JPH0140453B2 - - Google Patents

Info

Publication number
JPH0140453B2
JPH0140453B2 JP360582A JP360582A JPH0140453B2 JP H0140453 B2 JPH0140453 B2 JP H0140453B2 JP 360582 A JP360582 A JP 360582A JP 360582 A JP360582 A JP 360582A JP H0140453 B2 JPH0140453 B2 JP H0140453B2
Authority
JP
Japan
Prior art keywords
resistor
current
contact
time
main contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP360582A
Other languages
Japanese (ja)
Other versions
JPS58121519A (en
Inventor
Yoichi Ooshita
Hideji Sato
Isao Takahashi
Kunio Hirasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP360582A priority Critical patent/JPS58121519A/en
Publication of JPS58121519A publication Critical patent/JPS58121519A/en
Publication of JPH0140453B2 publication Critical patent/JPH0140453B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は抵抗接点付きしや断器に係り、特に主
接点、抵抗接点、抵抗体等よりなる抵抗接点付き
しや断器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cylindrical circuit breaker with a resistive contact, and more particularly to a cylindrical circuit breaker with a resistive contact, which includes a main contact, a resistive contact, a resistor, and the like.

電力需要の増加に伴い電力系統の送電電圧及び
容量は増加してきており、国内でも送電電圧
1000kV級のUHV系統の具体化が進められてい
る。UHV系統では気中絶縁の合理化を考え、
UHV系統で発生するサージを極めて低い値に抑
制することが必要である。このためUHV系統で
用いられるしや断器では、従来の系統でも必要と
されていた抵抗投入の他に、抵抗しや断方式を導
入することが避けられない見通しである。
With the increase in electricity demand, the transmission voltage and capacity of the power system are increasing, and even in Japan, the transmission voltage and capacity are increasing.
The realization of a 1000kV class UHV system is progressing. Considering the rationalization of air insulation in UHV systems,
It is necessary to suppress surges generated in UHV systems to extremely low values. For this reason, it is unavoidable to introduce a resistor disconnection method in the shield disconnectors used in UHV systems, in addition to the resistor input required in conventional systems.

この抵抗しや断の基本構成は主接点、抵抗接点
及び抵抗体よりなり、その回路は第1図または第
2図に示されているように、主接点1と並列に抵
抗体2と抵抗接点3との直列回路を接続したもの
(第1図参照)、主接点1と抵抗体2との並列回路
に抵抗接点3を直列接続したもの(第2図参照)
である。そしてこれら両回路のしや断動作はいず
れもまず主接点1がしや断電流を抵抗体2の回路
に転流し、その後抵抗体2により限流されたしや
断電流を抵抗接点3がしや断し、しや断完了す
る。これに対して投入動作では、抵抗体2を投入
抵抗として兼用して用いるが、しや断用の専用抵
抗として用いるかによつて異なる動作シーケンス
となる。すなわち前者においては抵抗接点3を投
入し、先行投入時間経過後に主接点1が投入され
る。一方、後者の場合には主接点1と抵抗接点3
とがほぼ同時か又は抵抗接点3が遅れて投入され
る。このようなこれらの図面に示されている構成
は、所謂しや断部ユニツトといわれるもので、多
点切りしや断器ではこれらを構成単位として複数
のしや断部ユニツトを直列接続して構成される。
The basic configuration of this resistor breaker consists of a main contact, a resistive contact, and a resistor, and the circuit consists of a resistor 2 and a resistor contact in parallel with the main contact 1, as shown in Figure 1 or 2. 3 is connected in series (see Figure 1), and resistance contact 3 is connected in series to a parallel circuit of main contact 1 and resistor 2 (see Figure 2).
It is. In both of these circuits, the short circuit current is first diverted by the main contact 1 to the circuit of the resistor 2, and then the short circuit current, which is limited by the resistor 2, is transferred to the resistor contact 3. The severance is complete. On the other hand, in the closing operation, the resistor 2 is used also as a closing resistor, but the operation sequence differs depending on whether it is used as a dedicated resistor for closing or closing. That is, in the former case, the resistance contact 3 is closed, and the main contact 1 is closed after the advance closing time has elapsed. On the other hand, in the latter case, main contact 1 and resistance contact 3
and the resistance contact 3 is closed almost simultaneously or with a delay. The configuration shown in these drawings is what is called a break unit, and in a multi-point cutter or disconnector, multiple cutters or breakers are connected in series using these as a structural unit. configured.

