JP3227653B2 - Power system protection controller - Google Patents
Power system protection controllerInfo
- Publication number
- JP3227653B2 JP3227653B2 JP22820092A JP22820092A JP3227653B2 JP 3227653 B2 JP3227653 B2 JP 3227653B2 JP 22820092 A JP22820092 A JP 22820092A JP 22820092 A JP22820092 A JP 22820092A JP 3227653 B2 JP3227653 B2 JP 3227653B2
- Authority
- JP
- Japan
- Prior art keywords
- accident
- transmission line
- circuit breaker
- power system
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
- Y02B70/3225—Demand response systems, e.g. load shedding, peak shaving
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/222—Demand response systems, e.g. load shedding, peak shaving
Landscapes
- Emergency Protection Circuit Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、電力系統の遮断器遮断
時の過電圧を抑制する電力系統保護制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power system protection control device for suppressing an overvoltage when a circuit breaker of a power system is cut off.
【0002】[0002]
【従来の技術】従来から、電力系統の遮断器で送電線の
事故電流を投入、遮断するときには、過電圧が発生する
ので、それを抑制して電力系統を保護制御する装置が用
いられてきた。2. Description of the Related Art Conventionally, when an accidental current in a transmission line is turned on and off by a power circuit breaker, an overvoltage is generated, and a device for suppressing the overvoltage to protect and control the power system has been used.
【0003】遮断器の動作時に発生する過電圧として
は、投入時に送電線の充電電圧が進行波となって往復反
射し過電圧となる投入サージと、系統地絡事故の遮断時
に送電線の電圧降下分がやはり進行波となって往復反射
して過電圧となる遮断サージとがある。[0003] The overvoltage generated during the operation of the circuit breaker includes an input surge in which the charging voltage of the transmission line becomes a traveling wave when the power supply is turned on and is reflected back and forth to form an overvoltage, and a voltage drop of the transmission line when the system ground fault is interrupted. However, there is also a shut-off surge which becomes a traveling wave and is reflected back and forth and becomes an overvoltage.
【0004】これらの過電圧は、高いものでは相電圧の
3倍にも達する場合がある。従来、この過電圧に対し抵
抗投入式遮断器及び抵抗遮断式遮断器を用いると共に、
送電線の絶縁レベルをこのような過電圧に対して十分耐
えるような設計が為されてきた。[0004] These overvoltages can be as high as three times the phase voltage at high levels. Conventionally, for this overvoltage, while using a resistance closing circuit breaker and a resistance breaking circuit breaker,
Designs have been made to ensure that the insulation level of the transmission line is sufficiently resistant to such overvoltages.
【0005】近年、電力需要の増大に伴い送電能力の増
大を図るため、1000kV送電系統が計画されるよう
になった。このような超超高圧の送電線では、従来の遮
断器動作時の過電圧に十分耐えるように絶縁設計された
送電線を建設することは、経済的に得策ではない。[0005] In recent years, a 1000 kV transmission system has been planned in order to increase the transmission capacity in response to an increase in power demand. With such an ultra-high-voltage transmission line, it is not economically advantageous to construct a transmission line that is insulated and designed to sufficiently withstand the conventional overvoltage during circuit breaker operation.
【0006】例えば、1000kV送電系統では過電圧
を系統相電圧波高値の1.6倍以下に抑制することが要
求されている。現在、投入サージに対しては、抵抗で進
行波のエネルギーを吸収する抵抗投入式遮断器がこれよ
り電圧の低い送電系統で使用されている。しかし、この
方式は遮断サージに対しては効果が無い。そこで、遮断
に対しても抵抗を介して遮断する抵抗遮断式遮断器が提
案されている。For example, in a 1000 kV power transmission system, it is required to suppress an overvoltage to 1.6 times or less of a system phase voltage peak value. At present, for a closing surge, a resistance closing circuit breaker that absorbs traveling wave energy with a resistor is used in a power transmission system having a lower voltage. However, this method has no effect on breaking surge. Therefore, there has been proposed a resistance cutoff circuit breaker that cuts off via a resistor.
【0007】[0007]
【発明が解決しようとする課題】しかし、今日主流のパ
ッファ形ガス遮断器では、事故遮断時、抵抗へ通電する
時間が30ms程度と長く、また遮断器の電圧的責務が2
倍になるような脱調投入遮断の責務にも耐えるようにす
るので、抵抗体が極めて大型化する上、抵抗投入機構や
抵抗遮断機構を駆動するために複雑な遅延操作機構が必
要である。However, in the puffer-type gas circuit breaker which is mainly used today, when an accident is cut off, the time for energizing the resistor is as long as about 30 ms, and the voltage responsibility of the circuit breaker is two times.
In order to withstand the duty of step-out and shut-off, which is doubled, the resistor becomes extremely large, and a complicated delay operation mechanism is required to drive the resistance-turning mechanism and the resistance cut-off mechanism.
【0008】本発明の目的は、三相送電線における地絡
事故時等、遮断器の開放時に発生する送電線過電圧を抑
制するために過電圧抑制装置を投入する電力系統保護制
御装置を提供することである。SUMMARY OF THE INVENTION It is an object of the present invention to provide a power system protection and control device in which an overvoltage suppression device is turned on to suppress a transmission line overvoltage that occurs when a circuit breaker is opened, such as when a ground fault occurs in a three-phase transmission line. It is.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
に、電源が接続されている母線と、該母線から遮断器を
介して引き出される複数の三相送電線からなる電力系統
の電力系統保護制御装置において、前記母線または前記
各三相送電線の少くとも一方と大地との間に設けられた
開閉手段とインピーダンスを直列接続してなる過電圧抑
制装置と、前記送電線の電流、電圧から前記三相送電線
の事故を検出する事故検出手段と、該事故検出手段の事
故検出出力により事故送電線に設置された以外の前記開
閉手段を閉動作させ、該閉動作後前記事故送電線の前記
遮断器を開動作させ、前記事故検出手段の事故除去の出
力により、前記開閉手段を開動作させる制御手段とを含
んでなることを特徴とする電力系統保護制御装置とした
のである。In order to achieve the above-mentioned object, in order to achieve the above object, power system protection for a power system consisting of a bus connected to a power supply and a plurality of three-phase transmission lines drawn from the bus via a circuit breaker. In the control device, an overvoltage suppression device in which switching means and impedance provided in series between at least one of the bus or each of the three-phase transmission lines and the ground are connected in series, and the current and voltage of the transmission line An accident detecting means for detecting an accident of the three-phase transmission line, and the opening / closing means other than the one installed on the accidental transmission line is closed by the accident detection output of the accident detection means, and after the closing operation, And a control means for opening the circuit breaker and opening the switching means according to the output of the accident detection means for eliminating the accident.
【0010】事故検出手段の事故検出の出力により事故
送電線の前記遮断器を開動作させ、前記遮断器の電流遮
断完了前に事故送電線に設置された以外の前記開閉手段
を閉動作させ、前記事故検出手段の事故除去の出力によ
り、前記開閉手段を開動作させる制御手段でもよい。The circuit breaker of the faulty transmission line is opened according to the fault detection output of the fault detection means, and the switching means other than those installed on the faulty transmission line are closed before the current cutoff of the breaker is completed. Control means for opening the opening / closing means based on the output of the accident detection means for eliminating the accident may be used.
【0011】または、事故検出手段の事故検出の出力に
より事故送電線の遮断器を開動作させ、その遮断直後の
過渡回復電圧の立上りを検出する過渡回復電圧検出手段
と、該過渡回復電圧検出手段で検出後事故送電線に設置
された以外の前記開閉手段を閉動作させ、前記事故検出
手段の事故除去の出力により、前記開閉手段を開動作さ
せる制御手段としてもよい。Alternatively, a transient recovery voltage detecting means for opening the circuit breaker of the faulty transmission line based on the output of the fault detection of the fault detecting means and detecting a rise of a transient recovery voltage immediately after the breakage, and the transient recovery voltage detecting means The detection means may be a control means for closing the opening / closing means other than the one installed on the accident power transmission line, and for opening the opening / closing means in response to the output of the accident detection means for removing the accident.
【0012】さらに、前記閉動作させる開閉手段は、最
初に事故電流遮断動作する遮断器と同一の相のみとする
制御手段でもよい。Further, the opening / closing means for performing the closing operation may be control means for performing only the same phase as that of the circuit breaker which performs the fault current interruption operation first.
【0013】[0013]
【作用】このように構成されることから、本発明によれ
ば次の作用により上記目的が達成される。本発明によれ
ば、遮断器の母線側及び送電線側の少くとも一方の側と
大地との間に開閉手段とインピーダンスからなる過電圧
抑制装置を設けておき、送電線地絡事故発生時、事故送
電線に設置された遮断器の事故電流遮断動作または電流
遮断完了に先立つて、健全送電線の過電圧抑制装置の開
閉手段を閉動作させ、インピーダンスを送電線と大地の
間に挿入する。その結果、遮断器の遮断サージ電圧は前
記インピーダンスで制動されて低減される。According to the present invention, the above object is attained by the following operation according to the present invention. According to the present invention, an overvoltage suppression device including switching means and impedance is provided between at least one of the busbar side and the transmission line side of the circuit breaker and the ground, and when a transmission line ground fault occurs, the Prior to the fault current interruption operation of the circuit breaker installed on the transmission line or the completion of the current interruption, the switching means of the overvoltage suppression device of the healthy transmission line is closed to insert the impedance between the transmission line and the ground. As a result, the breaking surge voltage of the circuit breaker is reduced by being damped by the impedance.
【0014】また、遮断器の事故電流遮断後に発生する
過渡回復電圧を検出後、過電圧抑制装置を投入するの
で、過渡回復電圧も前記遮断サージ電圧と同様に制動さ
れ低減される。Further, since the overvoltage suppression device is turned on after detecting the transient recovery voltage generated after the fault current interruption of the circuit breaker, the transient recovery voltage is also braked and reduced in the same manner as the interruption surge voltage.
【0015】さらに、前記遮断サージ電圧及び過渡回復
電圧は事故電流遮断相に発生するから開閉手段の閉動作
は事故発生相と同一相のみでも前記過電圧は低減され
る。Further, since the cutoff surge voltage and the transient recovery voltage are generated in the fault current cutoff phase, the overvoltage can be reduced even if the closing operation of the switching means is only in the same phase as the faulty phase.
【0016】[0016]
【実施例】図1は本発明の一実施例の構成を示すもので
ある。この図において、電力系統1は、電源変圧器5と
遮断器4を介して母線10に接続される電源発電機6
と、この母線10に、遮断器3aを介して接続される送
電線2aと、遮断器3bを介して接続される送電線2b
の2組のから構成されている。また、送電線2a,2b
の母線10への引込み口にはそれぞれ避雷器9a,9b
が設置されている。遮断器3aと送電線2aを結ぶ回路
と大地の間に、直列接続された開閉器7aと抵抗体8a
が設けられている。この直列接続された開閉器7aと抵
抗体8aが過電圧抑制装置を構成している。同様に遮断
器3bと送電線2bを結ぶ回路と大地の間に、直列接続
された開閉器7bと抵抗体8bが設けられている。FIG. 1 shows the configuration of an embodiment of the present invention. In the figure, a power system 1 includes a power generator 6 connected to a bus 10 via a power transformer 5 and a circuit breaker 4.
And a transmission line 2a connected to the bus 10 via a circuit breaker 3a, and a transmission line 2b connected to the bus 10 via a circuit breaker 3b.
Are composed of two sets. In addition, the transmission lines 2a, 2b
Lightning arresters 9a and 9b
Is installed. A switch 7a and a resistor 8a connected in series between a circuit connecting the circuit breaker 3a and the transmission line 2a and the ground.
Is provided. The switch 7a and the resistor 8a connected in series constitute an overvoltage suppressing device. Similarly, a switch 7b and a resistor 8b connected in series are provided between a circuit connecting the circuit breaker 3b and the transmission line 2b and the ground.
【0017】また、変流器等の電流・電圧などの情報は
検出器35から信号線103を介して電力系統保護制御
装置31へ伝送される。図1では、、送電線2a側につ
いて詳細に記載してあるが、送電線2b側にも同様の装
置が接続されるが図では一部省略してある。電力系統保
護制御装置31は、検出器35からの情報の入力部4
1、遮断器3a、及び開閉器7bの開閉状態情報を取り
込む入力部42、これらの情報から、遮断器3a、及び
開閉器7bを制御する制御部40とから構成される。Information such as current and voltage of the current transformer and the like is transmitted from the detector 35 to the power system protection controller 31 via the signal line 103. Although FIG. 1 shows the power transmission line 2a side in detail, a similar device is also connected to the power transmission line 2b side, but is partially omitted in the figure. The power system protection control device 31 includes an information input unit 4 for receiving information from the detector 35.
1, an input unit 42 for capturing the open / close state information of the circuit breaker 3a and the switch 7b, and a control unit 40 for controlling the circuit breaker 3a and the switch 7b based on the information.
【0018】図1において、送電線2aの一つの相で地
絡事故が起きた場合を考える。図4は地絡事故が発生し
たときの送電線各部の電圧変動を示している。地絡事故
が発生すると、中性点直接接地系では大きな地絡電流が
流れ、電源電圧の振幅は、電源インピーダンスのため
に、図4(a)の曲線20に示すように低下し、事故線
路2aの遮断器3a端子電圧は、図4(b)の曲線21
のようにVoからVtへ低下する。この時、健全な送電線
2bでは事故送電線2aからの電磁誘導により事故点に
対応するところでは、図4(c)の曲線22に示すよう
に、さらにdVだけ電圧降下し、Vmとなっている。そ
のような状態で、遮断器3aにより地絡電流が遮断され
ると、図4(a)の電源電圧20はもとの電圧に回復す
るが、このとき電源系統の過渡振動のため、電圧Vsま
で上昇する。In FIG. 1, consider a case where a ground fault has occurred in one phase of the transmission line 2a. FIG. 4 shows voltage fluctuations at various parts of the transmission line when a ground fault occurs. When a ground fault occurs, a large ground fault current flows in the direct grounding system at the neutral point, and the amplitude of the power supply voltage decreases as shown by a curve 20 in FIG. The terminal voltage of the circuit breaker 3a of FIG.
From Vo to Vt. At this time, in the sound transmission line 2b, at the location corresponding to the fault point due to the electromagnetic induction from the faulty transmission line 2a, the voltage further drops by dV to Vm as shown by the curve 22 in FIG. 4C. I have. In such a state, when the ground fault current is interrupted by the circuit breaker 3a, the power supply voltage 20 in FIG. 4A is restored to the original voltage. At this time, the voltage Vs is changed due to the transient vibration of the power supply system. To rise.
【0019】一方、遮断された送電線2aが有していた
電圧は、送電線2aの中で往復振動する。ところで、健
全であった送電線2bも誘導によりdVの電圧降下があ
ったから、これが送電線2bの中で往復反射し振動す
る。その上、遮断された事故送電線2aの電圧往復振動
から誘導による振動が重畳する。その結果、dVよりも
はるかに大きい高周波振動kdV(k>1)が重畳する
ことになる。それ故、健全な送電線2bの事故対応位置
では、最大電圧は、VsにkdVが重畳したVLにまで上
昇し、過大なサージ電圧となる。On the other hand, the voltage of the interrupted transmission line 2a reciprocates in the transmission line 2a. By the way, since the transmission line 2b which was sound also had a voltage drop of dV due to the induction, the transmission line 2b reflected and reciprocated in the transmission line 2b and vibrated. In addition, vibration induced by the reciprocating voltage vibration of the interrupted accident transmission line 2a is superimposed. As a result, a high-frequency vibration kdV (k> 1) much larger than dV is superimposed. Therefore, at the fault-response position of the sound transmission line 2b, the maximum voltage rises to VL where kdV is superimposed on Vs, resulting in an excessive surge voltage.
【0020】しかるに、本発明の一実施例では、遮断器
の動作時には、健全送電線2b対大地に過電圧抑制装置
が挿入され、そのため、電源側電圧の過渡振動は、健全
送電線2bと大地間に接続された抵抗体8bによって制
動され振幅が下がる。そして、健全送電線2b内の電圧
往復振動もこれによって制動される。事故送電線2aに
は抵抗体8aが接続されている。事故送電線2aの往復
反射振動は、抵抗体8aによって制動されるため、事故
送電線2aの電圧往復振動による健全送電線2bへの誘
導は小さくなる。その結果として、地絡遮断サージは従
来に比べ格段に小さくなる。However, in one embodiment of the present invention, when the circuit breaker is in operation, the overvoltage suppression device is inserted between the healthy power transmission line 2b and the ground, so that the transient vibration of the power supply side voltage is reduced between the healthy power transmission line 2b and the ground. And the amplitude is reduced by the resistor 8b connected to the resistor 8b. And the reciprocating voltage oscillation in the healthy transmission line 2b is also damped by this. A resistor 8a is connected to the accident transmission line 2a. Since the reciprocating reflection vibration of the accident transmission line 2a is damped by the resistor 8a, the induction to the healthy transmission line 2b by the voltage reciprocation vibration of the accident transmission line 2a is reduced. As a result, the ground-fault interruption surge is much smaller than before.
【0021】以下に、本発明の一実施例の詳細を述べ
る。Hereinafter, an embodiment of the present invention will be described in detail.
【0022】図1において送電線2aに系統事故30が
生じると、電力系統保護制御装置31は、検出器35か
らの情報を信号線103を介して入力部41から取り込
み事故判定結果を信号線108を介して制御部40へ出
力、あるいは検出器35の情報を入力部41から信号線
108を介して制御部40へ出力し、制御部40で事故
判定を行なう。これは、事故判定は、制御部40または
入力部41のいずれで実施してもよく、ハードウエアの
構成によっていずれかを選択してよい。In FIG. 1, when a system fault 30 occurs in the transmission line 2a, the power system protection control device 31 takes in information from the detector 35 from the input unit 41 through the signal line 103 and outputs the result of the accident determination to the signal line 108. , Or the information of the detector 35 is output from the input unit 41 to the control unit 40 via the signal line 108, and the control unit 40 determines an accident. This may be performed by either the control unit 40 or the input unit 41, and either one may be selected according to the hardware configuration.
【0023】図1に示された構成と、図2のフローチャ
ートを用いて事故有と判定された後の動作を説明する。
制御部40あるいは入力部41で送電線に事故有と判断
(図2処理201)されると、制御部40は、開閉器7
bに対し信号線102を介して投入指令を与える(図2
処理202)。この投入指令と同期して、制御部40
は、必要に応じ他の保護制御装置32に対し、信号線1
06を介して遮断ロック指令を与えることも可能であ
る。これは、開閉器7bの投入により、装置によって
は、これを系統事故と見誤る可能性があるため、不要遮
断防止のための処理である。また、この不要遮断防止処
理の方法としては、前記遮断ロック信号による方法の
他、開閉器7a,7b、あるいは、抵抗8a、8bの電
流電圧等を入力し、これらによっても判断可能である。
たとえば、開閉器7a,7bが投入されている場合、ま
たは、過電圧抑制装置にある一定の電流が流れている場
合、遮断ロックすることができる。電流等で判断した場
合、一定量を超えたときは系統事故と判断し、遮断ロッ
クを解除することも可能である。このようにすることに
より、開閉器7a、7bの投入と、系統事故の分別が可
能となり、より信頼性の高い電力系統を構築することが
できる。The operation after it is determined that an accident has occurred will be described with reference to the configuration shown in FIG. 1 and the flowchart of FIG.
When the control unit 40 or the input unit 41 determines that there is an accident in the transmission line (process 201 in FIG. 2), the control unit 40
b through a signal line 102 (FIG. 2).
Process 202). In synchronization with this input command, the control unit 40
Is connected to the other protection control device 32 as necessary.
It is also possible to give a shut-off lock command via 06. This is a process for preventing unnecessary disconnection, because there is a possibility that this may be mistaken for a system accident depending on the device when the switch 7b is turned on. As a method of the unnecessary cutoff prevention processing, in addition to the method using the cutoff lock signal, the currents and voltages of the switches 7a and 7b or the resistors 8a and 8b and the like can be input and determined.
For example, when the switches 7a and 7b are turned on, or when a certain current flows in the overvoltage suppression device, the cutoff lock can be performed. When it is determined based on the electric current or the like, when a certain amount is exceeded, it is possible to determine that a system fault has occurred and release the shutoff lock. By doing so, it becomes possible to turn on the switches 7a and 7b and to discriminate the system fault, and it is possible to construct a more reliable power system.
【0024】制御部40は、図2処理202の実施後あ
るいは同時に遮断器3aに対し、信号線101を介して
引き外し指令を与える(図2処理203)。The control unit 40 gives a tripping command to the circuit breaker 3a via the signal line 101 after or simultaneously with the execution of the process 202 in FIG. 2 (process 203 in FIG. 2).
【0025】この引き外し指令を与えるとき、遮断器3
aと開閉器7bの動作協調が必要な場合は、以下のよう
にして実施することができる。When giving the trip command, the circuit breaker 3
When the operation coordination between a and the switch 7b is required, the operation can be performed as follows.
【0026】たとえば、開閉器7b投入後に遮断器3a
を引き外す場合は、開閉器7bの状態を信号線104を
介して入力部42に取り込み、この状態を信号線107
を介して制御部40に送る。制御部40では、この取り
込まれた開閉器7bの状態により、開閉器7bが投入さ
れたと判断すると、遮断器3aに引き外し指令を与え
る。開閉器7bの開閉状態を知る手段としては、開閉器
7bの状態を示すパレット、センサ等による状態確認、
あるいは開閉器7bを流れる電流、電圧等によって確認
可能である。また、信号線104は光通信手段等であっ
てもかまわない。これは、他の信号線101〜108に
関しても同様である。For example, after the switch 7b is turned on, the circuit breaker 3a
When the switch is tripped, the state of the switch 7b is input to the input section 42 via the signal line 104, and this state is
To the control unit 40 via the. When the control unit 40 determines that the switch 7b is turned on based on the state of the switch 7b taken in, the control unit 40 gives a tripping command to the circuit breaker 3a. As means for knowing the open / close state of the switch 7b, pallets indicating the state of the switch 7b, state confirmation by a sensor, or the like,
Alternatively, it can be confirmed by the current, voltage and the like flowing through the switch 7b. The signal line 104 may be an optical communication unit or the like. This is the same for the other signal lines 101 to 108.
【0027】前記実施例では、開閉器7bの状態を確認
してから、遮断器3aの引き外し指令を出力したが、開
閉器の7bの状態を確認せずに、開閉器7bに対し投入
指令を与えてから、一定時間の確認を制御部40で行な
い、この時間後に遮断器3aに対し引き外し指令を出力
することができる。In the above-described embodiment, after the state of the switch 7b is confirmed, the tripping command of the circuit breaker 3a is output. However, without confirming the state of the switch 7b, the closing command is given to the switch 7b. Is given by the control unit 40, and after this time, a trip command can be output to the circuit breaker 3a.
【0028】さらに、開閉器7bと遮断器3aの動作協
調が予めとれている場合には、開閉器7bと遮断器3a
に対し同時に指令を出力することも可能である。Further, when the operation coordination between the switch 7b and the circuit breaker 3a is previously established, the switch 7b and the circuit breaker 3a
It is also possible to output a command at the same time.
【0029】これら3つの実施例に関して、個々に構成
する他、あらかじめ3種あるいは任意の2種を組み込ん
でおき、整定やタップ等の切替え手段によって、任意の
実施例を少なくとも1つ以上選択することも可能であ
る。Regarding these three embodiments, in addition to individually configuring, three or two arbitrary types are incorporated in advance, and at least one or more of the optional embodiments is selected by switching means such as settling and tapping. Is also possible.
【0030】これら開閉器7bの投入及び遮断器3aの
引き外しが行なわれると、系統事故30が除去される。
この系統事故30除去の情報は、検出器35からの情報
を信号線103より、あるいは、遮断器3aの開放等の
情報を信号線105を介して制御部40へ取り込める。
これらから得られる系統事故30除去情報があると、制
御部40は開閉器7bに対し開放指令を与え(図2処理
205)系統事故除去の動作が完了する。When the switch 7b is turned on and the circuit breaker 3a is tripped, the system fault 30 is eliminated.
As the information on the removal of the system fault 30, information from the detector 35 can be taken into the control unit 40 via the signal line 103, or information such as the opening of the circuit breaker 3a can be taken through the signal line 105.
If there is the system fault 30 removal information obtained from these, the control unit 40 gives an opening command to the switch 7b (process 205 in FIG. 2), and the operation of the system fault removal is completed.
【0031】本発明の他の実施例を図1を用いて説明す
る。Another embodiment of the present invention will be described with reference to FIG.
【0032】前記実施例と同様に、電力系統保護制御装
置31が系統事故30を検出すると電力系統保護制御装
置31は、遮断器3aに対し引き外し指令を出力する。
遮断器3aが引き外され、遮断直後に過渡回復電圧が発
生する。この過渡回復電圧を検出器35より前記実施例
と同様に、保護装置31に取り込む。電力系統保護制御
装置31では、制御部40あるいは入力部41で前記電
圧情報により、過渡回復電圧であるか否かを判定し、過
渡回復電圧であると判断すると、前記実施例と同様の手
段で、開閉器7bの開閉を実施する。As in the above embodiment, when the power system protection controller 31 detects a system fault 30, the power system protection controller 31 outputs a tripping command to the circuit breaker 3a.
The circuit breaker 3a is tripped, and a transient recovery voltage is generated immediately after the circuit breaker 3a is cut off. This transient recovery voltage is taken into the protection device 31 from the detector 35 in the same manner as in the above embodiment. In the power system protection control device 31, the control unit 40 or the input unit 41 determines whether or not the voltage is a transient recovery voltage based on the voltage information. The switch 7b is opened and closed.
【0033】図3にこの手順のフローチャートを示し
た。処理303の過渡回復電圧であるか否かの判断方法
としては、定常時の電圧からの電圧上昇を高速のサンプ
リングによってアナログディジタル変換した量をソフト
ウエアで判断させる方法、あるいは、前記定常時の電圧
からの電圧上昇の条件と、系統事故有条件との論理積を
ソフトウエアあるいはロジック回路で判断する方法等が
あげられる。FIG. 3 shows a flowchart of this procedure. As a method of determining whether or not the voltage is a transient recovery voltage in the process 303, a method of determining the amount of analog-to-digital conversion of a voltage rise from a voltage at a steady state by high-speed sampling by software, or a method of determining the voltage at a steady state A method of determining the logical product of the condition of the voltage rise from the system and the condition of the occurrence of a system fault by software or a logic circuit, etc.
【0034】今までの実施例では、遮断器3a、3b及
び開閉器7a、7bの制御する相について特に記述して
いないが、信号線101,102を3相一括で出力すれ
ば、3相一括制御が可能であり、信号線101を各相、
信号線102を3相一括、あるいは、信号線101,1
02共に各相としても、制御部40にて、3相同時に指
令を出力すれば3相一括制御が可能である。In the embodiments described so far, the phases controlled by the circuit breakers 3a and 3b and the switches 7a and 7b are not particularly described. It is possible to control the signal line 101 for each phase,
The signal line 102 is connected to the three phases at a time or the signal lines 101 and 1
Also in each of the phases 02, if the control unit 40 outputs a command simultaneously for the three phases, the three-phase collective control is possible.
【0035】また、制御部40に、遮断器各相の開閉状
態、開閉器各相の開閉状態及び系統事故がどの相であっ
たかの情報を、入力部41,42より取り込めば、系統
事故があった相のみ、遮断器及び開閉器の制御を行なう
ことも可能であり、さらに、系統事故があった相のみ遮
断器を制御し、開閉器は3相一括制御することも可能で
ある。これら制御を行なうためには信号線101,10
2を必要に応じ、各相あるいは3相一括とすればよい。
尚、制御方法は、今まで記述した実施例で容易に実施で
きることは言うまでもない。If the control unit 40 receives from the input units 41 and 42 information about the open / closed state of each phase of the circuit breaker, the open / closed state of each phase of the switch, and the phase in which the system fault occurred, the system fault occurs. It is also possible to control the circuit breaker and the switch only for the phase in which the circuit breaker has occurred, and to control the circuit breaker only for the phase in which a system failure has occurred, and to control the three-phase switch all together. In order to perform these controls, the signal lines 101, 10
2 may be set to each phase or three phases as needed.
It goes without saying that the control method can be easily implemented in the embodiments described so far.
【0036】本発明のさらに他の実施例は以下の如くな
る。遮断器に対する引き外し指令及び開閉器に対する開
閉指令を与えるタイミングは、今まで記述した実施例と
同様である。これら、遮断器及び開閉器に指令を与える
ための情報及び指令を通信手段、例えば、光通信、無線
通信、有線通信等を用いて行なえば、電力系統保護制御
装置31を他の場所へ設置可能にできる。あるいは、開
閉器等を同時に制御したい電気所間で同時制御が可能と
なる。この同時制御方法としては、制御部40から出力
される信号線101,102,106を通信手段によっ
て行なえば可能であり、また、入力部41,42からの
信号線108,107を通信手段とし、制御部40を他
の場所に設置あるいは、制御部40に情報を受け渡すと
共に、他の場所に設置されている保護制御装置に受け渡
しても可能である。これは、信号線103,104,1
05についても同様である。開閉器及び遮断器へ与える
指令の制御方法は、信号線が通信手段にかわっただけで
あるため、今まで記述した実施例と同一の方法で実現で
きる。Still another embodiment of the present invention is as follows. The timing of giving a tripping command to the circuit breaker and a switching command to the switch is the same as in the embodiments described so far. If the information and the command for giving commands to the circuit breaker and the switch are performed using communication means, for example, optical communication, wireless communication, wired communication, etc., the power system protection control device 31 can be installed in another place. Can be. Alternatively, simultaneous control can be performed between electric stations that want to control switches and the like at the same time. This simultaneous control method is possible if the signal lines 101, 102 and 106 output from the control unit 40 are performed by communication means, and the signal lines 108 and 107 from the input units 41 and 42 are used as communication means. It is also possible to install the control unit 40 at another location or to transfer information to the control unit 40 and to a protection control device installed at another location. This is because the signal lines 103, 104, 1
The same applies to 05. The control method of the command given to the switch and the circuit breaker can be realized by the same method as that of the embodiments described so far, since the signal line is merely replaced by the communication means.
【0037】以上本発明の一実施例である電力系統保護
制御装置を適用する電力系統は図1の他、図5乃至図9
が考えられるが、いずれの場合も本発明の実施例同様の
制御ができる。The power system to which the power system protection control apparatus according to one embodiment of the present invention is applied is shown in FIGS.
In any case, the same control as in the embodiment of the present invention can be performed.
【0038】尚、図5乃至図9各図における図1と同符
号のものは同一部分または相当する部分である。In each of FIGS. 5 to 9, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
【0039】図5は、図1と同一構成であるが、過電圧
抑制装置を構成する抵抗体8a,8bとして非直線抵抗
を用いた例である。FIG. 5 shows an example having the same configuration as that of FIG. 1, but using non-linear resistors as the resistors 8a and 8b constituting the overvoltage suppressing device.
【0040】図6は開閉器7および非直線抵抗体8から
なる過電圧抑制装置を母線10に設けた例である。FIG. 6 shows an example in which an overvoltage suppressing device comprising a switch 7 and a non-linear resistor 8 is provided on a bus 10.
【0041】図7は、図5の構成において、送電線用避
雷器9a,9bを省略したもので、送電線2a,2bに
開閉器7a,7bおよび非直線抵抗体8a,8bからな
る過電圧抑制装置を設けた例である。FIG. 7 shows a configuration in which the lightning arresters 9a and 9b for transmission lines are omitted from the configuration of FIG. 5, and an overvoltage suppression device comprising switches 7a and 7b and non-linear resistors 8a and 8b on transmission lines 2a and 2b. This is an example in which is provided.
【0042】図8は送電線用避雷器の非直線抵抗体にタ
ップを設け、このタップによって区切られた送電線側に
並列に開閉器7a,7bを設けたものである。保護制御
装置31a,31bを送電線2a,2bそれぞれに設け
ている。この場合も信号線の一部は省略されている。FIG. 8 shows a lightning arrester for transmission lines in which taps are provided on the non-linear resistor, and switches 7a and 7b are provided in parallel on the transmission line side separated by the taps. The protection control devices 31a and 31b are provided for the transmission lines 2a and 2b, respectively. Also in this case, some of the signal lines are omitted.
【0043】図9は母線10に設けた避雷器9の非直線
抵抗体にタップを設け、このタップによって区切られた
接地側に並列に開閉器を設けた例である。FIG. 9 shows an example in which a tap is provided on the non-linear resistor of the surge arrester 9 provided on the bus 10, and a switch is provided in parallel on the ground side separated by the tap.
【0044】[0044]
【発明の効果】本発明によれば、過電圧抑制レベルを大
幅に低減することができるので、送電系統全体の絶縁レ
ベルの低減が可能となり経済性の高い電力システムを提
供できる効果がある。また、過電圧が抑制されるので、
事故発生の少ない信頼性の高い電力系統を提供できる効
果がある。According to the present invention, the overvoltage suppression level can be greatly reduced, so that the insulation level of the entire power transmission system can be reduced and an economical power system can be provided. Also, since overvoltage is suppressed,
There is an effect that a highly reliable power system with few accidents can be provided.
【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing one embodiment of the present invention.
【図2】本発明の一実施例の動作を説明するフローチャ
ートである。FIG. 2 is a flowchart illustrating the operation of one embodiment of the present invention.
【図3】本発明の他の実施例の動作を説明するフローチ
ャートである。FIG. 3 is a flowchart illustrating the operation of another embodiment of the present invention.
【図4】送電線地絡事故時の過電圧波形の例を示す図で
あり、(a)は電源電圧、(b)は遮断器端子電圧、
(c)は健全送電線事故対応点電圧である。FIG. 4 is a diagram showing an example of an overvoltage waveform at the time of a transmission line ground fault, where (a) is a power supply voltage, (b) is a breaker terminal voltage,
(C) is a voltage corresponding to a healthy transmission line accident corresponding point.
【図5】本発明の一実施例で過電圧抑制装置のインピー
ダンスに非線形抵抗を適用した例を示す図である。FIG. 5 is a diagram showing an example in which a non-linear resistance is applied to the impedance of the overvoltage suppression device in one embodiment of the present invention.
【図6】本発明の一実施例で過電圧抑制装置のインピー
ダンスに非線形抵抗を適用した他の例を示す図である。FIG. 6 is a diagram showing another example in which a non-linear resistance is applied to the impedance of the overvoltage suppression device in one embodiment of the present invention.
【図7】本発明の一実施例で過電圧抑制装置のインピー
ダンスに非線形抵抗を適用した更に他の例を示す図であ
る。FIG. 7 is a diagram showing still another example in which a non-linear resistance is applied to the impedance of the overvoltage suppression device in one embodiment of the present invention.
【図8】本発明の一実施例で過電圧抑制装置のインピー
ダンスに避雷器の非線形抵抗を適用した例を示す図であ
る。FIG. 8 is a diagram illustrating an example in which a non-linear resistance of a lightning arrester is applied to the impedance of the overvoltage suppression device in one embodiment of the present invention.
【図9】本発明の一実施例で過電圧抑制装置のインピー
ダンスに避雷器の非線形抵抗を適用した他の例を示す図
である。FIG. 9 is a diagram showing another example in which the nonlinear resistance of the lightning arrester is applied to the impedance of the overvoltage suppression device in one embodiment of the present invention.
1 電力系統 2a,2b 三相送電線 3a,3b,4 遮断器 5 電源変圧器 6 電源 7,7a,7b 開閉手段 8,8a,8b インピーダンス 9,9a,9b 避雷器 10 母線 31,31a,31b 保護制御装置 32 保護制御装置 35,35a,35b 検出器 40 制御部 41,42 入力部、 101〜108,101a〜106a,101b〜10
6b 信号線DESCRIPTION OF SYMBOLS 1 Power system 2a, 2b Three-phase power transmission line 3a, 3b, 4 Circuit breaker 5 Power transformer 6 Power supply 7, 7a, 7b Switching means 8, 8a, 8b Impedance 9, 9a, 9b Lightning arrester 10 Bus bar 31, 31a, 31b Protection Control device 32 Protection control device 35, 35a, 35b Detector 40 Control unit 41, 42 Input unit, 101-108, 101a-106a, 101b-10
6b signal line
フロントページの続き (72)発明者 瀬谷 稔 茨城県日立市国分町1丁目1番1号 株 式会社 日立製作所 国分工場内 (56)参考文献 特開 昭53−145038(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02J 3/24 H02H 7/26 H02H 9/04 Continuation of front page (72) Inventor Minoru Seya 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Inside the Kokubu Plant of Hitachi, Ltd. (56) References JP-A-53-145038 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) H02J 3/24 H02H 7/26 H02H 9/04
Claims (5)
ら遮断器を介して引き出される複数の三相送電線からな
る電力系統の電力系統保護制御装置において、前記母線
と前記各三相送電線の少くとも一方と大地との間に設け
られた開閉手段とインピーダンスを直列接続してなる過
電圧抑制装置と、前記送電線の電流、電圧から前記三相
送電線の事故を検出する事故検出手段と、該事故検出手
段の事故検出出力により事故送電線に設置された以外の
前記開閉手段を閉動作させ、該閉動作後前記事故送電線
の前記遮断器を開動作させ、前記事故検出手段の事故除
去の出力により、前記開閉手段を開動作させる制御手段
とを含んでなることを特徴とする電力系統保護制御装
置。1. A power system protection control device for a power system comprising a bus connected to a power supply and a plurality of three-phase transmission lines drawn out from the bus via a circuit breaker. An overvoltage suppression device in which switching means provided between at least one of the electric wires and the ground and an impedance are connected in series, and an accident detecting means for detecting an accident of the three-phase transmission line from the current and voltage of the transmission line And closing the switching means other than those installed on the accident transmission line by the accident detection output of the accident detection means, opening the circuit breaker of the accident transmission line after the closing operation, And a control means for opening the switching means in response to the output of the removal of the accident.
ら遮断器を介して引き出される複数の三相送電線からな
る電力系統の電力系統保護制御装置において、前記母線
と前記各三相送電線の少くとも一方と大地との間に設け
られた開閉手段とインピーダンスを直列接続してなる過
電圧抑制装置と、前記送電線の電流、電圧から前記三相
送電線の事故を検出する事故検出手段と、該事故検出手
段の事故検出出力により事故送電線の前記遮断器を開動
作させ、前記遮断器の電流遮断完了前に事故送電線に設
置された以外の前記開閉手段を閉動作させ、前記事故検
出手段の事故除去の出力により、前記開閉手段を開動作
させる制御手段とを含んでなることを特徴とする電力系
統保護制御装置。2. A power system protection control device for a power system comprising a bus connected to a power supply and a plurality of three-phase transmission lines drawn out from the bus via a circuit breaker. An overvoltage suppression device in which switching means provided between at least one of the electric wires and the ground and an impedance are connected in series, and an accident detecting means for detecting an accident of the three-phase transmission line from the current and voltage of the transmission line Opening the circuit breaker of the accident transmission line by the accident detection output of the accident detection means, closing the opening and closing means other than the one installed on the accident transmission line before the completion of current interruption of the circuit breaker, A control means for opening the switching means in response to the output of the fault detection means for removing the fault.
ら遮断器を介して引き出される複数の三相送電線からな
る電力系統の電力系統保護制御装置において、前記母線
と前記各三相送電線の少くとも一方と大地との間に設け
られた開閉手段とインピーダンスを直列接続してなる過
電圧抑制装置と、前記送電線の電流、電圧から前記三相
送電線の事故を検出する事故検出手段と、事故送電線の
前記遮断器の遮断直後の過渡回復電圧の立上りを検出す
る過渡回復電圧検出手段と、該過渡回復電圧検出手段で
検出後事故送電線に設置された以外の前記開閉手段を閉
動作させ、前記事故検出手段の事故除去の出力により、
前記開閉手段を開動作させる制御手段とを含んでなるこ
とを特徴とする電力系統保護制御装置。3. A power system protection and control device for a power system comprising a bus connected to a power supply and a plurality of three-phase transmission lines drawn out from the bus via a circuit breaker. An overvoltage suppression device in which switching means provided between at least one of the electric wires and the ground and an impedance are connected in series, and an accident detecting means for detecting an accident of the three-phase transmission line from the current and voltage of the transmission line A transient recovery voltage detecting means for detecting a rise of a transient recovery voltage immediately after the breaker of the faulty transmission line is cut off, and the switching means other than the switching means provided on the faulty transmission line after detection by the transient recovery voltage detecting means. Close operation, by the output of the accident removal of the accident detection means,
And a control means for opening the opening / closing means.
記遮断器が、最初に電流遮断する相の遮断器であること
を特徴とする電力系統保護制御装置。4. The power system protection control device according to claim 2, wherein the circuit breaker before the completion of the current interruption is a circuit breaker of a phase in which the current is interrupted first.
段の出力が、最初に検出された出力であることを特徴と
する電力系統保護制御装置。5. The power system protection control device according to claim 3, wherein the output of the transient recovery voltage detecting means is an output detected first.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22820092A JP3227653B2 (en) | 1992-08-27 | 1992-08-27 | Power system protection controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22820092A JP3227653B2 (en) | 1992-08-27 | 1992-08-27 | Power system protection controller |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06113447A JPH06113447A (en) | 1994-04-22 |
JP3227653B2 true JP3227653B2 (en) | 2001-11-12 |
Family
ID=16872771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22820092A Expired - Fee Related JP3227653B2 (en) | 1992-08-27 | 1992-08-27 | Power system protection controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3227653B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6476926B1 (en) | 1991-12-19 | 2002-11-05 | Canon Kabushiki Kaisha | Method and apparatus for controlling the amount of ink and the life of the printhead in an ink-jet recording apparatus |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104319776B (en) * | 2014-09-29 | 2016-05-11 | 中南民族大学 | A kind of unloader of wind-driven generator and control method thereof |
JP7191543B2 (en) * | 2018-04-27 | 2022-12-19 | Ntn株式会社 | Hydroelectric grid connection system |
JP7191544B2 (en) * | 2018-04-27 | 2022-12-19 | Ntn株式会社 | Hydroelectric grid connection system |
WO2019208728A1 (en) * | 2018-04-27 | 2019-10-31 | Ntn株式会社 | System that interlinks with hydroelectric power generation line |
-
1992
- 1992-08-27 JP JP22820092A patent/JP3227653B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6476926B1 (en) | 1991-12-19 | 2002-11-05 | Canon Kabushiki Kaisha | Method and apparatus for controlling the amount of ink and the life of the printhead in an ink-jet recording apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH06113447A (en) | 1994-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0474186B1 (en) | Protection of an electrical power distribution system | |
US10148080B2 (en) | Single-phase-to-earth fault processing device and method for neutral non-effectively grounded distribution network | |
CA2178356C (en) | A high voltage electric power line current limiter | |
JPH0576136A (en) | Power supply system | |
JPH03156820A (en) | Electric power switch controller | |
EP0072146B1 (en) | Electric switching surge protection | |
JPH06260308A (en) | Neutral-point ground apparatus | |
JP3227653B2 (en) | Power system protection controller | |
JPH03202793A (en) | Testing apparatus for circuit breaker | |
US2879453A (en) | Fault responsive protective system for an electric power transmission line | |
CA1063222A (en) | Current differential fault detection circuit | |
US4089033A (en) | High speed bus differential relay | |
CN112886562B (en) | Transfer resistance adjustable active intervention arc extinction device and application | |
CN107204609A (en) | The power distribution network busbar protective device and method of a kind of earthing mode self-identifying | |
Filipović-Grčić et al. | Transients caused by switching of 420 kV three-phase variable shunt reactor | |
CN107192919A (en) | A kind of power distribution network feedback of earthing mode self-identifying supplies line protective devices and method | |
US2303445A (en) | Means for minimizing transient voltages | |
RU2284084C2 (en) | Device for limiting parameters of electromagnetic processes in high-voltage networks | |
JPS58123622A (en) | Controller for breaker | |
RU118490U1 (en) | DAMPING DEVICE OF APERIODIC COMPONENT IN A LINE CIRCUIT CURRENT | |
Wilkins et al. | Current-limiting fuses improve power quality | |
SU1144166A1 (en) | Arc voltage limiter | |
JP3008427B2 (en) | In-house stand-alone operation transfer equipment for thermal power generation equipment | |
JP2000125461A (en) | Voltage-varying system and its control method | |
JPS643015B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070907 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080907 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080907 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090907 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |