JP3127678B2 - DC high-speed circuit breaker - Google Patents

DC high-speed circuit breaker

Info

Publication number
JP3127678B2
JP3127678B2 JP05260290A JP26029093A JP3127678B2 JP 3127678 B2 JP3127678 B2 JP 3127678B2 JP 05260290 A JP05260290 A JP 05260290A JP 26029093 A JP26029093 A JP 26029093A JP 3127678 B2 JP3127678 B2 JP 3127678B2
Authority
JP
Japan
Prior art keywords
main contact
circuit breaker
spring
opening
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05260290A
Other languages
Japanese (ja)
Other versions
JPH07114862A (en
Inventor
康二 昆野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP05260290A priority Critical patent/JP3127678B2/en
Publication of JPH07114862A publication Critical patent/JPH07114862A/en
Application granted granted Critical
Publication of JP3127678B2 publication Critical patent/JP3127678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、真空バルブを電流開
閉要素として備える直流高速度遮断器に関し、より詳し
くは、主接点を内蔵しその可動側主接点が電磁反発コイ
ルにより高速に開極駆動される真空バルブを備えた真空
遮断器と、真空バルブに並列に接続され真空バルブを通
って電源から負荷へ流れる電流に重畳され真空バルブ通
過電流に零点を作る転流電流を生成する転流回路とを用
いて構成される直流高速度遮断器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC high-speed circuit breaker having a vacuum valve as a current switching element, and more particularly, to a high-speed opening drive of a movable main contact having a built-in main contact by an electromagnetic repulsion coil. Circuit breaker with a vacuum valve, and a commutation circuit that is connected in parallel to the vacuum valve and generates a commutation current that is superimposed on the current flowing from the power supply to the load through the vacuum valve and creates a zero point in the vacuum valve passing current The present invention relates to a DC high-speed circuit breaker configured using the above.

【0002】[0002]

【従来の技術】電気鉄道給電線路における地絡,短絡保
護用直流高速度遮断器のうち、この種構成による直流高
速度遮断器として図5に構成例を示すごときのものが知
られている。この例では、直流高速度遮断器(以下単に
遮断器ともいう)は、主接点を内蔵した真空バルブ1
と、真空バルブ1内の可動主接点を高速に開極駆動する
電磁反発コイル2,電磁反発コイル2に電磁反発力を生
じさせる電流の電源を構成する反発コンデンサ30,反
発コンデンサ30を充電する直流電源50,反発コンデ
ンサ30を電磁反発コイル2に接続する反発用スイッチ
60からなる反発回路20と、真空バルブ1の通過電流
に零点を作るための転流電流の電源となる転流コンデン
サ3,転流コンデンサ3を充電する直流電源5,転流コ
ンデンサ3と直流電源5との並列回路に直列に接続され
て転流コンデンサ3との共振周波数をもつ転流電流を生
じさせる転流リアクトル4,転流コンデンサ3と直流電
源5と転流リアクトルとからなる回路を真空バルブ1に
並列化するための転流スイッチ6からなる転流回路10
とを用いて構成されている。このように構成される直流
高速度遮断器による直流電流の遮断は以下のように行わ
れる。
2. Description of the Related Art Among DC high-speed circuit breakers for protecting a ground fault and a short circuit in a power supply line of an electric railway, a DC high-speed circuit breaker having such a configuration as shown in FIG. 5 is known. In this example, a DC high-speed circuit breaker (hereinafter simply referred to as a circuit breaker) is a vacuum valve 1 having a built-in main contact.
And an electromagnetic repulsion coil 2 for opening the movable main contact in the vacuum valve 1 at high speed, a repulsion capacitor 30 constituting a power source of a current for generating an electromagnetic repulsion force in the electromagnetic repulsion coil 2, A repulsion circuit 20 including a power supply 50 and a repulsion switch 60 for connecting the repulsion capacitor 30 to the electromagnetic repulsion coil 2; Commutation reactor 4, which is connected in series with a parallel circuit of commutation capacitor 3 and commutation capacitor 3 to generate commutation current having a resonance frequency with commutation capacitor 3, A commutation circuit 10 comprising a commutation switch 6 for parallelizing a circuit comprising a commutation capacitor 3, a DC power supply 5 and a commutation reactor to a vacuum valve 1.
And is configured using The interruption of the DC current by the DC high-speed circuit breaker thus configured is performed as follows.