ところで上述のしや断動作を横軸に時間をとつ
て示した第3図により更に詳しく説明する。まず
しや断指令信号(電流)4が時間t1において発せ
られると電流7が流れ、操作機構部において十分
な操作力が発生するのに必要な時間を経過した
後、主接点の可動側電極が曲線5の動作特性に従
つた移動を開始する。そして主接点は時間t2にお
いて開極し、電流しや断に必要な極間距離に達す
るまで移動した後で、時間幅T1内に生じたしや
断電流の零点で抵抗体への転流を完了する。これ
に対して抵抗接点は何等かの遅延手段を用いて曲
線6に沿つた主接点に対する遅れ動作をして、同
様に時間t3において開極し、時間幅T2内に生じた
電流零点で抵抗体に流れる電流をしや断する。こ
のようなしや断動作時において抵抗接点の開極す
る時間t3は、一般的には主接点が抵抗体への転流
を完了する時間幅T1の終了後に設定されるが、
この抵抗接点の主接点に対する遅れ操作機構には
種々のものが提案されている。しかし、提案され
ている遅れ操作機構はいずれも抵抗接点の主接点
に対する操作遅れ時間が、主接点の動作に関連し
て機構的に一定値に決めるようになつているた
め、抵抗体での発生熱量に関し、次に述べるよう
な欠点があつた。
By the way, the above-mentioned shearing operation will be explained in more detail with reference to FIG. 3, which shows time on the horizontal axis. When the on/off command signal (current) 4 is issued at time t1 , the current 7 flows, and after the time required for generating sufficient operating force in the operating mechanism has elapsed, the movable side electrode of the main contact starts moving according to the operating characteristic of curve 5. Then, the main contact opens at time t 2 and moves until it reaches the distance between the electrodes necessary for current interruption, and then transfers to the resistor at the zero point of the interruption current that occurs within time width T 1 . complete the flow. On the other hand, the resistive contact uses some kind of delay means to delay the operation of the main contact along curve 6, and similarly opens at time t3 , and at the current zero point that occurs within time width T2 . Cuts off the current flowing through the resistor. The time t 3 during which the resistance contact opens during such non-operation or disconnection operation is generally set after the end of the time width T 1 in which the main contact completes commutation to the resistor.
Various types of delay operation mechanisms for the main contact of the resistance contact have been proposed. However, in all of the proposed delay operation mechanisms, the operation delay time of the resistance contact with respect to the main contact is determined mechanically to a constant value in relation to the operation of the main contact, so Regarding the amount of heat, there were drawbacks as described below.

抵抗体での発生熱量Qは抵抗体に印加される電
圧をE、抵抗値R、印加時間をTとすれば、 Q=E2/R×T ……(1) で表わされる。UHV系統用抵抗しや断では、印
加電圧Eが大きく、抵抗値Rが小さく、印加時間
Tも投入用抵抗に対して数倍の大きさとなるため
発生熱量は非常に大きなものとなる。この印加時
間Tは主接点による転流時点から抵抗接点のしや
断時点までの時間を示しており、その最大値は第
3図に示してある主接点が抵抗体への転流を完了
する時間幅T1の開始時点から、抵抗接点が抵抗
体に流れる電流をしや断する時間幅T2の終了時
点までのT3となる。このためしや断器に装備さ
れる抵抗体は、このような印加時間Tの最大値
T3に対しても耐え得るような十分な熱容量を有
するように設計する必要があり、非常に大規模な
ものとなる。
The amount of heat generated in the resistor, Q, is expressed as Q=E 2 /R×T (1), where E is the voltage applied to the resistor, R is the resistance value, and T is the application time. In a UHV system resistor sheath disconnection, the applied voltage E is large, the resistance value R is small, and the application time T is several times as large as the closing resistance, so the amount of heat generated is extremely large. This application time T indicates the time from the time of commutation by the main contact to the time of breakage of the resistance contact, and its maximum value is shown in Figure 3 when the main contact completes the commutation to the resistor. T 3 is the period from the start of the time width T 1 to the end of the time width T 2 when the resistance contact stops the current flowing through the resistor. The resistor installed in this tester or disconnector is designed to resist the maximum value of the application time T
It must be designed to have sufficient heat capacity to withstand T 3 , making it extremely large-scale.

本発明は以上の点に鑑みなされたものであり、
その目的とするところは、抵抗体の発生熱量を低
減し、容積を縮小した抵抗接点付きしや断器を提
供するにある。
The present invention has been made in view of the above points,
The purpose is to reduce the amount of heat generated by the resistor and to provide a cylindrical circuit breaker with a resistive contact whose volume is reduced.

