power transmission line side or both sides of the circuit breaker and the ground, an overvoltage suppressing device including a switching means and an impedance is provided, and the switching means is caused by a signal of a short circuit accident or a ground fault. The power supply system is characterized in that the opening / closing means is turned on before the completion of the current interruption and the means for opening the current after a predetermined time is connected.
系統とを母線によって接続した電力供給系統において、
前記遮断器の母線側あるいは送電線側または両側と大地
との間に、開閉手段とインピーダンスとからなる過電圧
抑制装置を設け、前記開閉手段に、3相のうち少なくと
も一相の該遮断器の電流遮断完了前に3相分の前記開閉
手段を同時に投入し、所定時間に開放させる手段を接続
したことを特徴とする電力供給系統。6. A power supply system in which a power supply system and a plurality of power transmission systems having breakers are connected by a bus bar,
An overvoltage suppressing device including a switching means and an impedance is provided between the busbar side or the power transmission line side or both sides of the circuit breaker and the ground, and the switching means has at least one of three phases of the current of the circuit breaker. A power supply system characterized in that a means for opening and closing the opening / closing means for three phases at the same time before disconnection is completed, and opening for a predetermined time is connected.
系統とを母線によって接続した電力供給系統において、
前記遮断器の母線側あるいは送電線側または両側と大地
との間に、開閉手段とインピーダンスとからなる過電圧
抑制装置を設け、前記開閉手段に、短絡事故又は地絡事
故の信号によって、3相のうち少なくとも一相の前記遮
断器の電流遮断完了前に前記同相の開閉手段を投入し、
所定時間後に開放させる手段を接続したことを特徴とす
る電力供給系統。7. A power supply system in which a power supply system and a plurality of power transmission systems having breakers are connected by a bus bar,
Between the busbar side or the power transmission line side or both sides of the circuit breaker and the ground, an overvoltage suppressing device including an opening / closing means and an impedance is provided, and the opening / closing means is provided with a three-phase signal depending on a signal of a short circuit accident or a ground fault. Turning on the switching means of the same phase before completion of current interruption of the circuit breaker of at least one phase,
A power supply system characterized in that means for opening after a predetermined time is connected.
系統とを母線によって接続した電力供給系統において、
前記遮断器の母線側あるいは送電線側または両側と大地
との間に、開閉手段とインピーダンスとからなる過電圧
抑制装置を設け、前記開閉手段を、前記遮断器の電流遮
断完了前に前記開閉手段を投入し、所定時間後に開放す
るように前記遮断器の操作機構に連動したことを特徴と
する電力供給系統。8. A power supply system in which a power supply system and a plurality of power transmission systems having circuit breakers are connected by a bus bar,
Between the busbar side or the power transmission line side or both sides of the circuit breaker and the ground, an overvoltage suppressing device including a switching device and an impedance is provided, and the switching device is configured to operate the switching device before completion of the current interruption of the circuit breaker. A power supply system characterized in that it is interlocked with an operating mechanism of the circuit breaker so that it is turned on and opened after a predetermined time.
系統とを母線によって接続した電力供給系統において、
前記遮断器の母線側あるいは送電線側または両側と大地
との間に、前記遮断器の電流遮断完了前に投入され、所
定時間後に開放される開閉手段とインピーダンスとから
なる過電圧抑制装置を設け、前記開閉手段を、前記遮断
器の容器内に設置したことを特徴とする電力供給系統。9. A power supply system in which a power supply system and a plurality of power transmission systems having circuit breakers are connected by a bus bar,
Between the busbar side or the power transmission line side or both sides of the circuit breaker and the ground, an overvoltage suppressing device including an opening / closing means and an impedance which is turned on before completion of the current interruption of the circuit breaker and opened after a predetermined time is provided, A power supply system in which the opening / closing means is installed in a container of the circuit breaker.
側系統とを母線によって接続した電力供給系統におい
て、前記遮断器の母線側あるいは送電線側または両側と
大地との間に、前記遮断器の電流遮断完了前に投入さ
れ、所定時間後に開放される開閉手段と直線抵抗体ある
いは非直線抵抗体とからなる過電圧抑制装置を設けたこ
とを特徴とする電力供給系統。10. A power supply system in which a power supply side system and a plurality of power transmission side systems having circuit breakers are connected by a bus bar, and the circuit breaker is provided between the bus bar side or the power transmission line side or both sides of the circuit breaker and the ground. An electric power supply system comprising an overvoltage suppressing device including an opening / closing means which is turned on before the completion of current interruption of a power supply and is opened after a predetermined time and a linear resistor or a non-linear resistor.
側系統とを母線によって接続した電力供給系統におい
て、前記遮断器の母線側あるいは送電線側または両側と
大地との間に、開閉手段とインピーダンスとタップによ
って区切られたインピーダンスの一部と前記開閉手段に
並列に接続した放電ギャップからなる過電圧抑制装置を
設け、前記開閉手段に、前記遮断器の引き外し命令をも
って前記開閉手段に閉動作命令を与え、前記遮断器の最
短遮断時間(開極時間と最小アーク時間)以内に開閉手
段の閉動作を完了させる手段を接続したことを特徴とす
る電力供給系統。11. In a power supply system in which a power supply side system and a plurality of power transmission side systems having a circuit breaker are connected by a bus bar, a switching means is provided between the bus bar side or the power transmission line side or both sides of the circuit breaker and the ground. And an impedance and a part of the impedance separated by the tap and an overvoltage suppressing device comprising a discharge gap connected in parallel to the opening / closing means, and the opening / closing means is closed to the opening / closing means by a trip command of the breaker. A power supply system characterized in that a means for giving a command and completing the closing operation of the switching means within the shortest breaking time (opening time and minimum arc time) of the circuit breaker is connected.
側系統とを母線によって接続した電力供給系統におい
て、前記母線と大地との間に、開閉手段と抵抗体とから
なる過電圧抑制装置を設け、前記開閉手段に、短絡事故
又は地絡事故の信号によって、3相のうち少なくとも一
相の前記遮断器の電流遮断完了前に前記同相の開閉手段
を投入し、所定時間後に開放させる手段を接続したこと
を特徴とする電力供給系統。12. A power supply system in which a power supply system and a plurality of power transmission systems having a circuit breaker are connected by a bus bar, and an overvoltage suppressing device including switching means and a resistor is provided between the bus bar and the ground. A means for providing the switching means with the in-phase switching means before completion of current interruption of the circuit breaker of at least one of the three phases in response to a signal of a short circuit accident or a ground fault and opening it after a predetermined time. A power supply system characterized by being connected.
側系統とを母線によって接続した電力供給系統におい
て、前記遮断器の母線側あるいは送電線側または両側と
大地との間に、前記遮断器の電流遮断完了前に投入さ
れ、所定時間後に開放される開閉手段とインピーダンス
とを設けたことを特徴とする過電圧抑制装置。13. A power supply system in which a power supply side system and a plurality of power transmission side systems having a circuit breaker are connected by a bus bar, and the circuit breaker is provided between the bus bar side or the power transmission line side or both sides of the circuit breaker and the ground. An overvoltage suppressing device comprising an opening / closing means and an impedance which are turned on before the completion of the current interruption of the device and opened after a predetermined time.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3234407A JPH0576136A (en) | 1991-09-13 | 1991-09-13 | Power supply system |
KR1019920016424A KR930007026A (en) | 1991-09-13 | 1992-09-08 | Power supply system |
US07/942,810 US5473494A (en) | 1991-09-13 | 1992-09-10 | Electrical power supply system |
EP92115611A EP0532045B1 (en) | 1991-09-13 | 1992-09-11 | Electrical power supply system |
DE69216179T DE69216179T2 (en) | 1991-09-13 | 1992-09-11 | Electrical power supply system |
CN92110558A CN1035295C (en) | 1991-09-13 | 1992-09-12 | Electrical power supply system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3234407A JPH0576136A (en) | 1991-09-13 | 1991-09-13 | Power supply system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0576136A true JPH0576136A (en) | 1993-03-26 |
Family
ID=16970529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3234407A Pending JPH0576136A (en) | 1991-09-13 | 1991-09-13 | Power supply system |
Country Status (6)
Country | Link |
---|---|
US (1) | US5473494A (en) |
EP (1) | EP0532045B1 (en) |
JP (1) | JPH0576136A (en) |
KR (1) | KR930007026A (en) |
CN (1) | CN1035295C (en) |
DE (1) | DE69216179T2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104319745A (en) * | 2014-09-23 | 2015-01-28 | 内蒙古电力勘测设计院有限责任公司 | Method for realizing continuous tripping of multi-stage elements of power grid with use of remote tripping device |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6377427B1 (en) | 1995-03-13 | 2002-04-23 | Square D Company | Arc fault protected electrical receptacle |
US6532424B1 (en) | 1995-03-13 | 2003-03-11 | Square D Company | Electrical fault detection circuit with dual-mode power supply |
US6259996B1 (en) | 1998-02-19 | 2001-07-10 | Square D Company | Arc fault detection system |
US6246556B1 (en) | 1995-03-13 | 2001-06-12 | Square D Company | Electrical fault detection system |
US6242993B1 (en) | 1995-03-13 | 2001-06-05 | Square D Company | Apparatus for use in arcing fault detection systems |
US6313641B1 (en) | 1995-03-13 | 2001-11-06 | Square D Company | Method and system for detecting arcing faults and testing such system |
FR2760103B1 (en) * | 1997-02-25 | 2000-02-04 | Sextant Avionique | MODULAR PILOTAGE ARCHITECTURE OF AN AERODYNE HAVING LOW COST WHILE BEING CAPABLE OF PROVIDING A HIGH LEVEL OF OPERATING SAFETY |
US5933308A (en) * | 1997-11-19 | 1999-08-03 | Square D Company | Arcing fault protection system for a switchgear enclosure |
US6782329B2 (en) | 1998-02-19 | 2004-08-24 | Square D Company | Detection of arcing faults using bifurcated wiring system |
US6477021B1 (en) | 1998-02-19 | 2002-11-05 | Square D Company | Blocking/inhibiting operation in an arc fault detection system |
US6567250B1 (en) | 1998-02-19 | 2003-05-20 | Square D Company | Arc fault protected device |
US6625550B1 (en) | 1998-02-19 | 2003-09-23 | Square D Company | Arc fault detection for aircraft |
US6621669B1 (en) | 1998-02-19 | 2003-09-16 | Square D Company | Arc fault receptacle with a feed-through connection |
US6275044B1 (en) | 1998-07-15 | 2001-08-14 | Square D Company | Arcing fault detection system |
KR20000017221A (en) * | 1998-08-11 | 2000-03-25 | 가나이 쓰도무 | Electric energy transforming system and method of controlling the save |
EP1118156B1 (en) * | 1998-10-02 | 2004-04-21 | Thomson Licensing S.A. | Amplifier apparatus with transient recovery aid |
US6218844B1 (en) | 1998-12-16 | 2001-04-17 | Square D Company | Method and apparatus for testing an arcing fault circuit interrupter |
KR100437446B1 (en) * | 2001-11-22 | 2004-06-30 | 주식회사 젤파워 | Sub-system connecting device in power supply system |
FR2843839B1 (en) * | 2002-08-22 | 2007-06-29 | Telcomtec | DEVICE FOR THE PROTECTION OF ELECTRIC LINES AGAINST THE EFFECTS OF LIGHTNING |
US7508643B2 (en) * | 2006-10-27 | 2009-03-24 | Manitowoc Crane Companies, Inc. | System for overvoltage suppression for construction equipment |
CN101499649B (en) * | 2008-05-19 | 2011-06-22 | 河南省电力公司 | Networking bus bar protecting method based on GOOSE mode |
US8228652B2 (en) * | 2010-06-02 | 2012-07-24 | Eaton Corporation | Arc flash detection apparatus and electrical system including the same |
WO2012000545A1 (en) * | 2010-06-30 | 2012-01-05 | Abb Technology Ag | An hvdc transmission system, an hvdc station and a method of operating an hvdc station |
US20110141641A1 (en) * | 2010-06-30 | 2011-06-16 | General Electric Company | Circuit breaker with overvoltage protection |
CN102801147A (en) * | 2012-02-23 | 2012-11-28 | 金华市精工工具制造有限公司 | Over-voltage suppression device for generator unit |
US20130286513A1 (en) * | 2012-04-26 | 2013-10-31 | The Boeing Company | Subtransient Current Suppression |
US9312682B2 (en) * | 2012-05-14 | 2016-04-12 | General Electric Company | System and method for overvoltage protection |
CN106532754A (en) * | 2016-10-09 | 2017-03-22 | 国网上海市电力公司 | Voltage selection equipment of inverter station in high-voltage DC power transmission system and operation method of voltage selection equipment |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL257836A (en) * | 1959-11-25 | |||
DE1613817A1 (en) * | 1967-09-27 | 1971-05-06 | Koch & Sterzel Wandler Und Tra | Device for protecting earth-voltage transformers |
US3660719A (en) * | 1970-08-26 | 1972-05-02 | Texas Instruments Inc | Transient suppression system |
US3697773A (en) * | 1971-01-11 | 1972-10-10 | Wisconsin Alumni Res Found | Method and apparatus for non-oscillatory removal of transients in minimum time by bang-bang control of reactance in a power system |
US3660721A (en) * | 1971-02-01 | 1972-05-02 | Gen Electric | Protective equipment for an alternating current power distribution system |
US4016485A (en) * | 1976-03-02 | 1977-04-05 | German Ivanovich Samorodov | Arrangement for limiting dynamic overvoltages |
DE2753659C2 (en) * | 1977-12-02 | 1984-04-12 | Ruhrtal Elektrizitätsgesellschaft Hartig GmbH & Co, 4300 Essen | Busbar voltage simulation |
JPS57196824A (en) * | 1981-05-29 | 1982-12-02 | Tokyo Shibaura Electric Co | Secondary arc extinguishing device for power system |
EP0310852A1 (en) * | 1987-10-09 | 1989-04-12 | BBC Brown Boveri AG | High-voltage power system with a device for limiting switching-on overvoltages |
US4849845A (en) * | 1988-10-24 | 1989-07-18 | Sundstrand Corporation | Transient suppressor |
FR2655188B1 (en) * | 1989-11-29 | 1992-02-07 | Alsthom Gec | HIGH VOLTAGE CIRCUIT BREAKER AT VARISTANCES. |
-
1991
- 1991-09-13 JP JP3234407A patent/JPH0576136A/en active Pending
-
1992
- 1992-09-08 KR KR1019920016424A patent/KR930007026A/en not_active Application Discontinuation
- 1992-09-10 US US07/942,810 patent/US5473494A/en not_active Expired - Fee Related
- 1992-09-11 EP EP92115611A patent/EP0532045B1/en not_active Expired - Lifetime
- 1992-09-11 DE DE69216179T patent/DE69216179T2/en not_active Expired - Fee Related
- 1992-09-12 CN CN92110558A patent/CN1035295C/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104319745A (en) * | 2014-09-23 | 2015-01-28 | 内蒙古电力勘测设计院有限责任公司 | Method for realizing continuous tripping of multi-stage elements of power grid with use of remote tripping device |
CN104319745B (en) * | 2014-09-23 | 2019-07-16 | 内蒙古电力勘测设计院有限责任公司 | A method of realizing that power grid multistage elements are even jumped using remote jump device |
Also Published As
Publication number | Publication date |
---|---|
US5473494A (en) | 1995-12-05 |
DE69216179D1 (en) | 1997-02-06 |
EP0532045A3 (en) | 1993-09-08 |
CN1035295C (en) | 1997-06-25 |
KR930007026A (en) | 1993-04-22 |
EP0532045B1 (en) | 1996-12-27 |
CN1070517A (en) | 1993-03-31 |
DE69216179T2 (en) | 1997-07-31 |
EP0532045A2 (en) | 1993-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0576136A (en) | Power supply system | |
EP0474186B1 (en) | Protection of an electrical power distribution system | |
EP2639805B1 (en) | Method, circuit breaker and switching unit for switching off high-voltage DC currents | |
EP0117914B1 (en) | Circuit breaker having a parallel resistor arrangement | |
CA1294327C (en) | Contact arc suppressor arrangement for a reactor switch | |
US11824346B2 (en) | Current cut-off device for high-voltage direct current with adaptive oscillatory circuit, and control method | |
US4494163A (en) | Electric switching surge protection | |
US11791617B2 (en) | Current cut-off device for high-voltage direct current with capacitive buffer circuit, and control method | |
US20200006933A1 (en) | High-voltage dc cut-off device | |
JPS5929936B2 (en) | Multi-cut vacuum breaker device | |
JPS6253894B2 (en) | ||
JP3227653B2 (en) | Power system protection controller | |
GB2221794A (en) | Circuit breaker | |
JPS6229850B2 (en) | ||
JP2898714B2 (en) | Switchgear | |
JP3292783B2 (en) | DC circuit breaker | |
CN100365902C (en) | Energy distribution network | |
JPH10309034A (en) | Current-limiting breaker | |
JPS5957524A (en) | Ac current limiting type semiconductor circuit breaker | |
JPH04218220A (en) | Reactor having small surge voltage | |
JPH0819135A (en) | Gas insulated switch | |
JPH0140453B2 (en) | ||
RU2055439C1 (en) | High-voltage switching device | |
SU1144166A1 (en) | Arc voltage limiter | |
JPH0235414B2 (en) |