【0003】図6は直流電流遮断時の遮断器各部の現象
を示すもので、最上段の図のように、遮断器の負荷側線
路に時点t1 で短絡事故が発生し、線路のインダクタン
スに応じた上昇速度で線路電流が増加して一定の値に到
達した時点t2 で過電流として検出されると、この時点
で遮断器の検出制御回路から遮断指令が出力され、反発
用スイッチ60と転流スイッチ6とが同時に投入されて
転流電流It と反発電流Ic とが同時に流れはじめる。
ここには図示していないが、電磁反発コイル2(図5)
は扁平なリング状に形成され、このリングの面と平行に
かつリング面に近接して位置する,真空バルブ内可動主
接点と一体化された短絡円板内に電磁反発コイル内を流
れる反発電流Ic によって誘起された,反発電流Ic
反対方向の短絡電流Is が流れ、反発電流Ic と短絡電
流Is との間に反発力が生じ、図6の反発力の段に示し
た波形で短絡円板を介して可動主接点を開極駆動しよう
とする。可動主接点は通電容量を確保するための接触力
で固定主接点に押圧されているので、反発力が接触力以
上となる時点t3 から主接点の開離が始まる。一方、真
空バルブ通過電流は時点t2 から線路電流Iと転流電流
t との重畳された電流Iv となり、この電流Iv は主
接点開離後、遮断可能な開離距離が得られた後に零点を
通過するように転流電流の大きさと周波数とが決めら
れ、図では時点t4 で零点を通過し、この時点で遮断さ
れる。遮断後、線路電流Iは転流回路10を通って流れ
ようとするが、線路の直流電源は通常整流回路で構成さ
れており、一方、直流電源5と転流コンデンサ3との間
には充電抵抗として高抵抗が挿入されているので、線路
電源のインピーダンスと、線路のインダクタンスおよび
対地静電容量と、電流コンデンサ3の残留電圧および静
電容量と、転流リアクトル4のインダクタンスとによる
過渡電流期間経過後、転流回路10を流れる電流は充電
抵抗を流れる微小電流に落着き、転流スイッチ6を開け
ば微小電流は容易に遮断され、最終的に遮断器の遮断動
作が完了する。
[0003] Figure 6 shows the phenomenon of circuit breaker each part at the time of direct current cutoff, as shown in the figure the uppermost, short-circuit accident occurs at the time t 1 on the load side line of the circuit breaker, the inductance of the line When response rate of rise in the line current is detected at time t 2 has been reached a certain value increases as an overcurrent, interrupting command from the detection control circuit breakers at this point is output, the rebound switch 60 a commutation switch 6 is turned at the same time as the commutation current I t and repulsion current I c begins to flow at the same time.
Although not shown here, the electromagnetic repulsion coil 2 (FIG. 5)
Is formed in a flat ring shape, and is a repulsive current flowing through the electromagnetic repulsion coil in a short-circuited disk integrated with the movable main contact in the vacuum valve, which is located parallel to and close to the ring surface. induced by I c, the short circuit current I s in the opposite direction to the repulsion current I c flows, repulsive forces between the repelling current I c and the short-circuit current I s is generated, as shown in stages of repulsion of Figure 6 An attempt is made to open the movable main contact through the short-circuited disk with a waveform. The movable main contact is pressed against the fixed main contact with the contact force for ensuring the carrying capacity, breaking the main contact starts from the time t 3 when the repulsive force is a contact force or more. On the other hand, superimposed current I v next to the vacuum valve passing current from time t 2 the line current I and commutation current I t, the current I v is after the main contact opening, separable distance is obtained capable of interrupting and the magnitude and frequency of the commutation current to pass through the zero point determined for after passes through the zero point at time t 4 in FIG, it is blocked at this point. After the interruption, the line current I tends to flow through the commutation circuit 10, but the DC power supply of the line is usually constituted by a rectifier circuit, while the charge between the DC power supply 5 and the commutation capacitor 3 is charged. Since a high resistance is inserted as the resistance, a transient current period due to the impedance of the line power supply, the inductance of the line and the ground capacitance, the residual voltage and the capacitance of the current capacitor 3, and the inductance of the commutation reactor 4. After a lapse of time, the current flowing through the commutation circuit 10 settles down to a minute current flowing through the charging resistor, and the minute current is easily cut off by opening the commutation switch 6, and finally the cutoff operation of the circuit breaker is completed.

【0004】[0004]

【発明が解決しようとする課題】しかし、かかる構成の
遮断器では、反発回路内の抵抗に起因する反発電流の減
衰により電磁反発力が短時間(数ms程度)で消滅して
しまうため、可動主接点を接触力に抗して所要最低開離
距離以上の位置に保持するための機構が別に必要にな
り、上記従来例では、開離移動した可動主接点にクラッ
チがかかるようにクラッチ機構が設けられ、到達した最
大開離距離位置が保持可能とされている。しかし、この
ようなクラッチ機構を設けると、可動主接点に所要接触
力を与える,通常コイル圧縮ばねとして形成される接触
ばねがさらに圧縮された状態で可動主接点を到達開離位
置に保持することとなるためにクラッチ機構が強力な構
造のものとなり、このためにガラスや磁器を構成部材と
して有する真空バルブへの直結構造が困難となり、クラ
ッチまわりの構造が複雑化し、しかも、遮断器を再投入
して再運転に入れようとするときにクラッチを開放する
機構を投入操作機構に付加する必要が生じ、投入操作機
構は投入操作終端で接触ばねを加圧状態に保持すればよ
いのみの従来の機能に対しさらに新たな機能が付加され
て機構が複雑化するという問題が生じる。
However, in the circuit breaker having such a configuration, the electromagnetic repulsion force disappears in a short time (about several ms) due to the attenuation of the repulsion current caused by the resistance in the repulsion circuit. A separate mechanism is required to hold the main contact at a position equal to or greater than the required minimum separation distance against the contact force.In the above-described conventional example, the clutch mechanism is configured so that the clutch is applied to the movable main contact that has been moved. The maximum separation distance position that has been provided and reached can be held. However, when such a clutch mechanism is provided, the movable main contact, which gives a required contact force to the movable main contact, is held in the attained separation position while the contact spring, which is usually formed as a coil compression spring, is further compressed. Therefore, the clutch mechanism has a strong structure, which makes it difficult to directly connect to a vacuum valve having glass or porcelain as a component, complicating the structure around the clutch, and reconnecting the circuit breaker It is necessary to add a mechanism to release the clutch to the closing operation mechanism when trying to restart the operation, and the closing operation mechanism only needs to hold the contact spring in a pressurized state at the end of the closing operation. There is a problem that a new function is added to the function and the mechanism becomes complicated.