すなわち本発明は、抵抗接点を開離する操作機
構を、主接点のしや断動作と関連した遅延手段を
介して駆動力を発生する遅延操作機構と、抵抗体
を流れる所定の大きさ以上の電流を検出して駆動
力を発生する電流検出操作機構とから構成したこ
とを特徴とするものである。
In other words, the present invention provides an operating mechanism for opening and opening a resistive contact, a delay operating mechanism that generates a driving force through a delay means associated with the breaking operation of the main contact, and a delay operating mechanism that generates a driving force through a delay means associated with the breaking operation of the main contact, and a The present invention is characterized by comprising a current detection operation mechanism that detects current and generates a driving force.

以下、図示した実施例に基づいて本発明を説明
する。第4図には本発明の一実施例が示されてい
る。なお従来と同じ部品には同じ符号を付したの
で説明は省略する。本実施例では抵抗接点3を開
離する操作機構を、主接点3のしや断動作と関連
した遅延手段8を介して駆動力を発する遅延操作
機構8aと、抵抗体2を流れる所定の大きさ以上
の電流を検出して駆動力を発生する電流検出操作
機構10aとから構成した。そして遅延操作機構
8aを、主接点1をしや断する主接点用操作器9
の動作と関連した遅延手段8を介して駆動力を発
生するようにした第1の抵抗接点用操作器10で
構成し、電流検出操作機構10aを、電流検出部
11と第2の抵抗接点用操作器12とで構成し、
電流検出部11は、抵抗体2を流れる電流回路に
鎖交設置した固定片13、可動片14及び微小ギ
ヤツプ15からなるコイル16(1ターン磁気コ
イル)で形成した。このようにすることにより、
抵抗接点3は抵抗体2を流れる電流が所定の大き
さ以上の場合は電流検出操作機構10aによつて
開離されるようになつて、発生熱量に対する影響
の大きいしや断電流の通電時間が短くなつて抵抗
体2の発生熱量が減小するようになり、抵抗体2
の発生熱量を低減し、容積を縮小した抵抗接点付
きしや断器を得ることができる。
The present invention will be explained below based on the illustrated embodiments. FIG. 4 shows an embodiment of the present invention. Note that parts that are the same as those in the conventional model are given the same reference numerals, and therefore their explanations will be omitted. In this embodiment, the operating mechanism for opening and opening the resistive contact 3 is composed of a delay operating mechanism 8a that generates a driving force via a delay means 8 associated with the breaking operation of the main contact 3, and a predetermined amount of force flowing through the resistor 2. The current detection operating mechanism 10a generates a driving force by detecting a current of more than 100 liters. A main contact operating device 9 that disconnects the main contact 1 from the delay operating mechanism 8a
The current detecting operation mechanism 10a is composed of a first resistive contact operating device 10 that generates a driving force via a delay means 8 associated with the operation of the current detecting section 11 and a second resistive contact operating device 10. Consisting of an operating device 12,
The current detection unit 11 is formed of a coil 16 (one-turn magnetic coil) consisting of a fixed piece 13, a movable piece 14, and a minute gap 15, which are interlinked with the current circuit flowing through the resistor 2. By doing this,
The resistance contact 3 is opened by the current detection operation mechanism 10a when the current flowing through the resistor 2 exceeds a predetermined value, which has a large effect on the amount of heat generated and shortens the energization time when the current is interrupted. As a result, the amount of heat generated by resistor 2 decreases, and resistor 2
It is possible to obtain a cylindrical disconnector with a resistive contact that reduces the amount of heat generated and has a reduced volume.

すなわち同図に示されているように、電流は一
方の端子17より主接点1を経て他方の端子18
に流れており、この状態でしや断指令電流がしや
断コイル19に流れると主接点用操作器9が動作
を開始し、絶縁ロツド20を介して主接点1の可
動側電極21を図中に示してある矢印方向に駆動
し、主接点1を開極させる。この結果、主接点1
の電極間にアークが発生するが、これを適切な消
弧手段により消弧し、抵抗体2の回路に転流す
る。消弧手段としては種々の消弧媒体を用いた
種々のしや断方式があるが、高電圧大容量用のも
のとしてはSF6ガスを用いたパツフア形のしや断
部が多用されている。次いで第1の抵抗接点用操
作器10、第2の抵抗接点用操作器12のいずれ
かが動作を開始し、絶縁ロツド22を介して抵抗
接点3の可動側電極23を図中に示してある矢印
方向に駆動し、抵抗接点3を開離すなわち開極さ
せる。開極すると主接点1の場合と同様に抵抗接
点3の電極間にアークが発生するが、これを適切
な消弧手段で消弧する。この抵抗接点3に要求さ
れるしや断能力は、しや断電流が抵抗体2により
限流されて小さいものとなるため、主接点1のし
や断能力と比較すると小さいものでよく、一般的
には主接点1と同じ消弧媒体が用いられ、小規模
のしや断部で構成されることが多い。
That is, as shown in the figure, the current flows from one terminal 17 through the main contact 1 to the other terminal 18.
In this state, when the shearing command current flows to the shearing coil 19, the main contact operating device 9 starts operating, and the movable side electrode 21 of the main contact 1 is moved through the insulating rod 20. Drive in the direction of the arrow shown inside to open the main contact 1. As a result, main contact 1
An arc is generated between the electrodes of the resistor 2, which is extinguished by an appropriate arc extinguishing means and commutated to the circuit of the resistor 2. There are various arc extinguishing methods using various arc extinguishing media, but for high voltage and large capacity applications, a puffer type arc extinguisher using SF6 gas is often used. . Next, either the first resistive contact operating device 10 or the second resistive contact operating device 12 starts operating, and the movable electrode 23 of the resistive contact 3 is connected via the insulating rod 22, as shown in the figure. The resistive contact 3 is opened or opened by driving in the direction of the arrow. When the contact is opened, an arc is generated between the electrodes of the resistance contact 3 as in the case of the main contact 1, but this is extinguished by an appropriate arc extinguishing means. The shearing ability required of this resistance contact 3 is small compared to that of the main contact 1 because the shearing current is limited by the resistor 2 and is small. Typically, the same arc-extinguishing medium as the main contact 1 is used, and it is often composed of small-scale folds and sections.

ところでこのようにして抵抗接点3を開極する
と抵抗体2に発生する熱量を低減し、容積を縮小
することができるがそれを次に説明する。抵抗体
2に発生する熱量Qを、抵抗体2に流れる電流IR
で示すと前述の(1)式は、 Q=R・IR 2・T ……(2) となる。この(2)式からも明らかなように、電流検
出部11で検出する所定の大きさ以上の電流すな
わち検出可能限界電流を抵抗体2の設計最大電流
の例えば1/2に設定すれば、この設定値以下で電
流検出部11に検出されないようなしや断責務の
しや断時は、抵抗体2を流れる電流IRの許容通電
時間が少なくとも設計最大電流の4倍以上となつ
て、通電時間が多少のびてもさほど問題とはなら
ない。これに対し抵抗体2を流れる電流IRが上記
設定値以上に大きい場合のしや断責務、すなわち
抵抗体2の発生熱量Qが大きくなるような電流し
や断時は、主接点1がしや断電流をしや断し、抵
抗体2に電流が流れ始めると電流検出部11が検
出遅れ時間(例えば1ms以下)でこの電流を検
出し、直ちに第2の抵抗接点用操作器12が動作
を開始するため、抵抗体2に電流が転流してから
抵抗接点3がこれをしや断するまでの電流通電時
間を短縮することができ、発生熱量を低減するこ
とができる。この点第3図に記載してあるように
主接点1が抵抗体2への転流を行なう時間幅T1
の転流直後に抵抗接点3が開極した場合が最も効
果が大きく、この場合の短縮時間は単純に評価し
てもほぼ主接点1が抵抗体2に転流を完了する時
間幅T1に近い10ms弱となるが、これは従来の
設計最大電流の通電時間T3が30msなので、通
電時間をほぼ1/3短縮できることになる。しかも
この値は抵抗体2の必要体積に比例するので、抵
抗体2の大きさを従来に比べ約2/3の大きさに縮
小することができる。
By the way, when the resistance contact 3 is opened in this manner, the amount of heat generated in the resistor 2 can be reduced and the volume can be reduced, which will be explained next. The amount of heat Q generated in the resistor 2 is expressed as the current I R flowing through the resistor 2.
Expression (1) above becomes Q=R・I R 2・T (2). As is clear from equation (2), if the current of a predetermined magnitude or more detected by the current detection unit 11, that is, the detectable limit current, is set to, for example, 1/2 of the designed maximum current of the resistor 2, this In the event that the current is not detected by the current detection unit 11 at a value lower than the set value or the current is not detected, the allowable conduction time of the current I R flowing through the resistor 2 is at least four times the design maximum current, and the conduction time is Even if it grows a little, it is not a big problem. On the other hand, when the current I R flowing through the resistor 2 is larger than the above set value, the main contact 1 When the current is interrupted and current begins to flow through the resistor 2, the current detection unit 11 detects this current with a detection delay time (for example, 1 ms or less), and the second resistor contact operating device 12 immediately operates. Therefore, it is possible to shorten the current application time from when the current is commutated to the resistor 2 until the resistance contact 3 cuts it off, and the amount of heat generated can be reduced. In this respect, as shown in FIG. 3, the time width T 1 during which the main contact 1 commutates to the resistor 2 is
The effect is greatest when the resistance contact 3 opens immediately after the commutation of the resistor 2, and the shortened time in this case can be simply evaluated to be approximately equal to the time width T 1 in which the main contact 1 completes commutation to the resistor 2. This is close to 10ms, but this means that the conventional design maximum current conduction time T 3 is 30ms, so the current conduction time can be shortened by approximately 1/3. Moreover, since this value is proportional to the required volume of the resistor 2, the size of the resistor 2 can be reduced to about 2/3 of the conventional size.

これをしや断電流の位相まで考慮に入れて解析
すると次のようになる。一般に抵抗体2の発生熱
量が問題となるようなしや断責務では、抵抗体2
の回路の力率は零に近い値となつており、回路の
インピーダンスに比較してしや断抵抗の値は大き
いため、しや断電流が抵抗体2に転流されると電
源電圧に対し同相に近い電流となる。すなわち抵
抗体2に転流されてから電流零点までの時間はほ
ぼ0.25〓から0.5〓おきの値となるが、本実施例
では最初の電流零点すなわち抵抗体2の通電時間
が0.25〓でのしや断はむずかしいが、次の電流零
点の0.75〓では十分にしや断できる。それは例え
ば電流検出時間を0.1〓、開極時間を0.15〓、抵
抗接点の最小アーク時間を0.5〓に設定しておけ
ばよい。このように抵抗体2に電流が転流された
直後にこれを検出し、抵抗接点3が動作を開始す
るようにしてあるので、同期しや断的にほぼ同一
のアーク時間で常に電流零点が現われ、電流しや
断が可能となつて抵抗体2の通電時間が0.75〓、
約15msとなり、上記(2)式における通電時間Tを
従来の通電時間30msの1/2とすることができ、
しや断電流の位相を考慮に入れない場合に比べ更
に通電時間Tを低減することができる。
If we analyze this by taking into account the phase of the cut-off current, we get the following. In general, in cases where the amount of heat generated by the resistor 2 is a problem, the resistor 2
The power factor of the circuit is close to zero, and the value of the shear resistance is large compared to the impedance of the circuit, so when the shear current is commutated to resistor 2, it is in phase with the power supply voltage. The current is close to . In other words, the time from when the current is commutated to the resistor 2 to the current zero point is approximately every 0.25〓 to 0.5〓, but in this embodiment, the first current zero point, that is, the current conduction time of the resistor 2 is 0.25〓. Although it is difficult to break the current, it can be easily broken at the next current zero point of 0.75〓. For example, it is sufficient to set the current detection time to 0.1〓, the contact opening time to 0.15〓, and the minimum arc time of the resistance contact to 0.5〓. In this way, the current is detected immediately after the current is commutated to the resistor 2, and the resistance contact 3 starts operating, so that the current zero point is always reached at approximately the same arcing time, both synchronously and intermittently. The current appears, and the current can be cut off, and the energization time of resistor 2 is 0.75〓.
It is approximately 15ms, and the energization time T in the above equation (2) can be reduced to 1/2 of the conventional energization time of 30ms.
The energization time T can be further reduced compared to the case where the phase of the cut-off current is not taken into consideration.

なお遅延手段8としては、遅延回路または補助
接点等を用いた電気的なもの(リレー式)、流出
流体(流体式)または圧縮性流体の圧縮時定数
(圧縮充気時定数式)を用いた流体的なもの、機
械的機構部の空動作時間(電流検出機構を除いた
空動作時間式)またはばね等弾性体の弾性時定数
(弾性時定数式)を用いた機械的なもの等のいず
れを用いるようにしてもよい。そして第1、第2
の抵抗接点用操作器10,12としては、駆動力
源として主接点用操作器9と独立した加圧流体を
用いてもよいし、主接点用操作器9の動作によつ
て蓄勢されるばね等弾性体を用いてもよいが、こ
れら第1、第2の抵抗接点用操作器10,12の
駆動力源は共用し、動作開始を制御する機構のみ
独立させ、遅延手段8の出力でも、電流検出部1
1の出力でも制御できるように構成するのが効果
的である。この動作開始を制御する機構として
は、例えば駆動力源が加圧流体の場合にはバル
ブ、蓄勢されたばねの場合には係止フツク等が用
いられる。なおまた電流検出部11としては上述
の比較的大きな機械的出力が得られるコイル16
(1ターン磁気コイル)の他に、抵抗体2の回路
に微小抵抗を挿入、もしくは抵抗体2の一部分を
利用してその電圧降下を検出するようにしたも
の、電界を検出するようにしたもの、磁気的に駆
動されるようにしたもの等が用いられる。
As the delay means 8, an electric one (relay type) using a delay circuit or an auxiliary contact, an outflow fluid (fluid type), or a compression time constant of a compressible fluid (compression/filling time constant type) is used. Either a fluid type, a mechanical type that uses the idle operating time of a mechanical mechanism (idle operating time formula excluding the current detection mechanism), or an elastic time constant of an elastic body such as a spring (elastic time constant formula), etc. You may also use And the first and second
As the resistance contact operating devices 10 and 12, a pressurized fluid independent of the main contact operating device 9 may be used as a driving force source, or energy is stored by the operation of the main contact operating device 9. Although an elastic body such as a spring may be used, the driving force source of the first and second resistance contact operating devices 10 and 12 is shared, and only the mechanism for controlling the start of operation is made independent, and the output of the delay means 8 is also used. , current detection section 1
It is effective to configure the system so that it can be controlled even with one output. As a mechanism for controlling the start of this operation, for example, a valve is used when the driving force source is pressurized fluid, and a locking hook is used when the driving force source is a stored spring. Furthermore, as the current detection section 11, the above-mentioned coil 16 which can obtain a relatively large mechanical output is used.
(1-turn magnetic coil) In addition to those that insert a microresistance into the circuit of resistor 2, or use a part of resistor 2 to detect the voltage drop, and those that detect the electric field. , one that is magnetically driven, etc. are used.

第5図には本発明の他の実施例が示されてい
る。本実施例では遅延操作機構8bと電流検出操
作機構10bとが、その駆動力源に高電位部に設
けた弾性体24例えばばね24aを共用するよう
にした。このようにばね24a等抵抗接点3の駆
動機構を大部分共用にし、その主接点1の動作で
蓄勢されるばね24aを高電位部に設けたことに
より、抵抗接点付しや断器をコンパクトな構成に
することができる。すなわちしや断指令電流によ
り操作器(図示せず)で絶縁ロツド25を図中に
示されているような矢印方向に駆動し、レバー2
6を介して主接点1の可動側電極21をしや断方
向である図中右方向に駆動し、主接点1を開極さ
せる。これと同時に絶縁ロツド25と連結されて
いる絶縁ロツド27を介してレバー28を時計方
向に回転させ、レバー28と連結されているロツ
ド29によりばね24aの一方の座金具30を図
中に示されているような矢印方向に押圧し、ばね
24aを蓄勢する。この時ばね24aの他方の座
金具31はこれと連結されている絶縁ロツド3
2、レバー33、カム34を介して電流検出部1
1の可動片14に設けられたフツク部35により
係止されて動かない。なおこの際レバー33、カ
ム34は接触面の角度により夫々時計方向の回転
力を受けており、レバー28には投入用の係合部
36、空動作による遅延手段としてのアーム37
が設けてある。そして操作器(図示せず)の動作
終期において、遅延手段のアーム37が時計方向
に回転してロツド38の下端と係合し、ロツド3
8を上方に押上げる。この押上げられたロツド3
8の上端は電流検出部11の可動片14の先端と
接触し、これを押上げて可動片14に設けられた
フツク部35の係合を解く。このようにしてフツ
ク部35の係合が解かれると、蓄勢されたばね2
4aのエネルギーにより抵抗接点3の可動側電極
23はしや断方向である図中右方向に駆動され、
抵抗接点3は開極する。この遅延手段による抵抗
接点3の開極に対し抵抗体2に流れる電流が所定
の大きさ以上の場合には、抵抗体2の回路の導体
39に設けてある電流検出部11がこれを検出し
て可動片14を吸引し、前述の遅延手段であるア
ーム37の空動作によるフツク部35の係合解除
を待たずにフツク部35の係合を解き、蓄勢され
たばね24aのエネルギーで抵抗接点3の可動側
電極23をしや断方向の図中右方向に駆動して、
抵抗接点3を開極する。このように本実施例の場
合には、抵抗接点3の駆動力源、駆動機構を大部
分共用にしたので、しや断器をコンパクトな構成
にすることができる効果がある。
Another embodiment of the invention is shown in FIG. In this embodiment, the delay operation mechanism 8b and the current detection operation mechanism 10b share an elastic body 24, for example, a spring 24a provided at a high potential portion, as their driving force source. In this way, most of the drive mechanism of the spring 24a and equal resistance contact 3 is shared, and the spring 24a, which stores energy by the operation of the main contact 1, is provided in the high potential part, making it possible to make the installation of a resistance contact and the disconnector compact. It can be configured as follows. In other words, the insulating rod 25 is driven in the direction of the arrow shown in the figure by an actuator (not shown) using a shearing command current, and the lever 2 is
6, the movable side electrode 21 of the main contact 1 is driven in the right direction in the figure, which is the cross-sectional direction, to open the main contact 1. At the same time, the lever 28 is rotated clockwise via the insulating rod 27 connected to the insulating rod 25, and the washer 30 of the spring 24a is moved as shown in the figure by the rod 29 connected to the lever 28. Press in the direction of the arrow to charge the spring 24a. At this time, the other washer 31 of the spring 24a is connected to the insulating rod 3.
2. Current detection unit 1 via lever 33 and cam 34
It is locked by a hook portion 35 provided on one movable piece 14 and does not move. At this time, the lever 33 and the cam 34 are each receiving a clockwise rotational force due to the angle of their contact surfaces, and the lever 28 has an engaging portion 36 for closing and an arm 37 as a delay means due to idle operation.
is provided. At the end of the operation of the operating device (not shown), the arm 37 of the delay means rotates clockwise and engages the lower end of the rod 38.
Push 8 upwards. This pushed up rod 3
The upper end of the movable piece 8 contacts the tip of the movable piece 14 of the current detection section 11, and pushes it up to disengage the hook part 35 provided on the movable piece 14. When the hook portion 35 is disengaged in this way, the stored spring 2
4a, the movable electrode 23 of the resistance contact 3 is driven to the right in the figure, which is the cutting direction.
Resistance contact 3 is opened. When the current flowing through the resistor 2 is equal to or greater than a predetermined magnitude in response to the opening of the resistor contact 3 by this delay means, the current detection unit 11 provided in the conductor 39 of the circuit of the resistor 2 detects this. The movable piece 14 is attracted, and the hook part 35 is disengaged without waiting for the disengagement of the hook part 35 due to the idle operation of the arm 37, which is the delay means, and the resistive contact is opened with the energy of the stored spring 24a. By driving the movable electrode 23 of No. 3 in the right direction in the figure in the cross-section direction,
Resistance contact 3 is opened. In this way, in the case of the present embodiment, most of the driving force source and driving mechanism for the resistance contacts 3 are shared, so that there is an effect that the circuit breaker can be made compact in structure.

上述のように本発明は、抵抗接点の開離を、抵
抗体を流れる電流が所定の大きさ以上の場合には
その電流を検出して駆動力を発生する電流検出操
作機構で、所定の大きさ以下の場合には主接点の
しや断動作と関連した遅延手段を介して行なうよ
うにしたので、所定の大きさ以上の電流の場合は
遅延手段を介さず電流検出操作機構で開離される
ようになつて、発生熱量に対する影響の大きいし
や断電流の通電時間が短くなつて抵抗体の発生熱
量が減小するようになり、抵抗体の発生熱量を低
減し、容積を縮小した抵抗接点付きしや断器を得
ることができる。
As described above, the present invention uses a current detection operation mechanism that detects the current flowing through the resistor and generates a driving force to open the resistive contact when the current flowing through the resistor is greater than or equal to a predetermined magnitude. If the current is less than a predetermined value, the main contact is opened via a delay means associated with the opening/breaking operation of the main contact, so if the current is greater than a predetermined value, the current detection operation mechanism is used to open the main contact without going through the delay means. As a result, the amount of heat generated by the resistor is reduced by shortening the conduction time of the current that has a large effect on the amount of heat generated, and the amount of heat generated by the resistor is reduced.Resistance contacts with reduced volume You can get attachments and disconnections.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は抵抗接点付きしや断器のしや断部の回
路図、第2図は抵抗接点付きしや断器の他の例の
しや断部の回路図、第3図は従来の抵抗接点付き
しや断器のしや断動作を時間的に説明する説明
図、第4図は本発明の抵抗接点付きしや断器の一
実施例のしや断動作を説明する説明図、第5図は
本発明の抵抗接点付きしや断器の他の実施例のし
や断器要部の縦断側面図である。 1……主接点、2……抵抗体、3……抵抗接
点、8……遅延手段、8a,8b……遅延操作機
構、9……主接点用操作器、10……第1の抵抗
接点用操作器、10a,10b……電流検出操作
機構、11……電流検出部、12……第2の抵抗
接点用操作器、16……コイル(1ターン磁気コ
イル)、21……主接点の可動側電極、23……
抵抗接点の可動側電極、24……弾性体、24a
……ばね。
Fig. 1 is a circuit diagram of the slit section of a cylindrical breaker with a resistive contact, Fig. 2 is a circuit diagram of another example of a cylindrical breaker with a resistive contact, and Fig. 3 is a circuit diagram of a conventional slit breaker. FIG. 4 is an explanatory diagram illustrating the shearing operation of an embodiment of the shunt breaker with a resistive contact according to the present invention; FIG. FIG. 5 is a longitudinal sectional side view of the main part of a sheath breaker of another embodiment of the sheath breaker with a resistance contact according to the present invention. DESCRIPTION OF SYMBOLS 1... Main contact, 2... Resistor, 3... Resistance contact, 8... Delay means, 8a, 8b... Delay operation mechanism, 9... Main contact operating device, 10... First resistance contact 10a, 10b...Current detection operating mechanism, 11...Current detection unit, 12...Second resistance contact operating device, 16...Coil (1 turn magnetic coil), 21...Main contact Movable side electrode, 23...
Movable electrode of resistance contact, 24...Elastic body, 24a
...Spring.

Claims (1)

【特許請求の範囲】 1 少なくとも主接点、抵抗接点及び抵抗体より
なるものにおいて、前記抵抗接点を開離する操作
機構を、前記主接点のしや断動作と関連した遅延
手段を介して駆動力を発生する遅延操作機構と、
前記抵抗体を流れる所定の大きさ以上の電流を検
出して駆動力を発生する電流検出操作機構とから
構成したことを特徴とする抵抗接点付きしや断
器。 2 前記電流検出操作機構が、前記抵抗体を流れ
る電流回路に鎖交して設置したコイルで電流を検
出するようにしたものである特許請求の範囲第1
項記載の抵抗接点付きしや断器。 3 前記遅延操作機構と前記電流検出操作機構と
が、その駆動力源に高電位部に設けた弾性体を共
用したものである特許請求の範囲第1項記載の抵
抗接点付きしや断器。
[Scope of Claims] 1. In a device consisting of at least a main contact, a resistive contact, and a resistor, the operating mechanism for opening and closing the resistive contact is controlled by a driving force via a delay means associated with the opening and breaking operation of the main contact. a delay operation mechanism that generates
A sheath breaker with a resistive contact, comprising: a current detection operating mechanism that detects a current of a predetermined magnitude or more flowing through the resistor and generates a driving force. 2. Claim 1, wherein the current detection operation mechanism detects the current with a coil installed interlinked with the current circuit flowing through the resistor.
Disconnector with resistance contact as described in section. 3. A sheath breaker with a resistance contact according to claim 1, wherein the delay operation mechanism and the current detection operation mechanism share an elastic body provided in a high potential portion as a driving force source.
JP360582A 1982-01-12 1982-01-12 Breaker with resistance contact Granted JPS58121519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP360582A JPS58121519A (en) 1982-01-12 1982-01-12 Breaker with resistance contact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP360582A JPS58121519A (en) 1982-01-12 1982-01-12 Breaker with resistance contact

Publications (2)

Publication Number Publication Date
JPS58121519A JPS58121519A (en) 1983-07-19
JPH0140453B2 true JPH0140453B2 (en) 1989-08-29

Family

ID=11562116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP360582A Granted JPS58121519A (en) 1982-01-12 1982-01-12 Breaker with resistance contact

Country Status (1)

Country Link
JP (1) JPS58121519A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2657194B1 (en) * 1990-01-17 1993-12-31 Gec Alsthom Sa LOW-SURGE REACTOR CIRCUIT BREAKER.
FR2663456B1 (en) * 1990-06-14 1996-04-26 Alsthom Gec CIRCUIT BREAKER WITH INCORPORATED VARISTANCE.
FR2682219B1 (en) * 1991-10-02 1997-01-31 Alsthom Gec ULTRA HIGH VOLTAGE CIRCUIT BREAKER.

Also Published As

Publication number Publication date
JPS58121519A (en) 1983-07-19

Similar Documents

Publication Publication Date Title
EP0532045B1 (en) Electrical power supply system
JP6049957B2 (en) DC circuit breaker
JP3046095B2 (en) Circuit breaker with parallel resistance
US4488021A (en) Gas insulated disconnector
JPH0140453B2 (en)
JP4172916B2 (en) Short-circuit protection device
JPS61237326A (en) Breaker
CN114823237A (en) Shunt release for circuit breaker
GB2221794A (en) Circuit breaker
CN108631261B (en) Control circuit and method for bidirectional monitoring of breaker state
JPH06103856A (en) Gas blast circuit breaker
JPS59214119A (en) Composite breaker
JPS6115569B2 (en)
JPH0754904Y2 (en) Gas circuit breaker for shunt reactor
JPS61121222A (en) Compound type switchgear
JPH0338921Y2 (en)
JP2918074B2 (en) Gas circuit breaker
JP3342805B2 (en) Transformer tap changer
JPH046246B2 (en)
JPH0520984A (en) Resistance interrupting type circuit breaker
JP2760813B2 (en) DC circuit breaker
SU943912A1 (en) Current-limiting selective switch
JPS58121515A (en) Opening and closing device
JP3292783B2 (en) DC circuit breaker
JP3127678B2 (en) DC high-speed circuit breaker