JPH0575026A - Manufacture of resistor element - Google Patents

Manufacture of resistor element

Info

Publication number
JPH0575026A
JPH0575026A JP23211791A JP23211791A JPH0575026A JP H0575026 A JPH0575026 A JP H0575026A JP 23211791 A JP23211791 A JP 23211791A JP 23211791 A JP23211791 A JP 23211791A JP H0575026 A JPH0575026 A JP H0575026A
Authority
JP
Japan
Prior art keywords
film
polysilicon
nitride film
polysilicon film
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23211791A
Other languages
Japanese (ja)
Inventor
Yasushi Jin
康 神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP23211791A priority Critical patent/JPH0575026A/en
Publication of JPH0575026A publication Critical patent/JPH0575026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To completely flatten a resistor element by suppressing variation in resistance value by the heat treatment in after process, and simplifying the control of the resistance value of a polysilicon film of high resistance. CONSTITUTION:A groove having a certain curvature is made in a semiconductor substrate 1, and a thermal oxide film 4 and a nitride film 5 are formed in order, and then, a polysilicon film 6 is charged in the groove, and the polysilicon film 6 on the surface excluding the groove is removed by etchback, and further a nitride film 8 is formed on the polysilicon film 6, and a CVD film 9 is formed on this nitride film 8, and a contact window is formed on the polysilicon film 6, and aluminum wiring 10 is formed on this contact window.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリシリコン抵抗素子
を基板埋め込み型にして抵抗体のコーナー部の電界集中
を緩和することで耐圧を向上させ、またポリシリコン抵
抗素子を窒化膜で覆いポリシリコン膜内にドープされた
不純物の拡散を抑えることで抵抗値の制御性を簡単に
し、さらに微細プロセスの配線工程での断線対策に大き
く寄与する平坦化を可能にした抵抗素子の製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a polysilicon resistance element as a substrate-embedded type to reduce electric field concentration at the corners of the resistance element to improve the breakdown voltage, and to cover the polysilicon resistance element with a nitride film. The present invention relates to a resistance element manufacturing method in which the controllability of the resistance value is simplified by suppressing the diffusion of impurities doped in the silicon film, and further the flattening that greatly contributes to the measure against the disconnection in the wiring process of the fine process is enabled. Is.

【0002】[0002]

【従来の技術】従来、抵抗素子としては、形成方法の簡
単な拡散抵抗やイオン注入抵抗が多用されており、ポリ
シリコン抵抗は抵抗値の制御が困難なため、不純物をド
ープした場合は数kΩ程度の抵抗素子かもしくは、不純
物をドープせずに数百kΩ以上の高抵抗としての使用が
殆どである。多くの回路ではアルミニウム配線との組み
合わせでジャンパーもしくはポリシリコン配線としての
使用が多く、実際の回路構成用の負荷抵抗としての使用
は少なく、高抵抗の負荷が必要な場合はシート抵抗の高
い拡散抵抗もしくはイオン注入抵抗を使用していた。し
かし、近年のドライバー駆動回路などでは、高耐圧抵抗
でしかも電流能力の高い抵抗素子つまり、ピンチオフ電
圧の高い抵抗素子を採用する場合があり、今迄の拡散抵
抗素子のピンチオフ電圧の限界から、ポリシリコン抵抗
素子を回路の負荷として使用する場合が一般的になりつ
つある。以下に、一般的なポリシリコンを用いた高抵抗
素子の製造方法と構造について図7および図8を参照し
ながら説明する。
2. Description of the Related Art Conventionally, as a resistance element, a diffusion resistance and an ion implantation resistance, which are easy to form, are often used, and it is difficult to control the resistance value of a polysilicon resistance. In most cases, it is used as a resistive element or as a high resistance of several hundred kΩ or more without doping impurities. In many circuits, it is often used as a jumper or polysilicon wiring in combination with aluminum wiring, it is rarely used as a load resistance for actual circuit configuration, and a diffusion resistance with a high sheet resistance when a high resistance load is required. Or it used the ion implantation resistance. However, in recent years, in driver driver circuits and the like, there is a case where a resistance element having a high withstand voltage and a high current capability, that is, a resistance element having a high pinch-off voltage is adopted. It is becoming more common to use silicon resistance elements as circuit loads. Hereinafter, a manufacturing method and a structure of a general high resistance element using polysilicon will be described with reference to FIGS. 7 and 8.

【0003】図に示すように、半導体基板21、熱酸化膜
22、ポリシリコン膜23、CVD酸化膜24、アルミニウム
電極25、段差26で構成されたポリシリコン抵抗の製造方
法については既に周知の事実であるため簡単に説明す
る。まず、半導体基板21上に図示のごとく熱酸化膜22を
形成し、その後表面の洗浄を行なったのち、LP−CV
D技術によりポリシリコン膜23を成長させ、目標とする
シート抵抗値になるよう不純物をドープし裏面処理を行
なう。その後、所望する抵抗素子のパターニングをフォ
トリソ技術およびドライエッチ技術により形成する。こ
のとき、抵抗素子の抵抗幅はその加工精度により決定さ
れる。その後、パシベーション膜としてCVD酸化膜24
を成長させ、電極取り出し用のコンタクト窓を開口し、
アルミニウム電極25をスパッタ技術、フォトリソ技術、
ドライエッチ技術を駆使することで形成する。
As shown in the figure, the semiconductor substrate 21, the thermal oxide film
Since the method of manufacturing the polysilicon resistor constituted by 22, the polysilicon film 23, the CVD oxide film 24, the aluminum electrode 25, and the step 26 is already known, it will be briefly described. First, a thermal oxide film 22 is formed on a semiconductor substrate 21 as shown in the figure, and then the surface is washed, and then LP-CV is used.
The polysilicon film 23 is grown by the D technique, impurities are doped so that the target sheet resistance value is obtained, and the back surface treatment is performed. After that, a desired patterning of the resistance element is formed by the photolithography technique and the dry etching technique. At this time, the resistance width of the resistance element is determined by its processing accuracy. After that, a CVD oxide film 24 is formed as a passivation film.
And open a contact window for electrode extraction,
Aluminum electrode 25 sputter technology, photolithography technology,
It is formed by making full use of dry etching technology.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記従
来例の構成では、図7、図8に示す如くポリシリコン膜
23と半導体基板21との絶縁のために使用している熱酸化
膜22は高耐圧の抵抗素子形成時に酸化膜の破壊を考えて
使用する電圧により膜厚を増加させることで酸化膜破壊
を防止していた。また、形成されたポリシリコン膜23の
断面は図8に示すように長方形になっており、高電圧の
場合は特に角の部分での電界集中が発生し、抵抗体の不
良の原因になる場合があった。また、抵抗値を決定する
バロメータとして抵抗素子の加工精度およびドープされ
る不純物の濃度変化があげられ、加工精度はリソグラフ
ィ技術とドライエッチ技術によりある程度までの向上が
可能であるが、不純物濃度の場合は一般に知られている
ようにポリシリコン内の不純物の拡散速度は、シリコン
に比べて数段速く、そのため後工程での熱処理により大
きく変動するため、不純物が活性状態にある数十kΩ程
度の抵抗形成は非常に困難であった。また回路構成上、
ポリシリコン膜23上にアルミニウム配線を横切らせる場
合においてはポリシリコン膜23と下地の熱酸化膜22によ
る段差が形成されるが、その段差をCVD酸化膜24によ
りある程度の平坦化を行なっても、図8に示すように段
差26が残り、これ以上の平坦化は通常処理では困難であ
り、段差26が急峻な場合にはスパッタリングしたアルミ
ニウムのカバレッジが悪化し、アルミニウム配線の断線
の原因となりうるという問題を有していた。
However, in the structure of the conventional example described above, as shown in FIGS.
The thermal oxide film 22 used for insulation between the semiconductor substrate 21 and the semiconductor substrate 21 prevents the oxide film from being destroyed by increasing the film thickness according to the voltage used in consideration of the destruction of the oxide film when forming a high voltage resistance element. Was. Also, the cross section of the formed polysilicon film 23 is rectangular as shown in FIG. 8, and in the case of a high voltage, electric field concentration occurs especially at the corners, which may cause defective resistors. was there. In addition, as a barometer that determines the resistance value, the processing accuracy of the resistance element and the change in the concentration of the doped impurities can be mentioned. The processing accuracy can be improved to some extent by the lithography technology and the dry etching technology. As is generally known, the diffusion rate of impurities in polysilicon is several orders of magnitude faster than that of silicon, and as a result, it fluctuates greatly due to heat treatment in the subsequent process, so that the resistance of the impurities in the active state is about tens of kΩ. Formation was very difficult. Also, in terms of circuit configuration,
A step is formed by the polysilicon film 23 and the underlying thermal oxide film 22 when the aluminum wiring is crossed over the polysilicon film 23. Even if the step is flattened to some extent by the CVD oxide film 24, As shown in FIG. 8, the step 26 remains, and further flattening is difficult with normal processing. If the step 26 is steep, the coverage of the sputtered aluminum deteriorates, which may cause a break in the aluminum wiring. Had a problem.

【0005】本発明は、このような課題を解決するもの
で、後工程での熱処理による抵抗値変動を抑えるととも
に高抵抗のポリシリコン膜の抵抗値制御を簡略化し、抵
抗素子の完全平坦化を図ることを目的とする。
The present invention solves such a problem and suppresses the resistance value variation due to the heat treatment in the subsequent step, simplifies the resistance value control of the high resistance polysilicon film, and completely flattens the resistance element. The purpose is to plan.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
に本発明は、半導体基板上に、抵抗素子のパターンを形
成する工程と、前記パターンをマスクとして所望する深
さと曲率を得るように半導体基板をシリコンエッチング
する工程と、前記シリコンエッチングされた半導体基板
に酸化膜を形成する工程と、前記酸化膜上に窒化膜を成
長させる工程と、前記窒化膜上にポリシリコン膜を成長
させる工程と、前記半導体基板のシリコンエッチされた
箇所以外に堆積されたポリシリコン膜および窒化膜と酸
化膜をエッチバック技術により除去し平坦化する工程
と、前記ポリシリコン膜上に窒化膜を成長させる工程
と、前記窒化膜上にCVD膜を成長させる工程と、前記
ポリシリコン膜上にコンタクト窓を開口する工程と、前
記コンタクト窓上にアルミニウム配線を形成する工程よ
りなるものである。
In order to solve this problem, the present invention relates to a step of forming a pattern of a resistance element on a semiconductor substrate, and a semiconductor for obtaining a desired depth and curvature using the pattern as a mask. A step of etching a substrate with silicon; a step of forming an oxide film on the silicon-etched semiconductor substrate; a step of growing a nitride film on the oxide film; and a step of growing a polysilicon film on the nitride film. A step of removing a polysilicon film and a nitride film and an oxide film deposited on a portion other than the silicon-etched portion of the semiconductor substrate by an etch-back technique to flatten the surface, and a step of growing a nitride film on the polysilicon film. A step of growing a CVD film on the nitride film, a step of opening a contact window on the polysilicon film, and an step of forming an contact window on the contact window. Miniumu wiring is made of the step of forming a.

【0007】[0007]

【作用】以上のような方法によって、抵抗素子断面を考
えたとき、下地の半導体基板との接合部は、一定の曲率
を持った構造であるため、高耐圧で使用の際に電界の集
中を緩和でき、下地絶縁膜(ここでは窒化膜と酸化膜)
への影響も減少される。よって抵抗素子自身の信頼性の
向上につながりしかもピンチオフ電圧を従来より向上さ
せることが可能である。またポリシリコン膜の下に窒化
膜を敷き詰めてさらに上部も窒化膜で覆い完全に包み込
む構造にすることで、ポリシリコン膜中にドープされた
不純物の酸化膜への拡散とCVD膜への拡散を抑えるこ
とが可能であり、活性状態にある不純物を窒化膜で防止
することで、熱処理による抵抗値への影響を減少でき
る。また、回路構成において抵抗素子上をアルミニウム
配線が横切る場合でもポリシリコン膜を半導体基板内に
埋め込むことで段差がなく完全に平坦化されたポリシリ
コン膜の形成が可能であり、高集積のLSI、IC回路
などの場合、微細プロセスの配線工程での断線も克服で
きる。また、ポリシリコン膜上の窒化膜を絶縁膜とし、
下部電極をポリシリコン膜として、その上部にアルミニ
ウム電極を取り付けたMIS容量の形成も可能であり、
電圧依存性、温度依存性が少なく浮遊容量の低減が可能
な容量素子の形成も可能である。
When the resistance element cross section is considered by the above method, the junction with the underlying semiconductor substrate has a structure with a certain curvature, so that the concentration of the electric field is prevented when the device is used with a high breakdown voltage. Can be relaxed, underlying insulating film (nitride film and oxide film here)
The impact on is also reduced. Therefore, the reliability of the resistance element itself can be improved, and the pinch-off voltage can be improved more than before. In addition, a nitride film is spread under the polysilicon film, and the upper part is also covered with the nitride film to completely wrap it so that the impurities doped in the polysilicon film are diffused into the oxide film and the CVD film. Since it is possible to suppress the impurities in the active state by the nitride film, the influence of the heat treatment on the resistance value can be reduced. Further, even when the aluminum wiring crosses over the resistance element in the circuit configuration, it is possible to form a completely flattened polysilicon film without any step by embedding the polysilicon film in the semiconductor substrate. In the case of an IC circuit or the like, it is possible to overcome disconnection in a wiring process of a fine process. In addition, the nitride film on the polysilicon film is used as an insulating film,
It is also possible to form a MIS capacitor in which the lower electrode is a polysilicon film and the aluminum electrode is attached to the upper part thereof.
It is also possible to form a capacitive element that has little voltage dependency and temperature dependency and can reduce stray capacitance.

【0008】[0008]

【実施例】以下、本発明の一実施例について図面(図1
〜図6)を参照しながら説明する。まず、図1において
1は半導体基板、2は保護酸化膜、3はシリコンエッチ
でのマスクとなる窒化膜である。また、図2において4
は熱酸化膜、5は抵抗下部の窒化膜である。次に、図3
において6はポリシリコン膜、7はエッチバック用のレ
ジストである。また、図4において8は抵抗上部と半導
体基板表面保護用の窒化膜である。さらに、図5、図6
において9はCVD法により堆積させた層間膜用CVD
膜、10はアルミニウム配線(アルミニウム電極を含む)
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will now be described with reference to the drawings (FIG. 1).
~ FIG. 6) will be described. First, in FIG. 1, 1 is a semiconductor substrate, 2 is a protective oxide film, and 3 is a nitride film serving as a mask for silicon etching. Also, in FIG.
Is a thermal oxide film, and 5 is a nitride film below the resistor. Next, FIG.
In the figure, 6 is a polysilicon film, and 7 is a resist for etch back. Further, in FIG. 4, 8 is a nitride film for protecting the upper part of the resistor and the surface of the semiconductor substrate. Furthermore, FIGS.
9 is CVD for an interlayer film deposited by the CVD method
Membrane, 10 is aluminum wiring (including aluminum electrode)
Is.

【0009】次に上記構成の製造工程について説明する
と、まず図1において一定濃度の半導体基板1に保護酸
化膜2をドライ酸化により約50nm程度成長させ、連続
処理にてLP−CVDにより窒化膜3を堆積したのち、
所望する深さと曲率ポリシリコン膜のパターンニングを
フォトリソ技術により形成し、先に述べた保護酸化膜2
と窒化膜3をレジストをマスクとしてF系ガスにより異
方性にドライエッチする。その状態で保護酸化膜2と窒
化膜3をマスクとして半導体基板1をCF4ガス+02
ガスを主体としたエッチングガスにより等方性のドラ
イエッチングを行ない、図1のaの部分をエッチングす
る。このときのエッチングガスの条件は、シリコンに対
する窒化膜3と保護酸化膜2の選択比が高い条件で、し
かもシリコンに対する縦方向と横方向のエッチングレー
トが同等であることが望ましい。等方性のシリコンエッ
チの終了後に、エッチングマスクとして使用した窒化膜
3をリン酸などのウエット処理にて除去し、保護酸化膜
2を弗酸+弗化アンモニウムの混合液などにより除去
し、半導体基板1の表面を完全にむき出しの状態にす
る。
The manufacturing process of the above structure will be described. First, in FIG. 1, a protective oxide film 2 is grown on a semiconductor substrate 1 having a constant concentration by dry oxidation to a thickness of about 50 nm, and a nitride film 3 is formed by LP-CVD in a continuous process. After depositing
The desired depth and curvature of the polysilicon film are patterned by photolithography, and the protection oxide film 2 described above is formed.
Then, the nitride film 3 is anisotropically dry-etched with an F-based gas using the resist as a mask. In this state, the semiconductor substrate 1 is CF4 gas + 02 with the protective oxide film 2 and the nitride film 3 as a mask.
Isotropic dry etching is performed with an etching gas mainly containing gas to etch the portion a in FIG. At this time, it is desirable that the etching gas conditions are such that the selection ratio between the nitride film 3 and the protective oxide film 2 with respect to silicon is high, and that the etching rates in the vertical and horizontal directions with respect to silicon are equal. After completion of the isotropic silicon etching, the nitride film 3 used as the etching mask is removed by a wet treatment such as phosphoric acid, and the protective oxide film 2 is removed by a mixed solution of hydrofluoric acid + ammonium fluoride. The surface of the substrate 1 is completely exposed.

【0010】次に図2においてドライ酸化によりシリコ
ンエッチのダメージ回復のために半導体基板1の上に熱
酸化膜4を約50nm程度形成したのち、LP−CVDに
より窒化膜5を堆積させる。言うまでもないが、このと
き使用されるLP−CVD装置は、窒化膜5のガバレッ
ジに優れたものが望ましい。また窒化膜5の膜厚は、目
標とするポリシリコン膜6の抵抗値および使用する電圧
により窒化膜5の破壊電圧と窒化膜厚の関係から導き出
し、膜厚のバラツキを考慮した上で決定する。参考のた
め、ここでは、使用電圧を50Vと仮定して窒化膜厚を約
100 nmとする。
Next, in FIG. 2, a thermal oxide film 4 of about 50 nm is formed on the semiconductor substrate 1 by dry oxidation to recover damage from silicon etching, and then a nitride film 5 is deposited by LP-CVD. Needless to say, it is desirable that the LP-CVD apparatus used at this time has excellent coverage of the nitride film 5. Further, the film thickness of the nitride film 5 is derived from the relationship between the breakdown voltage of the nitride film 5 and the nitride film thickness according to the target resistance value of the polysilicon film 6 and the voltage used, and is determined in consideration of the film thickness variation. .. For reference, here, assuming that the operating voltage is 50 V, the nitride film thickness is about
100 nm.

【0011】次に図3において窒化膜5の堆積後、直ち
にLP−CVDによりポリシリコン膜6を堆積させる。
堆積後のポリシリコン膜6へは熱処理による不純物のド
ープは行なわず、目標とする抵抗値になるようにイオン
注入により不純物のドープを行なう。このときの不純物
は砒素などのN型不純物よりもボロンなどのP型不純物
の方が原子の移動度が小さく、熱処理による抵抗値変動
を抑えることができるため望ましい。ポリシリコン膜6
を堆積したのち、半導体基板1の裏面ポリシリコン膜の
除去を行ない、所望する領域をフォトリソ技術により開
口し前記のイオン注入を行なう。その後、全面に厚膜の
レジスト7を塗布し、表面を平坦にした状態でエッチバ
ックを行なう。エッチバックの条件としては、最初はレ
ジスト7とポリシリコン膜6との選択比が約1:1のH
BrとHClガスを主体としたエッチングガスによりエ
ッチングを行ない、フィールド上のポリシリコン膜6を
除去し、窒化膜5を露出させると同時に、エッチングガ
スにF系ガスを加えてポリシリコン膜6と窒化膜5の選
択比が1:1程度のガス条件でエッチングし、フィール
ド上の窒化膜5が除去された状態で熱酸化膜4のエッチ
ングを行なうためのガスを加え処理を行なう。このよう
にしてフィールド上のポリシリコン膜6、窒化膜5、熱
酸化膜4を完全に除去し、抵抗部の溝内に埋め込まれた
ポリシリコン膜6が露出するまでエッチングを行ない、
ポリシリコン膜6と窒化膜5と熱酸化膜4と半導体基板
1の表面が面一状になるまで処理する。
Next, in FIG. 3, immediately after the deposition of the nitride film 5, a polysilicon film 6 is deposited by LP-CVD.
The polysilicon film 6 after deposition is not doped with impurities by heat treatment, but is doped with impurities by ion implantation so as to have a target resistance value. At this time, P-type impurities such as boron are preferable as N-type impurities such as arsenic, because the mobility of atoms is smaller than that of N-type impurities such that resistance variation due to heat treatment can be suppressed. Polysilicon film 6
Then, the back surface polysilicon film of the semiconductor substrate 1 is removed, a desired region is opened by a photolithography technique, and the above ion implantation is performed. After that, a thick film resist 7 is applied on the entire surface, and etching back is performed with the surface being flat. The conditions for the etch back are as follows: H with a selection ratio of the resist 7 and the polysilicon film 6 of about 1: 1.
Etching is performed with an etching gas mainly containing Br and HCl gas to remove the polysilicon film 6 on the field and expose the nitride film 5, and at the same time, an F gas is added to the etching gas to nitride the polysilicon film 6 with the etching gas. Etching is performed under the gas condition that the selection ratio of the film 5 is about 1: 1, and the gas for etching the thermal oxide film 4 is added in the state where the nitride film 5 on the field is removed, and the treatment is performed. In this way, the polysilicon film 6, the nitride film 5, and the thermal oxide film 4 on the field are completely removed, and etching is performed until the polysilicon film 6 buried in the groove of the resistance portion is exposed.
Processing is performed until the surfaces of the polysilicon film 6, the nitride film 5, the thermal oxide film 4, and the semiconductor substrate 1 are flush with each other.

【0012】次に図4に示すように、ポリシリコン膜6
の上部に表面保護用の窒化膜8を堆積させ、窒化膜5と
上部の窒化膜8にて完全にポリシリコン膜6を完全に包
み込む構造にし、ポリシリコン膜6にドープされた不純
物の酸化膜その他への拡散を抑止することで安定した抵
抗値が得られる。次に図5および図6に示すように層間
膜として一定濃度のCVD膜9を窒化膜8の上に堆積さ
せ、低温短時間のリフロー処理を行なって平坦度をさら
に完全な状態にしたのち、コンタクト窓のパターンニン
グをフォトリソ技術と酸化膜系のドライエッチにより形
成する。このときポリシリコン膜6上の窒化膜8もエッ
チングされる条件で処理し、CVD膜9と窒化膜8の界
面に段差が生じないよう異方性のドライエッチにて処理
する。コンタクト窓開口後にアルミニウムのスパッタを
行ない、フォトリソ技術とドライエッチ技術を駆使しア
ルミニウム配線10を形成をする。なお、図6は前記従来
例の図8に見られる段差が発生しないことを示してい
る。
Next, as shown in FIG. 4, a polysilicon film 6 is formed.
A nitride film 8 for surface protection is deposited on the upper surface of the silicon oxide film so that the polysilicon film 6 is completely covered by the nitride film 5 and the upper nitride film 8, and an oxide film of impurities doped in the polysilicon film 6 is formed. A stable resistance value can be obtained by suppressing diffusion to other areas. Next, as shown in FIGS. 5 and 6, a CVD film 9 having a constant concentration is deposited as an interlayer film on the nitride film 8 and a low-temperature short-time reflow process is performed to further flatten the flatness. The patterning of the contact window is formed by photolithography and oxide-based dry etching. At this time, the nitride film 8 on the polysilicon film 6 is also processed under the condition that it is etched, and anisotropic dry etching is performed so that no step is formed at the interface between the CVD film 9 and the nitride film 8. After the contact window is opened, aluminum is sputtered and the aluminum wiring 10 is formed by utilizing the photolithography technique and the dry etching technique. It should be noted that FIG. 6 shows that the step difference shown in FIG. 8 of the conventional example does not occur.

【0013】[0013]

【発明の効果】以上のように本発明によれば、ポリシリ
コン膜を埋め込み型にして窒化膜により覆うことで、高
抵抗のポリシリコン膜の形成において、使用する電圧に
関係なく抵抗値の安定したポリシリコン膜が実現でき、
さらにピンチオフ電圧の向上が期待できる。また、抵抗
体となるポリシリコン膜を完全に半導体基板内に埋め込
むことで抵抗素子の完全平坦化が可能であり、微細ルー
ルのアルミニウム配線での信頼性を向上させ得る。
As described above, according to the present invention, by forming the polysilicon film into the buried type and covering it with the nitride film, in the formation of the high resistance polysilicon film, the resistance value is stabilized regardless of the voltage used. Can realize the polysilicon film
Further improvement in pinch-off voltage can be expected. Further, by completely embedding the polysilicon film to be the resistor in the semiconductor substrate, the resistance element can be completely flattened, and the reliability of the aluminum wiring of the fine rule can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるポリシリコン抵抗素
子の製造方法の第1工程を示す縱断面図である。
FIG. 1 is a vertical sectional view showing a first step of a method for manufacturing a polysilicon resistance element according to an embodiment of the present invention.

【図2】本発明の一実施例におけるポリシリコン抵抗素
子の製造方法の第2工程を示す縦断面図である。
FIG. 2 is a vertical sectional view showing a second step of the method for manufacturing the polysilicon resistance element in the embodiment of the present invention.

【図3】本発明の一実施例におけるポリシリコン抵抗素
子の製造方法の第3工程を示す縦断面図である。
FIG. 3 is a vertical cross-sectional view showing a third step of the method for manufacturing the polysilicon resistance element in the embodiment of the present invention.

【図4】本発明の一実施例におけるポリシリコン抵抗素
子の製造方法の第4工程を示す縦断面図である。
FIG. 4 is a vertical cross-sectional view showing a fourth step of the method for manufacturing the polysilicon resistance element in the embodiment of the present invention.

【図5】本発明の一実施例におけるポリシリコン抵抗素
子の製造方法の第5工程を示す縦断面図である。
FIG. 5 is a vertical sectional view showing a fifth step of the method for manufacturing the polysilicon resistance element in the embodiment of the present invention.

【図6】同横断面図である。FIG. 6 is a transverse sectional view of the same.

【図7】従来例によるポリシリコン抵抗素子の縦断面図
である。
FIG. 7 is a vertical cross-sectional view of a polysilicon resistance element according to a conventional example.

【図8】従来例によるポリシリコン抵抗素子の横断面図
である。
FIG. 8 is a cross-sectional view of a conventional polysilicon resistance element.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 保護酸化物 3 窒化膜 4 熱酸化膜 5 窒化膜 6 ポリシリコン膜 7 レジスト 8 窒化膜 9 層間膜用CVD膜 10 アルミニウム配線 1 Semiconductor Substrate 2 Protective Oxide 3 Nitride Film 4 Thermal Oxide Film 5 Nitride Film 6 Polysilicon Film 7 Resist 8 Nitride Film 9 CVD Film for Interlayer Film 10 Aluminum Wiring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に、抵抗素子のパターンを
形成する工程と、前記パターンをマスクとして所望する
深さと曲率を得るように半導体基板をシリコンエッチン
グする工程と、前記シリコンエッチングされた半導体基
板に酸化膜を形成する工程と、前記酸化膜上に窒化膜を
成長させる工程と、前記窒化膜上にポリシリコン膜を成
長させる工程と、前記半導体基板のシリコンエッチされ
た箇所以外に堆積されたポリシリコン膜および窒化膜と
酸化膜をエッチバック技術により除去し平坦化する工程
と、前記ポリシリコン膜上に窒化膜を成長させる工程
と、前記窒化膜上にCVD膜を成長させる工程と、前記
ポリシリコン膜上にコンタクト窓を開口する工程と、前
記コンタクト窓上にアルミニウム配線を形成する工程よ
りなることを特徴とする抵抗素子の製造方法。
1. A step of forming a pattern of a resistance element on a semiconductor substrate, a step of etching the semiconductor substrate with silicon so as to obtain a desired depth and curvature using the pattern as a mask, and the silicon-etched semiconductor substrate. A step of forming an oxide film on the oxide film, a step of growing a nitride film on the oxide film, a step of growing a polysilicon film on the nitride film, and a step of depositing a silicon film on the semiconductor substrate other than a silicon-etched portion. A step of removing the polysilicon film and the nitride film and the oxide film by an etch-back technique to flatten the surface; a step of growing a nitride film on the polysilicon film; a step of growing a CVD film on the nitride film; A step of forming a contact window on the polysilicon film and a step of forming an aluminum wiring on the contact window. Method for manufacturing a resistive element.
JP23211791A 1991-09-12 1991-09-12 Manufacture of resistor element Pending JPH0575026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23211791A JPH0575026A (en) 1991-09-12 1991-09-12 Manufacture of resistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23211791A JPH0575026A (en) 1991-09-12 1991-09-12 Manufacture of resistor element

Publications (1)

Publication Number Publication Date
JPH0575026A true JPH0575026A (en) 1993-03-26

Family

ID=16934275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23211791A Pending JPH0575026A (en) 1991-09-12 1991-09-12 Manufacture of resistor element

Country Status (1)

Country Link
JP (1) JPH0575026A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621631A1 (en) * 1993-03-24 1994-10-26 Nortel Networks Corporation Method of forming resistors for integrated circuits by using trenches
US6784044B2 (en) * 2001-09-28 2004-08-31 Agere Systems Inc. High dopant concentration diffused resistor and method of manufacture therefor
JP2014022519A (en) * 2012-07-17 2014-02-03 Saitama Univ Photon detector using superconduction tunnel junction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621631A1 (en) * 1993-03-24 1994-10-26 Nortel Networks Corporation Method of forming resistors for integrated circuits by using trenches
US6784044B2 (en) * 2001-09-28 2004-08-31 Agere Systems Inc. High dopant concentration diffused resistor and method of manufacture therefor
JP2014022519A (en) * 2012-07-17 2014-02-03 Saitama Univ Photon detector using superconduction tunnel junction

Similar Documents

Publication Publication Date Title
US5405806A (en) Method for forming a metal silicide interconnect in an integrated circuit
US5783475A (en) Method of forming a spacer
US5465005A (en) Polysilicon resistor structure including polysilicon contacts
EP0170250B1 (en) Bipolar transistor and method for producing the bipolar transistor
US4641170A (en) Self-aligned lateral bipolar transistors
US6967363B1 (en) Lateral diode with multiple spacers
US7291534B2 (en) Method of manufacturing semiconductor device
JPH0654795B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
EP0057135B1 (en) Low resistance schottky diode on polysilicon/metal-silicide
US4551906A (en) Method for making self-aligned lateral bipolar transistors
JPH08293543A (en) Semiconductor device and manufacture thereof
JP3479312B2 (en) Manufacturing method of polysilicon embedded contact
US5670417A (en) Method for fabricating self-aligned semiconductor component
JPH0575026A (en) Manufacture of resistor element
JP3283458B2 (en) Method for manufacturing semiconductor device
JPH0252858B2 (en)
JPH0135505B2 (en)
US5256589A (en) Method of improving the flatness of wiring layer
EP0264309B1 (en) Self-aligned base shunt for transistor
JPH0136710B2 (en)
JP2574453B2 (en) Method for manufacturing semiconductor device
JP3224320B2 (en) Method for manufacturing semiconductor device
JP2592287B2 (en) Manufacturing method of bipolar semiconductor device
JPH0136709B2 (en)
JPH05283701A (en) Manufacture of semiconductor device