【0005】本発明は、所要最低開離距離を保持するの
に特別な機構を用いずにシンプルかつ信頼性の高い機構
でこの目的を果たす直流高速度遮断器を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a DC high-speed circuit breaker which achieves this purpose with a simple and reliable mechanism without using a special mechanism for maintaining a required minimum separation distance.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明においては、主接点を内蔵しその可動側主接
点が電磁反発コイルにより高速に開極駆動される真空バ
ルブを備えた真空遮断器と、前記真空バルブに並列に接
続され前記真空バルブを通って電源から負荷へ流れる電
流に重畳され真空バルブ通過電流に零点を作る転流電流
を生成する転流回路とを用いて構成される直流高速度遮
断器において、前記真空遮断器が前記可動側主接点の開
極駆動のために前記電磁反発コイルに加え遮断ばねを備
えているとともに、前記真空遮断器における開極駆動操
作が,前記電磁反発コイルによる開極駆動のための指令
と,前記遮断ばねによる開極駆動のための指令とを並行
してかつ同時点に与えて行うものであり、かつ、前記遮
断ばねを開極駆動待機状態に保持する係合機構を引き外
す引き外しコイルの時定数を小さくすることにより、前
記可動側主接点の前記遮断ばねによる開極駆動の開始時
点が,前記可動側主接点が前記電磁反発コイルによる開
極駆動によりその最大開離距離に到達した時点とほぼ同
じになるようにしたものとする。
In order to solve the above-mentioned problems, the present invention provides a vacuum system having a built-in main contact and a movable main contact having a vacuum valve whose opening is driven at high speed by an electromagnetic repulsion coil. A circuit breaker, and a commutation circuit that is connected in parallel with the vacuum valve and generates a commutation current that is superimposed on a current flowing from a power supply to a load through the vacuum valve to create a zero point in the vacuum valve passing current. In the DC high-speed circuit breaker, the vacuum circuit breaker includes a blocking spring in addition to the electromagnetic repulsion coil for driving the opening of the movable-side main contact. A command for opening drive by the electromagnetic repulsion coil and a command for opening drive by the cut-off spring are given in parallel and at the same time, and the opening spring is driven by the cut-off spring. By reducing the time constant of the trip coil that trips the engagement mechanism that holds the machine in the machine state, the starting point of the opening of the movable main contact by the cut-off spring is determined by the electromagnetic repulsion of the movable main contact. It is assumed that the opening distance is substantially the same as when the maximum opening distance is reached by the opening drive by the coil.

【0007】[0007]

【0008】[0008]

【作用】このように、真空遮断器が真空バルブ内可動主
接点の開極駆動のために電磁反発コイルに加え遮断ばね
を備えたものとすれば、遮断ばねは常に可動主接点を開
離させる方向に作用するから、遮断ばねによる開極駆動
時に可動主接点を接触ばねごと、あるいは接触ばねの足
場(ばね座)ごと遮断方向に移動させるようにすること
により、所要最低開離距離を過ぎた可動主接点の固定主
接点側への戻りを防止してすでに到達した開離距離を保
持させることができる。しかも、遮断ばねの適用は、通
常の交流回路用真空遮断器の操作機構を流用して行うこ
とができるので、直流高速度遮断器を簡易にかつ信頼性
高く構成することができる。
As described above, if the vacuum circuit breaker is provided with a blocking spring in addition to the electromagnetic repulsion coil for driving the opening of the movable main contact in the vacuum valve, the breaking spring always opens the movable main contact. Since the movable main contact is moved together with the contact spring or the scaffold (spring seat) of the contact spring in the blocking direction when the opening is driven by the breaking spring, the required minimum separation distance has passed. The movable main contact can be prevented from returning to the fixed main contact side, and the separation distance that has already been reached can be maintained. In addition, the application of the shut-off spring can be performed by diverting the operation mechanism of a normal AC circuit vacuum circuit breaker, so that the DC high-speed circuit breaker can be configured simply and with high reliability.

【0009】この場合、遮断ばねによる開極駆動は、可
動主接点が電磁反発コイルによる開極駆動によりその最
大開離距離に到達した後所要最低開離距離に戻り終るま
での間に始まらなければならない。しかし、電磁反発コ
イルによる開極駆動指令と、遮断ばねによる開極駆動指
令とを並行してかつ同時点に与えて行うようにすると、
実施例の項で詳述するように、可動主接点が最大開離距
離に到達する時間が10〜15ms,可動主接点が開離
移動をはじめてから最大距離に到達した後反発力が減
衰,消滅して最大開離距離の位置から再び固定主接点と
の再接触位置まで戻る時間が20〜30msであり、一
方、遮断ばねによる開極駆動指令発令後、遮断ばねを開
極駆動待機状態に保持している係合機構を引き外す引外
しコイルの動作により、遮断ばねによる移動がはじまる
までの時間が約20msであるので、反発駆動された可
動主接点を所要最低開離距離以上に保持することができ
る。このように、2つの開極駆動指令は同時に発令すれ
ばよく、両指令の間に時間差を設けるための装置もしく
は回路を必要としないので、直流高速度遮断器を複雑化
させないですむメリットが生じる。
In this case, the opening drive by the cut-off spring must be started before the movable main contact reaches its maximum separation distance by the opening drive by the electromagnetic repulsion coil and then returns to the required minimum separation distance. No. However, if the opening drive command by the electromagnetic repulsion coil and the opening drive command by the cut-off spring are given in parallel and at the same time,
As will be described in detail in the section of the embodiment, the time required for the movable main contact to reach the maximum separation distance is 10 to 15 ms, and the repulsion force is attenuated and disappears after the movable main contact reaches the maximum distance after the separation movement starts. The time required to return from the position of the maximum separation distance to the re-contact position with the fixed main contact again is 20 to 30 ms. On the other hand, after the opening drive command is issued by the breaking spring, the breaking spring is held in the opening drive standby state. The time required for the movement by the cut-off spring to start due to the operation of the tripping coil that trips the engaging mechanism is about 20 ms. Therefore, the movable main contact driven by repulsion must be maintained at the required minimum separation distance or more. Can be. As described above, the two opening drive commands need only be issued at the same time, and there is no need for a device or circuit for providing a time difference between the two commands, so that there is an advantage that the DC high-speed circuit breaker does not need to be complicated. .

【0010】しかし、引外しコイルの動作は早ければ早
いほど所要最低開離距離の保持が容易かつ確実となる。
引外しコイルは通常出力電圧一定の直流電源から駆動さ
れるが、引外しコイルの動作を早める方法には、コイル
のターン数を減らすとともにコイル導体を太くしてコイ
ルに流す電流を大きくすることにより到達可能な引外し
駆動力をターン数の低減分以上に大きくし、引外しに必
要な駆動力に到達するまでの時間を短くする方法、コイ
ルの最終到達駆動力を引外しに必要な所要最低駆動力近
傍に保持しつつコイルの時定数を小さくする方法等が考
えられる。しかし、コイルの設計諸元を変える方法だけ
では限られた設計条件(引外しコイルの大きさ、すなわ
ちコイルの直径,長さの各上限、許容最大コイル電流
等)の下では効果に限界が生じ、開極駆動指令発令後遮
断ばねによる可動主接点移動開始までの時間として通常
の小形,安価を意図した設計で得られる時間(上述の例
では約20ms)を大きく下まわらせることは容易では
ない。しかし、引外しコイルの電源を直流電圧で充電さ
れるコンデンサとすれば、引外し回路全体の時定数が顕
著に小さくなり、引外しコイルが係合を引き外すまでの
時間を顕著に小さくすることができる。また、このコン
デンサは直流電源から高抵抗を介して充電されるので、
コンデンサの放電電流すなわち引外しコイル電流を直流
電源回路に影響を及ぼすことなく任意に大きくすること
ができ、引外しコイルを電磁反発コイルと類似の構造の
ものとして係合引外しまでの時間をさらに短縮させるこ
ともできる。
However, the earlier the operation of the trip coil, the easier and more reliable the required minimum separation distance can be maintained.
The trip coil is usually driven from a DC power supply with a constant output voltage.However, a method of accelerating the operation of the trip coil is to reduce the number of turns of the coil and make the coil conductor thicker to increase the current flowing through the coil. A method to increase the reachable tripping drive force by at least the reduction in the number of turns and to shorten the time required to reach the drive force required for tripping, the minimum required driving force to trip the final ultimate drive force of the coil A method of reducing the time constant of the coil while maintaining it near the driving force is conceivable. However, the effect is limited under the limited design conditions (the size of the trip coil, that is, the upper limit of the coil diameter and length, the maximum allowable coil current, etc.) only by changing the coil design specifications. It is not easy to greatly reduce the time (approximately 20 ms in the above-mentioned example) obtained by the design aiming for a small and inexpensive ordinary as the time from the issuance of the opening drive command to the start of the movement of the movable main contact by the cut-off spring. . However, if the power supply for the tripping coil is a capacitor that is charged with a DC voltage, the time constant of the entire tripping circuit will be significantly reduced, and the time required for the tripping coil to disengage will be significantly reduced. Can be. Also, since this capacitor is charged from a DC power supply through a high resistance,
The discharge current of the capacitor, i.e., the trip coil current, can be arbitrarily increased without affecting the DC power supply circuit, and the trip coil has a structure similar to the electromagnetic repulsion coil, so that the time until the engagement trip is further increased. It can also be shortened.

【0011】[0011]

【実施例】図1に本発明による直流高速度遮断器構成の
一実施例を示す。遮断器は、真空バルブ1を電流開閉要
素として有し真空バルブ1内に内蔵された主接点中その
可動側主接点を開極駆動するための図示されない電磁反
発コイルと遮断ばねとを備えた真空遮断器11と線路の
直流電源100から出て真空バルブ1内の主接点を通り
負荷へ流れる線路電流に重畳されて真空バルブ通過電流
に零点を生じさせるための転流電流を生成する転流回路
10と、真空バルブ1の負荷側線路に設けられて線路電
流を検出する直流変流器12と直流変流器12が検出し
た線路電流が線路の短絡事故等により所定の大きさに到
達したときに真空遮断器11を遮断動作させるための遮
断指令と,真空バルブ通過電流に零点を作るために転流
回路10を真空バルブ1に並列化するための投入指令と
を出力する検出制御回路13と、真空バルブ1が小電流
を遮断する際に両接点間に発生する多重再発弧時の過電
圧を抑制するための非線形抵抗14とを用いて構成され
ている。
FIG. 1 shows an embodiment of the configuration of a DC high-speed circuit breaker according to the present invention. The circuit breaker has a vacuum valve 1 as a current switching element, and has a vacuum provided with an electromagnetic repulsion coil (not shown) for opening and driving a movable side main contact among main contacts built in the vacuum valve 1 and a breaking spring. A commutation circuit that generates a commutation current that is superimposed on the line current flowing from the circuit breaker 11 and the line from the DC power supply 100 to the load through the main contact in the vacuum valve 1 to the load. 10, a DC current transformer 12 provided on the load side line of the vacuum valve 1 for detecting the line current, and when the line current detected by the DC current transformer 12 reaches a predetermined size due to a line short-circuit accident or the like. And a detection control circuit 13 for outputting a shutoff command for shutting off the vacuum circuit breaker 11 and a closing command for parallelizing the commutation circuit 10 to the vacuum valve 1 for creating a zero point in the current flowing through the vacuum valve. ,true Valve 1 is constituted by using the non-linear resistor 14 for suppressing an overvoltage at the time of multiple recurrent arc generated between both contacts when interrupting small currents.

【0012】図2に図1に示した真空遮断器11構成の
一実施例を示す。この実施例では、真空遮断器は、固定
主接点1A,可動主接点1Bを内蔵した真空バルブ1
と、反発コンデンサ30からの電流が通流することによ
り可動主接点1Bを開極駆動する電磁反発コイル2と、
可動主接点1Bから上方へ延びる開閉駆動棒22に一体
化され電磁反発コイル2から反発力を受ける円板状の短
絡板21と、可動主接点1Bに固定主接点1Aとの所要
接触力を与える加圧用ワイプばね24の力を開閉駆動棒
22を介して可動主接点1Bに伝達する絶縁連結バー2
3と、加圧ワイプばね24の足場となるばね座25を先
端部に一体に有し遮断ばね31のばね力を絶縁連結バー
23を介して開閉駆動棒22に伝達する連結バー26
と、常時は遮断ばね31を開極駆動待機状態に保持する
ために先端に係合部を備えるとともに係合部の開放時に
遮断ばね31の力で連結バー26を図の下方へ駆動して
遮断ばね31の力を可動主接点1Bに伝達させる係合レ
バー27と、係合レバー27先端の係合部と係合する係
合部を備え、可動主接点1Bの遮断ばね31による開極
駆動のために引外しコイル33により引外し駆動されて
先端の係合部が引き外されるラッチレバー32と、真空
遮断器の遮断ばね31のみによる遮断動作特性をみるた
めの手動遮断スイッチ34と、図1に示した検出制御回
路13から出力される電磁反発コイルによる開極駆動の
ための遮断指令と、遮断ばねによる開極駆動のための遮
断指令とをそれぞれのゲートに入力させるサイリスタT
1 ,Th 2 とを主要構成要素として備えている。以
下、図1,図2を用いて事故電流遮断時の直流高速度遮
断器の動作を説明する。
FIG. 2 shows the structure of the vacuum circuit breaker 11 shown in FIG.
An example is shown. In this embodiment, the vacuum circuit breaker is fixed.
Vacuum valve 1 with built-in main contact 1A and movable main contact 1B
And that the current from the repulsion capacitor 30 flows.
An electromagnetic repulsion coil 2 for driving the movable main contact 1B to open a pole;
Integrated with open / close drive rod 22 extending upward from movable main contact 1B
Disk-shaped short which receives the repulsive force from the electromagnetic repulsion coil 2
Necessary for the entanglement plate 21 and the fixed main contact 1A for the movable main contact 1B
Opening / closing drive rod for applying force of pressurizing wipe spring 24 for applying contact force
Insulated connecting bar 2 for transmitting to movable main contact 1B via contact 22
3 and a spring seat 25 serving as a scaffold for the pressure wipe spring 24.
The spring force of the cut-off spring 31 is integrally provided at the end,
Connecting bar 26 for transmitting to opening / closing drive rod 22 via
Normally keeps the cut-off spring 31 in the opening drive standby state.
To provide an engaging portion at the tip and
The connection bar 26 is driven downward by the force of the blocking spring 31 as shown in the figure.
An engagement lever for transmitting the force of the blocking spring 31 to the movable main contact 1B.
The bar 27 engages with the engaging portion at the tip of the engaging lever 27.
Opening of movable main contact 1B by cut-off spring 31
It is tripped and driven by the trip coil 33 for driving.
A latch lever 32 from which the engaging portion at the tip is pulled off, and a vacuum
The breaking operation characteristic of only the breaking spring 31 of the breaker was examined.
A manual shut-off switch 34 for detecting the detection control circuit shown in FIG.
Opening drive by the electromagnetic repulsion coil output from the path 13
Command for the opening operation by the shut-off spring.
Thyristor T for inputting disconnection command to each gate
h1, Th TwoAre provided as main components. Less than
Below, referring to Fig.1 and Fig.2, DC high-speed
The operation of the breaker will be described.

【0013】直流線路に事故が発生し、事故電流が所定
の大きさに達すると、直流変流器12(図1)から検出
電流が入力される検出制御回路13から2つの遮断指令
と1つの投入指令とが同時に出力される。遮断指令の1
つはサイリスタTh1 (図2)のゲートに入り、もう1
つはTh2 のゲートに入る。また投入指令は転流スイッ
チ6(図1)を起動してオン状態にする。これにより、
転流回路10に転流電流が流れはじめるとともに、真空
バルブ1内の可動主接点1Bは、まず電磁反発コイル2
と短絡板21との間に発生した反発力により、加圧用ワ
イプばね24をさらに圧縮しつつ開極駆動され、これに
より、真空バルブ通過電流が図6のような経過で遮断さ
れる。このときの可動主接点1Bの移動は図3(a)の
ように推移する。すなわち、可動主接点1Bの移動はT
1 への遮断指令入力の時点t2(図6)からわずかに
遅れた時点t3 から始まり、遮断指令入力後10〜15
msで最大移動距離に到達し、以後、反発電流の減衰,
消滅に伴って反発力が加圧ワイプばね24の力を下まわ
り、可動主接点1Bが固定主接点1A方向へ戻りはじ
め、もしも以下に説明する遮断ばね31による開極駆動
がなければ、両主接点は可動主接点1Bが開離移動を開
始してから20〜30ms後に再び閉成されてしまう。
しかし、サイリスタTh2 にサイリスタTh1 と同時に
入った遮断指令により、引外しコイル33(図2)が動
作してラッチレバー32が引き外され、連結バー26の
動きで加圧用ワイプばね24を下方へ緩めつつ遮断ばね
31の力が絶縁連結バー23,開閉駆動棒22を介して
遮断指令入力後約20msで可動主接点1Bに伝達さ
れ、以後の可動主接点1Bの戻りが防止される。
When a fault occurs in the DC line and the fault current reaches a predetermined level, two cutoff commands and one cut-off command are output from a detection control circuit 13 to which a detection current is input from a DC current transformer 12 (FIG. 1). The injection command is output at the same time. Shutdown command 1
One enters the gate of thyristor Th 1 (FIG. 2) and another
One enters the gate of the Th 2. The input command activates the commutation switch 6 (FIG. 1) to turn it on. This allows
A commutation current starts flowing through the commutation circuit 10 and the movable main contact 1B in the vacuum valve 1
Due to the repulsive force generated between the wiping spring 21 and the short-circuiting plate 21, the opening is driven while further compressing the pressurizing wipe spring 24, whereby the current passing through the vacuum valve is cut off as shown in FIG. The movement of the movable main contact 1B at this time changes as shown in FIG. That is, the movement of the movable main contact 1B is T
slightly begins delayed time t 3 from the disconnection instruction time point of input t 2 to h 1 (FIG. 6), shut-off command input after 10-15
ms, the maximum travel distance is reached, and thereafter, the decay of the repulsive current,
With the disappearance, the repulsive force falls below the force of the pressure wipe spring 24, the movable main contact 1B starts to return toward the fixed main contact 1A, and if there is no opening drive by the shut-off spring 31 described below, the two main The contact is closed again 20 to 30 ms after the movable main contact 1B starts the opening movement.
However, the cut-off command entered simultaneously with thyristor Th 1 to the thyristor Th 2, the latch lever 32 is tripped by operation tripping coil 33 (FIG. 2), the pressurizing wiping spring 24 by the motion of the connecting bar 26 downwardly The force of the cut-off spring 31 is transmitted to the movable main contact 1B about 20 ms after the cut-off command is input via the insulating connection bar 23 and the opening / closing drive rod 22 while being loosened, so that the movable main contact 1B is prevented from returning thereafter.

【0014】図3(b)は電磁反発コイルを用いずに遮
断ばねだけで開極駆動したときの可動主接点の移動特性
を示し、図3(c)は本発明の参考例による直流高速度
遮断器における可動主接点の動作特性を示す。図3
(c)から分かるように、電磁反発力が無くなった後で
も遮断ばねにより可動主接点は所要最低開離距離以上の
開離距離を保持することができる。
FIG. 3B shows the movement characteristics of the movable main contact when the opening is driven only by the cut-off spring without using the electromagnetic repulsion coil. FIG. 3C shows the DC high speed according to the reference example of the present invention. 4 shows the operating characteristics of a movable main contact in a circuit breaker. FIG.
As can be seen from (c), even after the electromagnetic repulsion has been eliminated, the movable main contact can be maintained at a separation distance equal to or larger than the required minimum separation distance by the cut-off spring.

【0015】さらに、引外しコイル33として、通電開
始後の電流立上りの早い,時定数の小さいものを用い、
あるいは、引外しコイルを、例えば直流電圧で充電され
たコンデンサの放電電流で駆動するようにすれば、立上
りのさらに早い電流が引外しコイル33に流れ、ラッチ
レバー32の係合開放時点が早まり、可動主接点の遮断
ばねによる開極駆動開始時点が早まるので、図4のよう
に電磁反発力によって移動した距離から固定主接点方向
へ戻ることなく、到達した移動距離を確実に保持するこ
とができる。
Further, as the tripping coil 33, a coil having a fast current rise after the start of energization and a small time constant is used.
Alternatively, if the tripping coil is driven by, for example, the discharge current of a capacitor charged with a DC voltage, a current that rises faster flows through the tripping coil 33, and the time at which the latch lever 32 is disengaged is released, Since the opening timing of the opening of the movable main contact by the cut-off spring is advanced, the reached movement distance can be reliably maintained without returning to the fixed main contact direction from the distance moved by the electromagnetic repulsive force as shown in FIG. .

【0016】[0016]

【発明の効果】以上に述べたように、本発明において
は、主接点を内蔵しその可動側主接点が電磁反発コイル
により高速に開極駆動される真空バルブを備えた真空遮
断器と、真空バルブに並列に接続され真空バルブを通っ
て電源から負荷へ流れる電流に重畳され真空バルブ通過
電流に零点を作る転流電流を生成する転流回路とを用い
て構成される直流高速度遮断器を、真空遮断器が真空バ
ルブ内可動主接点の開極駆動のために電磁反発コイルに
加え遮断ばねを備えた構成としたので、電磁反発コイル
による開離行程中に可動主接点を接触ばねごと、あるい
は接触ばねの足場ごと移動させるようにすることによ
り、所要最低開離距離を過ぎた可動主接点の固定主接点
側への戻りを防止してすでに到達した開離距離を保持さ
せることができる。しかも、このための遮断ばねの適用
は、通常の交流回路用真空遮断器の操作機構を流用して
行うことができ、直流高速度遮断器を簡易にかつ信頼性
高く構成することができる。
As described above, according to the present invention, there is provided a vacuum circuit breaker having a built-in main contact and a movable main contact having a vacuum valve whose opening is driven by an electromagnetic repulsion coil at a high speed. A DC high-speed circuit breaker comprising a commutation circuit that is connected in parallel with the valve and that generates a commutation current that is superimposed on the current flowing from the power supply to the load through the vacuum valve and creates a zero point in the vacuum valve passing current. Since the vacuum circuit breaker is provided with a blocking spring in addition to the electromagnetic repulsion coil for driving the opening of the movable main contact in the vacuum valve, the movable main contact together with the contact spring during the separation stroke by the electromagnetic repulsion coil is Alternatively, by moving the contact spring together with the scaffold, it is possible to prevent the movable main contact that has passed the required minimum separation distance from returning to the fixed main contact side, and to maintain the separation distance that has already been reached. In addition, the application of the shut-off spring for this purpose can be performed by diverting the operation mechanism of the ordinary AC circuit vacuum circuit breaker, and the DC high-speed circuit breaker can be configured simply and with high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による直流高速度遮断器構成の一実施例
を示す回路図
FIG. 1 is a circuit diagram showing an embodiment of a configuration of a DC high-speed circuit breaker according to the present invention.

【図2】本発明による直流高速度遮断器に用いられる真
空遮断器構成の一実施例を示す構成原理図
FIG. 2 is a structural principle diagram showing an embodiment of a vacuum circuit breaker used in a DC high-speed circuit breaker according to the present invention;

【図3】本発明の参考例による直流高速度遮断器におけ
る可動主接点の移動特性の一例を示すものであって、同
図(a)は可動主接点が電磁反発コイルだけで開極駆動
されたときの可動主接点の移動距離と開極駆動のための
遮断指令発令時点からの時間との関係を示す移動特性
図、同図(b)は可動主接点が遮断ばねだけで開極駆動
されたときの移動特性図、同図(c)は可動主接点が電
磁反発コイルと遮断ばねとの両方でかつ同図(a),
(b)のような時間差で開極駆動されたときの移動特性
FIG. 3 shows an example of a moving characteristic of a movable main contact in a DC high-speed circuit breaker according to a reference example of the present invention. FIG. 3 (a) shows that the movable main contact is opened and driven only by an electromagnetic repulsion coil. FIG. 4B is a moving characteristic diagram showing the relationship between the moving distance of the movable main contact and the time from the issuance of the shutoff command for opening drive when the movable main contact is opened. FIG. FIG. 3C shows the movement characteristics when the movable main contact is both an electromagnetic repulsion coil and a cut-off spring.
A movement characteristic diagram when the opening drive is performed with a time difference as shown in FIG.

【図4】本発明の実施例による直流高速度遮断器におけ
る可動主接点の移動特性の一例を示すものであって、同
図(a)は可動主接点が電磁反発コイルだけで開極駆動
されたときの可動主接点の移動距離と開極駆動のための
遮断指令発令時点からの時間との関係を示す移動特性
図、同図(b)は可動主接点が遮断ばねだけで開極駆動
され、かつ開極駆動開始時点を図3(b)の場合よりも
早めたときの移動特性図、同図(c)は可動主接点が電
磁反発コイルと遮断ばねとの両方でかつ同図(a),
(b)のような時間差で開極駆動されたときの移動特性
FIG. 4 shows an example of a moving characteristic of a movable main contact in the DC high-speed circuit breaker according to the embodiment of the present invention. FIG. 4 (a) shows that the movable main contact is opened and driven only by the electromagnetic repulsion coil. FIG. 4B is a moving characteristic diagram showing the relationship between the moving distance of the movable main contact and the time from the issuance of the shutoff command for opening drive when the movable main contact is opened. FIG. 3 (b), and FIG. 3 (c) shows a moving characteristic when the movable main contact is both an electromagnetic repulsion coil and a cut-off spring. ),
A movement characteristic diagram when the opening drive is performed with a time difference as shown in FIG.

【図5】可動主接点が電磁反発コイルで開極駆動される
真空バルブを備えた直流高速度遮断器構成の従来の一例
を示す回路図
FIG. 5 is a circuit diagram showing an example of a conventional DC high-speed circuit breaker having a vacuum valve whose movable main contact is driven to open by an electromagnetic repulsion coil.

