JPH0575657A - Fsk communication demodulator - Google Patents

Fsk communication demodulator

Info

Publication number
JPH0575657A
JPH0575657A JP23336291A JP23336291A JPH0575657A JP H0575657 A JPH0575657 A JP H0575657A JP 23336291 A JP23336291 A JP 23336291A JP 23336291 A JP23336291 A JP 23336291A JP H0575657 A JPH0575657 A JP H0575657A
Authority
JP
Japan
Prior art keywords
signal
change point
carrier frequency
demodulation
demodulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23336291A
Other languages
Japanese (ja)
Inventor
Tei Sagawa
禎 寒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP23336291A priority Critical patent/JPH0575657A/en
Publication of JPH0575657A publication Critical patent/JPH0575657A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a chip area by calculating a time up to a change point of a demodulation signal by an approximation arithmetic circuit thereby forming the demodulator with a small circuit. CONSTITUTION:An arithmetic circuit 300 resulting from checking a calculating system for demodulation in the FSK communication and implementing the demodulation by an approximation equation is incorporated in place of a table employing a storage device such as a ROM. That is, the FSK communication demodulator is provided with the arithmetic operation circuit 300, in which a time iota up to a change point of a demodulation signal is obtained by an approximated equation as iota=T when a 1st signal is changed into a 2nd signal and iota=C-2XT when the 2nd signal is changed into the 1st signal, where T is a modulation signal pulse width and C is a constant depending on the carrier frequency of the 1st and 2nd signals when a ratio of a carrier frequency of the 1st signal to a carrier frequency of the 2nd signal is 6:11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、FSK(Frequency Shi
ft Keying)方式の通信機器に関し、特に近似演算回路を
有し、ゲートアレイ等によるLSI化に適するFSK通
信復調器に関する。
The present invention relates to FSK (Frequency Shi
The present invention relates to an FSK communication demodulator which has an approximate arithmetic circuit and is suitable for an LSI using a gate array or the like.

【0002】[0002]

【従来の技術】FSK通信において一般的に、ボーレー
ト1200bpsの通信信号に対して図4に示すように
通信信号が”1”のときは搬送周波数を2200Hz
に、また、通信信号が”0”のときは搬送周波数を12
00Hzにし、その搬送周波数の変化点においては位相
が連続等の変調方式がよく用いられる。従来、図4に示
した変調信号の復調方法としてエッジディテクタを通し
た後に、ローパスフィルタを通す等のアナログの手法が
用いられていたが、最近では変調信号をA/D変換した
後、ディジタル信号処理により復調する方法も用いられ
ている。後者の方法の一例としては図5に示すように、
通信信号の変化点すなわち、変調信号の周波数変化点
イ、ロ、ハ、ニを変調信号から検知し、前記周波数変化
点を含む変調信号パルスT0からT3のエッジから、あ
る時間、それぞれτ0からτ3の後に出力である復調信
号を変化させる。前述の復調方法を実現する復調器とし
ては図6のような例がある。図6において変調信号10
0をA/D変換器1によりディジタル信号に変換し、エ
ッジディテクタ2により変調信号100の変化点を検出
し、この変化点信号によりカウンタ3で変調信号パルス
幅を測定しラッチ4に保持する。信号変化点検出器5に
より図5における変調信号パルスT0からT3のみをア
ドレスとしてROM等の記憶装置を使ったテーブル6に
入力し、テーブル6の出力として図5における時間デー
タτ0からτ3を得る。この時間データをカウンタ9に
セットしダウンカウントすることにより得られる復調信
号を変化させる点と、信号変化点検出器5からの復調信
号を”0”または”1”に切り換える制御信号により、
フリップフロップ回路7及びラッチ8を制御し、復調信
号200を出力する。110はA/D変換器1、カウン
タ3及び9等に用いるサンプルクロックである。
2. Description of the Related Art Generally, in FSK communication, when a communication signal is "1" as shown in FIG. 4, a carrier frequency is 2200 Hz for a communication signal having a baud rate of 1200 bps.
In addition, when the communication signal is "0", the carrier frequency is 12
A modulation method in which the phase is set to 00 Hz and the phase is continuous at the change point of the carrier frequency is often used. Conventionally, an analog method such as passing through an edge detector and then passing through a low-pass filter has been used as a demodulation method of the modulated signal shown in FIG. 4, but recently, after the modulated signal is A / D converted, a digital signal is obtained. A method of demodulating by processing is also used. As an example of the latter method, as shown in FIG.
The change points of the communication signal, that is, the frequency change points a, b, c, and d of the modulation signal are detected from the modulation signal, and from the edges of the modulation signal pulses T0 to T3 including the frequency change points, τ0 to τ3 respectively for a certain time. After that, the output demodulation signal is changed. There is an example as shown in FIG. 6 as a demodulator that realizes the above-described demodulation method. In FIG. 6, the modulation signal 10
0 is converted into a digital signal by the A / D converter 1, the change point of the modulation signal 100 is detected by the edge detector 2, the modulation signal pulse width is measured by the counter 3 by this change point signal, and the result is held in the latch 4. The signal change point detector 5 inputs only the modulated signal pulses T0 to T3 in FIG. 5 as an address to a table 6 using a storage device such as a ROM, and the time data τ0 to τ3 in FIG. By setting the point of changing the demodulated signal obtained by setting the time data in the counter 9 and counting down, and the control signal for switching the demodulated signal from the signal change point detector 5 to "0" or "1",
The flip-flop circuit 7 and the latch 8 are controlled to output the demodulation signal 200. Reference numeral 110 is a sample clock used for the A / D converter 1, the counters 3 and 9, and the like.

【0003】[0003]

【発明が解決しようとする課題】しかし、図6の構成に
おいて、サンプリング周波数を上げたり、精度良く復調
したりするためには、大きな記憶装置を必要とするの
で、ゲートアレイ等でLSI化する際にチップ面積が大
きくなる原因となっていた。また、搬送周波数が変われ
ば、テーブルのデータを変更しなければならない。従っ
て本発明の目的は、ROM等の記憶装置を使ったテーブ
ルを含まずに、ゲートアレイ等でLSI化する際にチッ
プ面積を小さくして小型化し、かつ、テーブルのデータ
を変更することなく多くの搬送周波数に対応し得る復調
器を実現する。
However, in the configuration of FIG. 6, a large memory device is required to increase the sampling frequency or to demodulate accurately, so that when a gate array or the like is used for LSI. It was a cause of the large chip area. Also, if the carrier frequency changes, the data in the table must be changed. Therefore, an object of the present invention is to include a table using a storage device such as a ROM, reduce the chip area to be miniaturized when the LSI is formed by a gate array, etc. It realizes a demodulator capable of supporting the carrier frequencies of.

【0004】[0004]

【課題を解決するための手段】このような目的を達成す
るために、本発明では、FSK通信の復調の計算方式を
検討し近似式による復調をするため演算回路を前記RO
M等の記憶装置を使ったテーブルの代わりに組み込む。
In order to achieve such an object, in the present invention, a calculation method for demodulation of FSK communication is examined, and an arithmetic circuit for performing demodulation by an approximate equation is used as the RO circuit.
It is installed instead of a table using a storage device such as M.

【0005】[0005]

【作用】FSK通信の復調の計算方式を検討し近似式に
よる復調をするため演算回路をROM等の記憶装置を使
ったテーブルの代わりに使用することにより、周波数変
化点を含む変調信号パルス幅Tを近似式により復調をす
るための前記演算回路に入力し、復調信号の変化点まで
の時間τを求め、復調信号を作成する。
A modulation signal pulse width T including a frequency change point is examined by using a calculation circuit instead of a table using a storage device such as a ROM for studying a calculation method of demodulation of FSK communication and performing demodulation by an approximate expression. Is input to the arithmetic circuit for demodulating by an approximate expression, the time τ to the change point of the demodulated signal is obtained, and the demodulated signal is created.

【0006】[0006]

【実施例】以下本発明を図面を用いて詳細に説明する。
図1は図4に示す変調信号を復調するためのFSK復調
器の実施例である。図1において1から5、7から9、
100、101及び200は図6の符号と同一である。
10は入力データを2倍にするためのシフタ、11は外
部入力定数102から前記2倍にされたシフタ10の出
力を引く減算器、12は信号変化点検出器5からの制御
信号によってラッチ4の出力と減算器11の出力を切り
換えてカウンタ9に入力するマルチプレクサ、300は
シフタ10、減算器11及びマルチプレクサ12から成
る演算回路である。103はエッジディテクタの出力信
号、104は復調信号の切り換え制御信号、105は周
波数変化点を含む変調信号パルス幅のエッジのタイミン
グを示す信号である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings.
FIG. 1 shows an embodiment of an FSK demodulator for demodulating the modulated signal shown in FIG. In FIG. 1, 1 to 5, 7 to 9,
Reference numerals 100, 101 and 200 are the same as those in FIG.
Reference numeral 10 is a shifter for doubling the input data, 11 is a subtracter for subtracting the output of the doubled shifter 10 from an external input constant 102, and 12 is a latch 4 by a control signal from the signal change point detector 5. Is a multiplexer that switches the output of the counter and the output of the subtractor 11 and inputs it to the counter 9. Reference numeral 300 is an arithmetic circuit including a shifter 10, a subtractor 11, and a multiplexer 12. Reference numeral 103 is an output signal of the edge detector, 104 is a switching control signal of the demodulation signal, and 105 is a signal indicating the timing of the edge of the modulation signal pulse width including the frequency change point.

【0007】図1の動作を図2のタイミング図を用いて
説明する。変調信号100はA/D変換器1及びエッジ
ディテクタ2によって入力のエッジが検知され信号10
3として出力される。信号103のパルス間のサンプル
クロック101はカウンタ3で計数され、ラッチ4によ
りラッチされる。このデータを信号変化点検出器5に入
力し、周波数変化点を含む変調信号パルス終わりのエッ
ジのタイミングで信号105にパルスを、通信信号が”
0”から”1”に切り換わった時に信号105と同じタ
イミングで信号104にパルスをそれぞれ出力する。信
号104により演算回路300で近似演算された2種類
のデータの一方が選択され、信号105により周波数変
化点を含む変調信号パルスの前記データのみをカウンタ
9にロードし、かつ信号104をフリップフロップ回路
7にセットする。ダウンカウントが終了した時点で、フ
リップフロップ回路7のデータをラッチ8でラッチし復
調信号200を出力させる。
The operation of FIG. 1 will be described with reference to the timing chart of FIG. An input edge of the modulated signal 100 is detected by the A / D converter 1 and the edge detector 2, and the signal 10
It is output as 3. The sample clock 101 between the pulses of the signal 103 is counted by the counter 3 and latched by the latch 4. This data is input to the signal change point detector 5, and a pulse is sent to the signal 105 at the timing of the edge of the modulation signal pulse end including the frequency change point, and the communication signal is
When switching from 0 "to" 1 ", a pulse is output to the signal 104 at the same timing as the signal 105. One of the two types of data that is approximately calculated by the arithmetic circuit 300 is selected by the signal 104, and the signal 105 is used. Only the data of the modulated signal pulse including the frequency change point is loaded into the counter 9 and the signal 104 is set in the flip-flop circuit 7. When the down-counting is completed, the data of the flip-flop circuit 7 is latched by the latch 8. Then, the demodulated signal 200 is output.

【0008】演算回路300においては、以下に説明す
る近似式により復調信号の変化点までの時間τを求め
る。図3において、信号”0”を表す搬送周波数をf
0、信号”1”を表すキャリアの周波数をf1、かつ通
信レートをf0とした場合、通信信号の変化点で位相が
連続であるので以下の式が成り立つ。 f1×T0+f0×T1=1/2 ・・・ (1) f0×T2+f1×T3=1/2 ・・・ (2) f1×T4+f0×T5=1/2 ・・・ (3) ここで、Ta=T2+T3として、式(2)よりT2を
求めこれに代入すると、 Ta=1/(2×f0)+T3×(f0−f1)/f0 ∴T3=−1/(2(f0−f1))+Ta×f0/(f0−f1) ・・・ (4) 一方、Tb=T4+T5として、式(3)よりT4を求
めこれに代入すると、 Tb=1/(2×f1)+T5×(f1−f0)/f1 ∴T5=−1/(2(f1−f0))+Tb×f1/(f1−f0) ・・・ (5) となる。
In the arithmetic circuit 300, the time τ to the change point of the demodulated signal is obtained by the approximation formula described below. In FIG. 3, the carrier frequency representing the signal “0” is f
When the frequency of the carrier representing 0 and the signal “1” is f1 and the communication rate is f0, the phase is continuous at the change point of the communication signal, and therefore the following formula is established. f1 x T0 + f0 x T1 = 1/2 ... (1) f0 x T2 + f1 x T3 = 1/2 ... (2) f1 x T4 + f0 x T5 = 1/2 ... (3) where Ta = As T2 + T3, T2 is calculated from equation (2) and substituted into it. Ta = 1 / (2 × f0) + T3 × (f0−f1) / f0 ∴T3 = −1 / (2 (f0−f1)) + Ta × f0 / (f0−f1) (4) On the other hand, assuming that Tb = T4 + T5, and obtaining T4 from the equation (3) and substituting this, Tb = 1 / (2 × f1) + T5 × (f1−f0) / f1∴T5 = −1 / (2 (f1−f0)) + Tb × f1 / (f1−f0) (5)

【0009】図3より、T3+τ1及びT5+τ2は一
定値でなくてはならず、これをC0とし、搬送周波数を
f0=1200、f1=2200とすれば、式(4)及
び(5)はそれぞれ以下のようになる。 τ1=C0−1/2000+1.2×(T2+T3) τ2=C0+1/2000−2.2×(T4+T5) ここで、C0=1/2000として、簡単のため近似す
ると、 τ1=(T2+T3) ・・・ (6) τ2=C−2×(T4+T5) ・・・ (7) 但し、この場合、C=1/1000である。となる。τ
1は通信信号が”0”から”1”に変化するときの、τ
2は通信信号が”1”から”0”に変化するときの復調
信号の変化点までの時間であり、一方、”T2+T3”
及び”T4+T5”は、それぞれ前記復調信号の変化点
までの時間τ1、τ2の直前の周波数変化点を含む変調
信号パルス幅である。従って、周波数変化点を含む変調
信号パルス幅をTとした時に、通信信号が”0”から”
1”に変化するときτ=T、通信信号が”1”から”
0”に変化するときτ=C−2×Tという演算によっ
て、復調信号の変化点までの時間τを求めることができ
る。
From FIG. 3, T3 + τ1 and T5 + τ2 must be constant values, and if this is C0 and the carrier frequencies are f0 = 1200 and f1 = 2200, equations (4) and (5) are as follows. become that way. τ1 = C0−1 / 2000 + 1.2 × (T2 + T3) τ2 = C0 + 1 / 2000−2.2 × (T4 + T5) where C0 = 1/2000 is approximated for simplicity, τ1 = (T2 + T3) (6) ) Τ2 = C−2 × (T4 + T5) (7) However, in this case, C = 1/1000. Becomes τ
1 is τ when the communication signal changes from "0" to "1"
2 is the time to the change point of the demodulation signal when the communication signal changes from "1" to "0", while "T2 + T3"
And "T4 + T5" are the modulation signal pulse widths including the frequency change points immediately before the time points τ1 and τ2 to the change point of the demodulated signal, respectively. Therefore, when the modulation signal pulse width including the frequency change point is T, the communication signal changes from "0" to "
When it changes to 1 ”, τ = T, the communication signal changes from“ 1 ”to“
When changing to 0 ″, the time τ to the change point of the demodulated signal can be obtained by the calculation τ = C−2 × T.

【0010】なお、前述の近似式(6)及び(7)の説
明においてf0=1200、且つf1=2200と仮定
しているがf0とf1の比率が、例えばf0=240
0、f1=4400のように、この例と同一に6:11
であれば前記近似式は定数Cを除いて同一である。従っ
て、定数C、すなわち外部入力定数102をf0及びf
1に応じて調整することにより図1の実施例の構成のま
まで、異なる搬送周波数の変調信号も復調可能となる。
Although it is assumed that f0 = 1200 and f1 = 2200 in the description of the approximate expressions (6) and (7), the ratio of f0 to f1 is, for example, f0 = 240.
0, f1 = 4400, such as 6:11
If so, the approximation formula is the same except for the constant C. Therefore, the constant C, that is, the external input constant 102 is set to f0 and f.
By adjusting according to No. 1, it becomes possible to demodulate modulated signals of different carrier frequencies with the configuration of the embodiment of FIG.

【0011】[0011]

【発明の効果】以上説明したことから明らかなように、
本発明によれば次のような効果がある。すなわち、周波
数変化点を含む変調信号パルス幅Tから単純な近似式で
復調信号の変化点までの時間τを近似できるので、近似
演算回路がきわめて単純に実現される。また、近似演算
回路により復調信号の変化点までの時間τを計算するこ
とにより、ROM等の記憶装置を使ったテーブルを含ま
ずに小さな回路で復調器を構成できる。これにより、チ
ップ面積を小さくし得るので、ゲートアレイ等でLSI
化が容易となる。さらに、外部入力定数102を調整す
ることによりの同一構成のままで、異なる搬送周波数の
変調信号も復調可能となる。
As is clear from the above description,
The present invention has the following effects. That is, since the time τ from the modulation signal pulse width T including the frequency change point to the change point of the demodulated signal can be approximated by a simple approximation formula, the approximate calculation circuit can be realized very simply. Further, by calculating the time τ to the change point of the demodulated signal by the approximate calculation circuit, the demodulator can be configured with a small circuit without including a table using a storage device such as a ROM. As a result, the chip area can be reduced, so that LSIs such as gate arrays can be used.
It becomes easy to convert. Furthermore, by adjusting the external input constant 102, it is possible to demodulate modulated signals of different carrier frequencies with the same configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るFSK通信復調器の実施例を示す
構成図である。
FIG. 1 is a configuration diagram showing an embodiment of an FSK communication demodulator according to the present invention.

【図2】本発明に係る図1の通信復調器の動作例を示す
タイミング図である。
FIG. 2 is a timing diagram showing an operation example of the communication demodulator of FIG. 1 according to the present invention.

【図3】本発明に係る図1の通信復調器の近似計算の説
明するためのタイミング図である。
FIG. 3 is a timing diagram for explaining an approximate calculation of the communication demodulator of FIG. 1 according to the present invention.

【図4】従来のFSK通信の変調信号の実施例を示すタ
イミング図である。
FIG. 4 is a timing diagram showing an example of a modulation signal of conventional FSK communication.

【図5】従来のFSK通信の通信復調器の動作例を示す
タイミング図である。
FIG. 5 is a timing diagram showing an operation example of a conventional communication demodulator for FSK communication.

【図6】従来のFSK通信の通信復調器の実施例を示す
構成図である。
FIG. 6 is a configuration diagram showing an embodiment of a communication demodulator for conventional FSK communication.

【符号の説明】[Explanation of symbols]

1 A/D変換器 2 エッジディテクタ 3,9 カウンタ 4,8 ラッチ 5 信号変化点検出器 6 テーブル 7 フリップフロップ回路 10 シフタ 11 減算器 12 マルチプレクサ 100 変調信号 101 サンプルクロック 102 定数 103,104,105 信号 200 復調信号 300 演算回路 T 周波数変化点を含む変調信号パルス幅 τ 復調信号の変化点までの時間 C 2種類の搬送周波数から一意的に決まる定数 1 A / D converter 2 Edge detector 3,9 Counter 4,8 Latch 5 Signal change point detector 6 Table 7 Flip-flop circuit 10 Shifter 11 Subtractor 12 Multiplexer 100 Modulation signal 101 Sample clock 102 Constant 103, 104, 105 signal 200 demodulated signal 300 arithmetic circuit T modulated signal pulse width including frequency changing point τ time to changing point of demodulated signal C constant determined uniquely from two types of carrier frequencies

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】2種類の搬送周波数から変調信号が構成さ
れ、原信号である2値の通信信号の信号変化点で前記搬
送周波数が切り換わり、且つ、この搬送周波数の変化点
において位相が連続であるFSK通信信号を、前記搬送
周波数変化点を含む変調信号パルス幅Tの終端から、こ
の変調信号パルス幅Tから一意的に決まる時間τの後
に、復調信号を変化させる方式で復調するFSK通信復
調器において、 第1の信号の搬送周波数と第2の信号の搬送周波数との
比が6対11である場合、 前記変調信号パルス幅Tと、 前記第1、第2の信号の搬送周波数から一意的に決まる
定数Cから、 前記時間τを、 前記第1の信号から前記第2の信号に変化する時はτ=
T、 前記第2の信号から前記第1の信号に変化する時はτ=
C−2×T、 なる近似式により求める演算回路を備えたことを特徴と
するFSK通信復調器。
1. A modulated signal is composed of two types of carrier frequencies, the carrier frequency is switched at a signal change point of a binary communication signal which is an original signal, and the phase is continuous at the change point of the carrier frequency. FSK communication in which the FSK communication signal is demodulated by changing the demodulated signal after a time τ uniquely determined from the modulation signal pulse width T from the end of the modulation signal pulse width T including the carrier frequency change point. In the demodulator, when the ratio of the carrier frequency of the first signal and the carrier frequency of the second signal is 6:11, from the modulated signal pulse width T and the carrier frequencies of the first and second signals, From the uniquely determined constant C, when the time τ changes from the first signal to the second signal, τ =
T, when changing from the second signal to the first signal, τ =
An FSK communication demodulator having an arithmetic circuit for obtaining an approximate expression of C-2 × T.
JP23336291A 1991-09-12 1991-09-12 Fsk communication demodulator Pending JPH0575657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23336291A JPH0575657A (en) 1991-09-12 1991-09-12 Fsk communication demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23336291A JPH0575657A (en) 1991-09-12 1991-09-12 Fsk communication demodulator

Publications (1)

Publication Number Publication Date
JPH0575657A true JPH0575657A (en) 1993-03-26

Family

ID=16953962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23336291A Pending JPH0575657A (en) 1991-09-12 1991-09-12 Fsk communication demodulator

Country Status (1)

Country Link
JP (1) JPH0575657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179747A (en) * 2013-03-14 2014-09-25 Yokogawa Electric Corp Signal analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179747A (en) * 2013-03-14 2014-09-25 Yokogawa Electric Corp Signal analyzer

Similar Documents

Publication Publication Date Title
US4752742A (en) Frequency demodulator for recovering digital signals
JPH06216651A (en) Digital frequency demodulator
JP3467975B2 (en) Phase detection circuit
US4721904A (en) Digital phase difference detecting circuit
US5818881A (en) Digital frequency demodulator
JPH0677737A (en) Phase detector and phase detection system used for the same
JPH0575657A (en) Fsk communication demodulator
JPS61269547A (en) Data signal demodulator
EP0134600B1 (en) Fm demodulation circuit
JPS5696213A (en) Dividing/reading circuit for sine signal
JPS6319106B2 (en)
JPH0631250U (en) FSK communication demodulator
JPH05110613A (en) Angular modulation signal demodulating circuit
JPH0410776B2 (en)
JPH05336186A (en) Phase detector
JP2785946B2 (en) Satellite receiver
JPS6081951A (en) Fsk demodulator
JPS58105659A (en) Digital demodulating circuit
JPH0775355B2 (en) DC drift compensation circuit
JPH0423542A (en) Orthogonal type gmsk modulating device
JPH05130071A (en) Noise elimination device
JPH0923250A (en) C-to-n ratio detection means for digital demodulation circuit
JPS6137819B2 (en)
JPH06121284A (en) Digital demodulator
JPH0522778A (en) Microcomputer building in receiving signal demodulating circuit for remote control