【図6】図5の直流高速度遮断器による直流電流遮断時
の遮断器各部の現象を示す波形図
FIG. 6 is a waveform chart showing a phenomenon of each part of the circuit breaker when DC current is cut off by the DC high-speed circuit breaker of FIG. 5;

【符号の説明】[Explanation of symbols]

1 真空バルブ 1B 可動主接点(可動側主接点) 2 電磁反発コイル 10 転流回路 11 真空遮断器 13 検出制御回路 31 遮断ばね 33 引外しコイル Th1 サイリスタ Th2 サイリスタ1 vacuum valve 1B movable main contact (movable main contact) 2 electromagnetic repulsion coil 10 commutation circuit 11 the vacuum interrupter 13 detects the control circuit 31 the opening spring 33 releasing coil Th 1 thyristor Th 2 Thyristor

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01H 33/66 H01H 33/59 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H01H 33/66 H01H 33/59

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主接点を内蔵しその可動側主接点が電磁反
発コイルにより高速に開極駆動される真空バルブを備え
た真空遮断器と、前記真空バルブに並列に接続され前記
真空バルブを通って電源から負荷へ流れる電流に重畳さ
れ真空バルブ通過電流に零点を作る転流電流を生成する
転流回路とを用いて構成される直流高速度遮断器におい
て、前記真空遮断器が前記可動側主接点の開極駆動のた
めに前記電磁反発コイルに加え遮断ばねを備えていると
ともに、前記真空遮断器における開極駆動操作が,前記
電磁反発コイルによる開極駆動のための指令と,前記遮
断ばねによる開極駆動のための指令とを並行してかつ同
時点に与えて行うものであり、かつ、前記遮断ばねを開
極駆動待機状態に保持する係合機構を引き外す引き外し
コイルの時定数を小さくすることにより、前記可動側主
接点の前記遮断ばねによる開極駆動の開始時点が,前記
可動側主接点が前記電磁反発コイルによる開極駆動によ
りその最大開離距離に到達した時点とほぼ同じになるよ
うにしたことを特徴とする直流高速度遮断器。
1. A vacuum circuit breaker having a built-in main contact and a movable main contact having a vacuum valve whose opening is driven at high speed by an electromagnetic repulsion coil, and a vacuum circuit breaker connected in parallel with the vacuum valve and passing through the vacuum valve. A DC commutation circuit that generates a commutation current that is superimposed on the current flowing from the power supply to the load to create a zero point in the current flowing through the vacuum valve, wherein the vacuum circuit breaker is An opening spring is provided in addition to the electromagnetic repulsion coil for opening the contacts, and the opening drive operation of the vacuum circuit breaker is performed by a command for the opening drive by the electromagnetic repulsion coil and the interruption spring. And a time constant of a tripping coil that trips an engagement mechanism that holds the shut-off spring in the opening drive standby state. To Thus, the starting point of the opening drive of the movable main contact by the cut-off spring is substantially the same as the time when the movable main contact reaches its maximum separation distance by the opening drive by the electromagnetic repulsion coil. DC high-speed circuit breaker characterized in that:
JP05260290A 1993-10-19 1993-10-19 DC high-speed circuit breaker Expired - Fee Related JP3127678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05260290A JP3127678B2 (en) 1993-10-19 1993-10-19 DC high-speed circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05260290A JP3127678B2 (en) 1993-10-19 1993-10-19 DC high-speed circuit breaker

Publications (2)

Publication Number Publication Date
JPH07114862A JPH07114862A (en) 1995-05-02
JP3127678B2 true JP3127678B2 (en) 2001-01-29

Family

ID=17345995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05260290A Expired - Fee Related JP3127678B2 (en) 1993-10-19 1993-10-19 DC high-speed circuit breaker

Country Status (1)

Country Link
JP (1) JP3127678B2 (en)

Also Published As

Publication number Publication date
JPH07114862A (en) 1995-05-02

Similar Documents

Publication Publication Date Title
JP4492610B2 (en) Circuit breaker and its switching method
US4184186A (en) Current limiting device for an electric power system
CN101084561B (en) Method and device for the secure operation of a switching device
EP2078328B1 (en) Residual current device
US5546062A (en) Protection switch
US4862313A (en) Driving apparatus for DC circuit breakers
US20060044729A1 (en) Device for protection against voltage surges with mobile electrode
US3644790A (en) Static antipump circuit breaker closing system
KR101848681B1 (en) Direct current circuit breaker
JP3127678B2 (en) DC high-speed circuit breaker
JP3163948B2 (en) DC high-speed vacuum circuit breaker
JP2008021418A (en) Circuit breaker
JP4172916B2 (en) Short-circuit protection device
CN112086942B (en) Anti-tripping loop and control method thereof
JPH04230916A (en) Load switch or load-cutting switch and switching circuit device having fuse
CN107276042A (en) Shutting-brake control method based on one or two fusion no-flashy-flow Intelligent power distribution switchs
JPH0581973A (en) Dc circuit breaker
RU67772U1 (en) ELECTROMAGNETIC DRIVE OF CIRCUIT BREAKERS
US8223469B2 (en) Power node switching center with active feedback control of power switches
JPS59158506A (en) Electromagnet
CN213025920U (en) Neutral point grounding structure of three-phase alternating current power system
US1184844A (en) Electric-circuit interrupter.
JPH01279528A (en) High speed vacuum circuit breaker
JPS58121519A (en) Breaker with resistance contact
JP3039121B2 (en) DC high speed circuit breaker

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees