JPH0574659A - Polarizable electrode, electric double layer capacitor and manufacture thereof - Google Patents
Polarizable electrode, electric double layer capacitor and manufacture thereofInfo
- Publication number
- JPH0574659A JPH0574659A JP3261334A JP26133491A JPH0574659A JP H0574659 A JPH0574659 A JP H0574659A JP 3261334 A JP3261334 A JP 3261334A JP 26133491 A JP26133491 A JP 26133491A JP H0574659 A JPH0574659 A JP H0574659A
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- double layer
- electric double
- layer capacitor
- polarizable electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は電気二重層コンデンサに
用いる分極性電極および電気二重層コンデンサとその製
造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizable electrode used in an electric double layer capacitor, an electric double layer capacitor and a method for manufacturing the same.
【0002】[0002]
【従来の技術】近年、電子部品の小型化が強く要求され
ており、電気二重層コンデンサの小型化を図るために
は、単位重量当たりの容量が大きな電極材料を開発する
ことと、電極材料の充填密度を向上させる必要がある。
従来の電気二重層コンデンサの分極性電極としては活性
炭粉末または活性炭繊維が用いられてきた。これらの分
極性電極では、粉末間または繊維間の電気的接続を取る
ために加圧圧縮させなければならないため、大型化、電
気二重層コンデンサの低抵抗化に限界があった。また単
位体積当たりの容量の向上にも限界があった。これらの
問題点を解決する分極性電極が近年開発されるに至っ
た。例えば、特願平3−81262号に開示されている
ように、活性炭粉末とフェノ―ル樹脂粉末の混合物を加
熱加圧下で金型成型し、さらに熱処理することにより得
られる活性炭/ポリアセン系材料複合体がこれに適した
分極性電極であることが見い出されている。また、特開
昭64−2314号公報に開示されているように、活性
炭粉末または活性炭繊維とコ―ルタ―ルまたはピッチを
混合し非酸化製雰囲気中で熱処理することにより得られ
る活性炭粉末あるいは活性炭繊維と炭素質から構成され
る電極もある。また、特開昭62−292612号公報
に開示されているような粘結性を有する石炭を型枠に入
れ固化温度以上で乾留焼成後、水蒸気賦活して得られる
ような固体活性炭も電気二重層コンデンサの分極性電極
として使用することができる。さらに、特開平3−78
221号公報に開示されているように、活性炭粉末を高
温、加圧下でパルス状電圧を印加して活性炭粉末を焼結
せしめることにより得られる固体活性炭も電気二重層コ
ンデンサの分極性電極として使用することができる。こ
れらいずれの方法によっても固体活性炭が得られること
は周知となっている。2. Description of the Related Art In recent years, there has been a strong demand for miniaturization of electronic parts, and in order to miniaturize electric double layer capacitors, it is necessary to develop an electrode material having a large capacity per unit weight and It is necessary to improve the packing density.
Activated carbon powder or activated carbon fibers have been used as the polarizable electrodes of conventional electric double layer capacitors. These polarizable electrodes have to be pressed and compressed in order to establish electrical connection between powders or fibers, so that there is a limit to increase in size and reduction in resistance of the electric double layer capacitor. Moreover, there is a limit to the improvement of the capacity per unit volume. In recent years, a polarizable electrode that solves these problems has been developed. For example, as disclosed in Japanese Patent Application No. 3-81262, an activated carbon / polyacene-based material composite obtained by molding a mixture of activated carbon powder and phenol resin powder under heat and pressure and further heat treatment. The body has been found to be a suitable polarizable electrode for this. Further, as disclosed in Japanese Patent Laid-Open No. 64-2314, activated carbon powder or activated carbon obtained by mixing activated carbon powder or activated carbon fiber with a corn or pitch and heat-treating in a non-oxidizing atmosphere. Some electrodes are composed of fibers and carbonaceous materials. In addition, solid activated carbon obtained by steam-activating carbon having a caking property as disclosed in JP-A-62-292612 in a mold and firing at a solidification temperature or higher and then steam activation is also an electric double layer. It can be used as a polarizable electrode of a capacitor. Furthermore, JP-A-3-78
As disclosed in Japanese Patent No. 221, the solid activated carbon obtained by sintering the activated carbon powder by applying a pulsed voltage to the activated carbon powder under high temperature and pressure is also used as the polarizable electrode of the electric double layer capacitor. be able to. It is well known that solid activated carbon can be obtained by any of these methods.
【0003】[0003]
【発明が解決しようとする課題】固体活性炭を分極性電
極とした電気二重層コンデンサは瞬時大電流供給用の補
助電源としての用途が期待されている。大電流供給を可
能にするには電気二重層コンデンサの等価直列抵抗が低
いことが望まれている。これまでの固体活性炭を分極性
電極とした電気二重層コンデンサの等価直列抵抗は十分
低いものではあるが、さらに等価直列抵抗の低減が求め
られており、等価直列抵抗の要因の一つに集電体と分極
性電極の固有抵抗があった。本発明の目的は、集電体と
分極性電極の固有抵抗を小さくすることにより、等価直
列抵抗を低減化した電気二重層コンデンサを提供するこ
とにある。An electric double layer capacitor using solid activated carbon as a polarizable electrode is expected to be used as an auxiliary power source for supplying a momentary large current. In order to be able to supply a large current, it is desired that the electric double layer capacitor has a low equivalent series resistance. Although the equivalent series resistance of conventional electric double layer capacitors using solid activated carbon as a polarizable electrode is sufficiently low, further reduction of the equivalent series resistance is required, and current collection is one of the factors of the equivalent series resistance. There was a specific resistance of the body and polarizable electrodes. An object of the present invention is to provide an electric double layer capacitor having a reduced equivalent series resistance by reducing the specific resistance of the current collector and the polarizable electrode.
【0004】[0004]
【課題を解決するための手段】本発明の第1は、活性炭
/カ―ボン/ニッケル複合体からなる分極性電極であっ
て、ニッケルが0.1〜20重量%含有されてなること
を特徴とする分極性電極である。本発明の第2は、固体
活性炭を分極性電極とする電気二重層コンデンサにおい
て、集電体にニッケルまたはニッケル系合金を用いるこ
とを特徴とする電気二重層コンデンサである。本発明の
第3は、固体活性炭を分極性電極とする電気二重層コン
デンサにおいて、分極性電極、集電体のいずれか一方ま
たは両方の所定の表面部分にニッケルまたはニッケル系
合金が被覆されていることを特徴とする電気二重層コン
デンサである。本発明の第4は、固体活性炭を分極性電
極とする電気二重層コンデンサの製造方法において、集
電体と分極性電極をニッケル粉末を含有する導電性接着
剤で接続することを特徴とする電気二重層コンデンサの
製造方法である。The first aspect of the present invention is a polarizable electrode comprising an activated carbon / carbon / nickel composite, which contains 0.1 to 20% by weight of nickel. Is a polarizable electrode. A second aspect of the present invention is an electric double layer capacitor using solid activated carbon as a polarizable electrode, wherein nickel or a nickel-based alloy is used as a current collector. A third aspect of the present invention is an electric double layer capacitor using solid activated carbon as a polarizable electrode, wherein a predetermined surface portion of either or both of the polarizable electrode and the current collector is coated with nickel or a nickel-based alloy. This is an electric double layer capacitor. A fourth aspect of the present invention is a method for producing an electric double layer capacitor using solid activated carbon as a polarizable electrode, wherein the current collector and the polarizable electrode are connected by a conductive adhesive containing nickel powder. It is a manufacturing method of a double layer capacitor.
【0005】[0005]
【実施例】以下、本発明の実施例について説明する。 実施例1 フェノ―ル系活性炭粉末と粉末フェノ―ル樹脂の重量比
が70/30および60/40になるように秤量し、ボ
―ルミルにて乾式混合を行った。この混合粉末それぞれ
100gにニッケル粉末を表1に示す割合で添加し、乾
式でV型混合器により混合を行った。これらの混合粉末
10gをそれぞれ150℃、100kg/cm2の圧力
で10分間、金型成型し、50×35mm2、厚さ6m
mの活性炭およびニッケル含有フェノ―ル樹脂板を得
た。これを電気炉中、N2雰囲気下で900℃で2時間
熱処理を行った。昇降温速度は10℃/hとした。EXAMPLES Examples of the present invention will be described below. Example 1 Phenol-based activated carbon powder and powdered phenol resin were weighed so that the weight ratio was 70/30 and 60/40, and dry-mixed with a ball mill. Nickel powder was added to 100 g of each of the mixed powders at a ratio shown in Table 1 and mixed by a dry type V-type mixer. 10 g of each of these mixed powders was die-molded at 150 ° C. and a pressure of 100 kg / cm 2 for 10 minutes, 50 × 35 mm 2 , and a thickness of 6 m.
m phenolic resin plate containing activated carbon and nickel was obtained. This was heat-treated in an electric furnace in an N 2 atmosphere at 900 ° C. for 2 hours. The temperature raising / lowering rate was 10 ° C./h.
【0006】本実施例で作製した電気二重層コンデンサ
の構造を図1を用いて説明する。図1において、(a)
は横断面図、(b)は縦断面図である。得られたニッケ
ル/活性炭/カ―ボン複合体は分極性電極1となる。カ
―ボン製集電体2は一部に円筒形の突起が設けてあり、
円筒形の突起部にはネジ穴が設けてある。これらをフェ
ノ―ル樹脂を出発原料とし2000℃で熱処理した中心
粒径5μmのガラス状カ―ボン粉末とフェノ―ル樹脂粉
末および溶剤のメチルセルソルブから構成された導電性
接着剤で一体化した。ガラス状カ―ボン粉末とフェノ―
ル樹脂粉末とメチルセルソルブは重量比で70/30/
82であり、これらをホモジナイザ―で混合した。この
導電性接着剤をカ―ボン製集電体2に塗布し、分極性電
極1と接着し、150℃で30分間熱硬化した。The structure of the electric double layer capacitor manufactured in this embodiment will be described with reference to FIG. In FIG. 1, (a)
Is a horizontal sectional view, and (b) is a vertical sectional view. The nickel / activated carbon / carbon composite thus obtained becomes the polarizable electrode 1. The carbon-made current collector 2 has a cylindrical protrusion on a part of it.
The cylindrical protrusion has a screw hole. These were integrated with a conductive adhesive composed of a glassy carbon powder having a central particle size of 5 μm, which was heat-treated at 2000 ° C. from a phenolic resin as a starting material, a phenolic resin powder and a solvent, methyl cellosolve. .. Glassy carbon powder and phenol
Resin resin powder and methyl cellosolve in a weight ratio of 70/30 /
82, which were mixed with a homogenizer. This conductive adhesive was applied to a carbon-made current collector 2, adhered to the polarizable electrode 1, and thermally cured at 150 ° C. for 30 minutes.
【0007】集電体2を一体化した分極性電極1を片側
電極として同じ構成の片側電極をもう一つ用意し、厚さ
25μmのポリプロピレン製セパレ―タ3を挟んで向か
い合わせた。これらをABS(アクリロニトリルブタジ
エンスチレン)製容器蓋4bにエポキシ樹脂をシ―リン
グ剤として接着封止した。分極性電極1に電解液を含浸
させるために、全体を真空にした後、ポリプロピレン製
容器4aに電解液を注入しながら、上述した2つの分極
性電極1を挿入した。電解液として、27wt%の水酸
化カリウム(KOH)水溶液を用いた。ABS製容器4
aと蓋4bの封止断面の4つの角とも封止が行い易いよ
うに外周で半径4mmに角を丸めてある。この蓋4bと
容器4aを出力1200W、周波数21kHzの超音波
融着機により封止した。超音波融着の条件は、融着前お
よび融着中1.0kg/cm2の加圧、加圧後発振、融
着時間0.5秒とした。封止した容器4aの蓋4bの外
側からネジが切ってあるステンレス製端子5を接続し
た。このようにして本発明の電気二重層コンデンサを試
作した。Another one-sided electrode having the same structure was prepared by using the polarizable electrode 1 in which the current collector 2 was integrated as one sided electrode, and they were opposed to each other with a polypropylene separator 3 having a thickness of 25 μm interposed therebetween. These were adhered and sealed to an ABS (acrylonitrile butadiene styrene) container lid 4b using an epoxy resin as a sealing agent. In order to impregnate the polarizable electrode 1 with the electrolytic solution, the whole was evacuated, and then the above-mentioned two polarizable electrodes 1 were inserted while injecting the electrolytic solution into the polypropylene container 4a. As the electrolytic solution, a 27 wt% potassium hydroxide (KOH) aqueous solution was used. ABS container 4
The corners are rounded to a radius of 4 mm on the outer circumference so that the four corners of the sealing cross section of a and the lid 4b can be easily sealed. The lid 4b and the container 4a were sealed with an ultrasonic fusion machine having an output of 1200 W and a frequency of 21 kHz. The conditions of ultrasonic fusion were as follows: pressure of 1.0 kg / cm 2 before and during fusion, oscillation after pressurization, and fusion time of 0.5 seconds. From the outside of the lid 4b of the sealed container 4a, a threaded stainless steel terminal 5 was connected. Thus, the electric double layer capacitor of the present invention was manufactured as a prototype.
【0008】比較例1 実施例1において活性炭/樹脂の混合比が70/30の
割合でニッケルを添加せずに作製した分極性電極1を用
いて実施例1と全く同様にして電気二重層コンデンサを
試作した。実施例1、比較例1で得られた電気二重層コ
ンデンサの静電容量と等価直列抵抗を測定した。電気二
重層コンデンサの両極の間に0.9Vを印加し、6時間
定電圧充電を行い、100mAで定電流放電させ、電圧
が0.54Vから0.45Vに降下するのに要した時間
から、電気二重層コンデンサの容量を求めた。また、交
流四端子法によりこれらの電気二重層コンデンサのイン
ピ―ダンスを測定した。入力信号電圧を10mVrmsと
し、1kHzの時のインピ―ダンスの実数部を等価直列
抵抗とした。これらの電気二重層コンデンサの静電容量
と等価直列抵抗の測定結果を次の表1にまとめる。Comparative Example 1 An electric double layer capacitor was manufactured in exactly the same manner as in Example 1 except that the polarizable electrode 1 prepared in Example 1 without adding nickel at a mixing ratio of activated carbon / resin of 70/30 was used. Was prototyped. The capacitance and equivalent series resistance of the electric double layer capacitors obtained in Example 1 and Comparative Example 1 were measured. 0.9 V is applied between both electrodes of the electric double layer capacitor, constant voltage charging is performed for 6 hours, constant current discharge is performed at 100 mA, and from the time required for the voltage to drop from 0.54 V to 0.45 V, The capacitance of the electric double layer capacitor was calculated. Moreover, the impedance of these electric double layer capacitors was measured by the AC four-terminal method. The input signal voltage was 10 mV rms, and the real part of the impedance at 1 kHz was the equivalent series resistance. The measurement results of the electrostatic capacitance and equivalent series resistance of these electric double layer capacitors are summarized in Table 1 below.
【0009】[0009]
【表1】 ─────────────────────────────────── ニッケル 換算重量(%) 静電容量 ESR 添加量 ──────────────── (1kHz) (g) ニッケル 活性炭 樹脂 (F) (mΩ) ─────────────────────────────────── 0 0 70 30 1015 150 0.1 0.1 69.9 30 1005 116 1 1 69.3 29.7 1003 110 5* 4.8 57.1 38.1 982 98 10 9.1 63.6 27.3 856 65 20* 16.7 50 33.3 723 37 25 20 56 24 736 31 ───────────────────────────────────* はニッケル添加前の活性炭/樹脂の混合比が60/40、他は70/30 実施例1と比較例1では、ニッケルの添加量が増すに従
い活性炭の含有量が減少するため静電容量は減少する
が、電気二重層コンデンサの等価直列抵抗は減少する。
これはカ―ボンの室温における抵抗率が約10-2Ω・c
mであるのに対し、ニッケルの室温における抵抗率は約
10-5Ω・cmであるためニッケルの添加により分極性
電極の抵抗が下ったためと考えられる。ニッケルが20
重量%を超えると容量が小さくなると共に、樹脂量が減
るため成型が困難になる。[Table 1] ─────────────────────────────────── Nickel equivalent weight (%) Capacitance ESR addition Quantity ──────────────── (1kHz) (g) Nickel activated carbon resin (F) (mΩ) ────────────────── ───────────────── 0 0 70 30 1015 150 0.1 0.1 69.9 30 1005 116 1 1 69.3 29.7 1003 110 5 * 4.8 57.1 38.1 982 98 10 9.1 63.6 27.3 856 65 20 * 16.7 50 33.3 723 37 25 20 56 24 736 31 ─────────────────────────────────── * is nickel addition The previous activated carbon / resin mixing ratio is 60/40, and the others are 70/30. In Example 1 and Comparative Example 1, the capacitance decreases because the content of activated carbon decreases as the added amount of nickel increases. Equivalent series resistance of electric double layer capacitor is reduced Less.
This has a carbon resistivity of about 10 -2 Ω · c at room temperature.
While the resistivity of nickel is about 10 −5 Ω · cm at room temperature, it is considered that the resistance of the polarizable electrode was lowered by the addition of nickel. 20 nickel
When the content is more than weight%, the capacity becomes small and the amount of resin decreases, so that molding becomes difficult.
【0010】実施例2 比較例1と同じ分極性電極1を用いて、実施例1と同じ
形状のニッケル製集電体2で電気二重層コンデンサを試
作した。実施例1と同じカ―ボン導電性接着剤を用いて
分極性電極1と集電体2を接続した。後の組立工程は実
施例1と全く同様にして電気二重層コンデンサを試作し
た。Example 2 Using the same polarizable electrode 1 as in Comparative Example 1, an electric double layer capacitor was prototyped with a nickel current collector 2 having the same shape as in Example 1. The polarizable electrode 1 and the current collector 2 were connected using the same carbon conductive adhesive as in Example 1. An electric double layer capacitor was manufactured as a prototype in the same manner as in Example 1 in the subsequent assembling steps.
【0011】実施例3 比較例1と同じ分極性電極1を作製した。中心粒径0.
6μmのニッケル微粉末とフェノ―ル樹脂粉末および溶
剤のメチルセルソルブから構成された導電性接着剤で一
体化した。ニッケル微粉末とフェノ―ル樹脂粉末とメチ
ルセルソルブは重量比で70/30/82であり、これ
らをホモジナイザ―で混合した。この導電性接着剤をカ
―ボン製集電体2に塗布し、分極性電極1と接着し、1
50℃で30分間熱硬化し、分極性電極1と集電体2を
一体化した。後の組立工程は実施例1と全く同様にして
電気二重層コンデンサを試作した。Example 3 The same polarizable electrode 1 as in Comparative Example 1 was prepared. Central particle size 0.
It was integrated with a conductive adhesive composed of 6 μm nickel fine powder, phenolic resin powder and methyl cellosolve as a solvent. The fine nickel powder, the phenol resin powder, and the methyl cellosolve had a weight ratio of 70/30/82, and these were mixed by a homogenizer. This conductive adhesive is applied to the carbon-made current collector 2 and adhered to the polarizable electrode 1,
The polarizable electrode 1 and the current collector 2 were integrated by thermosetting at 50 ° C. for 30 minutes. An electric double layer capacitor was manufactured as a prototype in the same manner as in Example 1 in the subsequent assembling steps.
【0012】実施例4 比較例1と全く同様にして分極性電極1を作製し、カ―
ボン製集電体2との接続も比較例1と同様に行った。こ
の分極性電極1とカ―ボン製集電体2が一体化されたも
のを一面だけがめっきされるように他の箇所はポリエス
テルテ―プでマスキングした。これをニッケルワット浴
(浴組成:NiSO4・7H2O,NiCl2・6H2O,
H3BO3、浴温度:50℃)中、見かけの電極面積(5
×3.5cm2)で規格化した電流密度が0.1A/c
m2となるようにして10分間定電流電解を行った。こ
の後、マスキングテ―プを除去した後、150℃で真空
乾燥を行った。断面を走査型電子顕微鏡(SEM)で観
察したところ、ニッケルめっき皮膜の厚みは10μmで
あった。めっきされていない面が内側になるようにして
分極性電極1を2つ向かい合わせて、実施例1と同様に
して電気二重層コンデンサを試作した。Example 4 A polarizable electrode 1 was prepared in exactly the same manner as in Comparative Example 1, and the
Connection with the Bon collector 2 was also performed in the same manner as in Comparative Example 1. The polarizable electrode 1 and the carbon-made current collector 2 were integrated, and the other portions were masked with polyester tape so that only one surface was plated. This is a nickel watt bath (bath composition: NiSO 4 7H 2 O, NiCl 2 6H 2 O,
H 3 BO 3 , bath temperature: 50 ° C.), apparent electrode area (5
× 3.5 cm 2 ) standardized current density is 0.1 A / c
Constant-current electrolysis was carried out for 10 minutes so as to obtain m 2 . Then, after removing the masking tape, vacuum drying was performed at 150 ° C. When the cross section was observed with a scanning electron microscope (SEM), the thickness of the nickel plating film was 10 μm. Two polarizable electrodes 1 were opposed to each other with the non-plated surface facing inward, and an electric double layer capacitor was manufactured in the same manner as in Example 1.
【0013】実施例5 比較例1と全く同様にして分極性電極1を作製し、カ―
ボン製集電体2との接続も比較例1と同様に行った。こ
の分極性電極1とカ―ボン製集電体2が一体化されたも
のを一面だけがめっきされるように他の箇所はポリエス
テルテ―プでマスキングした。これを酸性浴(浴組成:
NiSO4・6H2O,酢酸ナトリウム,次亜リン酸ナト
リウム、浴温度:60℃)中、10分間無電解めっきを
行った。皮膜組成はリンが含まれるNi−P合金となっ
ていた。この後、マスキングテ―プを除去した後、15
0℃で真空乾燥を行った。断面を走査型電子顕微鏡(S
EM)で観察したところ、ニッケルめっき皮膜の厚みは
10μmであった。めっきされていない面が内側になる
ようにして分極性電極1を2つ向かい合わせて、実施例
1と同様にして電気二重層コンデンサを試作した。Example 5 A polarizable electrode 1 was prepared in exactly the same manner as in Comparative Example 1, and the
Connection with the Bon collector 2 was also performed in the same manner as in Comparative Example 1. The polarizable electrode 1 and the carbon-made current collector 2 were integrated, and the other portions were masked with polyester tape so that only one surface was plated. This is an acidic bath (bath composition:
Electroless plating was performed in NiSO 4 .6H 2 O, sodium acetate, sodium hypophosphite, bath temperature: 60 ° C.) for 10 minutes. The coating composition was a Ni-P alloy containing phosphorus. After removing the masking tape, 15
Vacuum drying was performed at 0 ° C. Scanning electron microscope (S
When observed by EM), the thickness of the nickel plating film was 10 μm. Two polarizable electrodes 1 were opposed to each other with the non-plated surface facing inward, and an electric double layer capacitor was manufactured in the same manner as in Example 1.
【0014】実施例6 比較例1と全く同様にして分極性電極1を作製し、カ―
ボン製集電体2との接続も比較例1と同様に行った。こ
の分極性電極1とカ―ボン製集電体2が一体化されたも
のの一面だけにニッケル皮膜が形成されるような治具に
収納した。これにホロカソ―ド型電子ビ―ム蒸着方式の
イオンプレ―ティング装置によりNiを約10μm成膜
した。成膜条件は、アルゴンガス中、圧力1×10-3T
orr、蒸着源のNiの純度は99%以上である。成膜
速度は約1μm/分で、膜厚は別に作成した試料の断面
をSEMで観察することにより求めた。厚さ25μmの
ポリプロピレン製セパレ―タ4を挟んでニッケルが成膜
されていない側を内側になるように向かい合わせて、実
施例1と同様にして電気二重層コンデンサを試作した。Example 6 A polarizable electrode 1 was prepared in the same manner as in Comparative Example 1, and the
Connection with the Bon collector 2 was also performed in the same manner as in Comparative Example 1. The polarizable electrode 1 and the carbon-made current collector 2 were integrated into one and housed in a jig in which a nickel film was formed on only one surface. Ni was deposited to a thickness of about 10 μm on this using an ion plating apparatus of the Holocades type electron beam evaporation system. The film forming conditions are as follows: Argon gas, pressure 1 × 10 −3 T
The purity of Ni of the orr and the vapor deposition source is 99% or more. The film formation rate was about 1 μm / min, and the film thickness was determined by observing a cross section of a separately prepared sample with an SEM. An electric double layer capacitor was manufactured in the same manner as in Example 1, with the side on which the nickel film was not formed facing inside with a polypropylene separator 4 having a thickness of 25 μm sandwiched therebetween.
【0015】実施例7 実施例1で作製したのと同じ分極性電極2とカ―ボン製
集電極3が一体化したものに、平板マグネトロンスパッ
タ法によりNiを成膜した。タ―ゲットとして金属Ni
を使った。成膜条件として、圧力1×10-2Torr、
スパッタガスはアルゴンガスである。成膜速度は約0.
1μm/分であり、イオンプレ―ティングに比べてかな
り遅い。成膜時間を長くすることにより約5μmのNi
を形成した。この後、実施例1と全く同様にして電気二
重層コンデンサを作製した。実施例1と同じ方法で、実
施例2〜7で作製した電気二重層コンデンサの静電容量
と等価直列抵抗を測定した。これらの結果と比較例1の
結果をまとめて次の表2に示す。Example 7 Ni was formed into a film by a flat plate magnetron sputtering method on the same polarizable electrode 2 and carbon-made collecting electrode 3 as those produced in Example 1 which were integrated. Metal Ni as a target
I used. As film forming conditions, a pressure of 1 × 10 -2 Torr,
The sputtering gas is argon gas. The film formation rate is about 0.
1 μm / min, which is considerably slower than ion plating. Approximately 5 μm Ni by increasing the film formation time
Formed. After that, an electric double layer capacitor was produced in exactly the same manner as in Example 1. In the same manner as in Example 1, the capacitance and equivalent series resistance of the electric double layer capacitors manufactured in Examples 2 to 7 were measured. These results and the results of Comparative Example 1 are summarized in Table 2 below.
【0016】[0016]
【表2】 ────────────────────────────── 静電容量/F 等価直列抵抗/mΩ ────────────────────────────── 実施例2 1053 58 実施例3 1022 77 実施例4 1012 55 実施例5 956 75 実施例6 985 45 実施例7 973 85 比較例1 1015 121 ──────────────────────────────[Table 2] ────────────────────────────── Capacitance / F Equivalent series resistance / mΩ ────── Example 2 1053 58 Example 3 1022 77 Example 4 1012 55 Example 5 956 75 Example 6 985 45 Example 7 973 85 Comparative Example 1 1015 121 ───────────────────────────────
【0017】実施例2〜7と比較例1の結果から、ニッ
ケルを集電体に用いること、ニッケルを含有する導電性
接着剤で分極性電極と集電体を接続すること、ニッケル
皮膜を電解めっき、無電解めっき、イオンプレ―ティン
グまたはスパッタリングにより形成することにより、電
気二重層コンデンサの等価直列抵抗を低減することがで
きることがわかる。本実施例で用いた固体活性炭は活性
炭/ポリアセン系材料複合体であるが、従来の技術の項
で述べた他の固体活性炭でも本発明の効果があった。ま
た、ニッケルまたはニッケル系合金による被膜の形成
は、分極性電極および集電体のうちのいずれか一方でも
本発明の効果があった。From the results of Examples 2 to 7 and Comparative Example 1, nickel was used for the current collector, the polarizable electrode and the current collector were connected with a conductive adhesive containing nickel, and the nickel film was electrolyzed. It can be seen that the equivalent series resistance of the electric double layer capacitor can be reduced by forming it by plating, electroless plating, ion plating or sputtering. Although the solid activated carbon used in this example is an activated carbon / polyacene-based material composite, the effects of the present invention were also obtained with other solid activated carbons described in the section of the prior art. Further, the formation of the coating film made of nickel or a nickel-based alloy had the effect of the present invention on either the polarizable electrode or the current collector.
【0018】[0018]
【発明の効果】以上説明したように、本発明によれば、
等価直列抵抗を低減した電気二重層コンデンサを提供す
ることができる。As described above, according to the present invention,
An electric double layer capacitor with reduced equivalent series resistance can be provided.
【図1】本発明による電気二重層コンデンサの一例の断
面図である。FIG. 1 is a cross-sectional view of an example of an electric double layer capacitor according to the present invention.
1 固体活性炭分極性電極 2 集電体 3 セパレ―タ 4a 容器 4b 容器蓋 5 端子 1 Solid activated carbon polarizable electrode 2 Current collector 3 Separator 4a Container 4b Container lid 5 Terminal
Claims (4)
なる分極性電極であって、ニッケルが0.1〜20重量
%含有されてなることを特徴とする分極性電極。1. A polarizable electrode comprising an activated carbon / carbon / nickel composite, wherein the polarizable electrode contains nickel in an amount of 0.1 to 20% by weight.
層コンデンサにおいて、集電体にニッケルまたはニッケ
ル系合金を用いることを特徴とする電気二重層コンデン
サ。2. An electric double layer capacitor using solid activated carbon as a polarizable electrode, wherein nickel or a nickel-based alloy is used as a current collector.
層コンデンサにおいて、分極性電極、集電体のいずれか
一方または両方の所定の表面部分にニッケルまたはニッ
ケル系合金が被覆されていることを特徴とする電気二重
層コンデンサ。3. An electric double layer capacitor using solid activated carbon as a polarizable electrode, wherein a predetermined surface portion of one or both of the polarizable electrode and the current collector is coated with nickel or a nickel-based alloy. Characteristic electric double layer capacitor.
層コンデンサの製造方法において、集電体と分極性電極
をニッケル粉末を含有する導電性接着剤で接続すること
を特徴とする電気二重層コンデンサの製造方法。4. A method for producing an electric double layer capacitor using solid activated carbon as a polarizable electrode, wherein the current collector and the polarizable electrode are connected by a conductive adhesive containing nickel powder. Capacitor manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3261334A JPH0574659A (en) | 1991-09-13 | 1991-09-13 | Polarizable electrode, electric double layer capacitor and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3261334A JPH0574659A (en) | 1991-09-13 | 1991-09-13 | Polarizable electrode, electric double layer capacitor and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0574659A true JPH0574659A (en) | 1993-03-26 |
Family
ID=17360378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3261334A Pending JPH0574659A (en) | 1991-09-13 | 1991-09-13 | Polarizable electrode, electric double layer capacitor and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0574659A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103219165A (en) * | 2012-01-24 | 2013-07-24 | 绿点高新科技股份有限公司 | Super capacitor module and manufacture method thereof |
US20150092318A1 (en) * | 2013-09-27 | 2015-04-02 | CHEN Zhaohui | High voltage high power energy storage devices, systems, and associated methods |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4927861A (en) * | 1972-07-07 | 1974-03-12 | ||
JPS5592724A (en) * | 1978-12-29 | 1980-07-14 | Achilles Corp | Production of rigid polyurethane foam |
JPS60149116A (en) * | 1984-01-13 | 1985-08-06 | 松下電器産業株式会社 | Electric double layer capacitor |
JPS60167411A (en) * | 1984-02-10 | 1985-08-30 | 松下電器産業株式会社 | Method of producing electric double layer capacitor |
-
1991
- 1991-09-13 JP JP3261334A patent/JPH0574659A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4927861A (en) * | 1972-07-07 | 1974-03-12 | ||
JPS5592724A (en) * | 1978-12-29 | 1980-07-14 | Achilles Corp | Production of rigid polyurethane foam |
JPS60149116A (en) * | 1984-01-13 | 1985-08-06 | 松下電器産業株式会社 | Electric double layer capacitor |
JPS60167411A (en) * | 1984-02-10 | 1985-08-30 | 松下電器産業株式会社 | Method of producing electric double layer capacitor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103219165A (en) * | 2012-01-24 | 2013-07-24 | 绿点高新科技股份有限公司 | Super capacitor module and manufacture method thereof |
JP2013153166A (en) * | 2012-01-24 | 2013-08-08 | Taiwan Green Point Enterprises Co Ltd | Super-capacitor module and fabrication method thereof |
US20150092318A1 (en) * | 2013-09-27 | 2015-04-02 | CHEN Zhaohui | High voltage high power energy storage devices, systems, and associated methods |
US10319535B2 (en) * | 2013-09-27 | 2019-06-11 | Intel Corporation | High voltage high power energy storage devices, systems, and associated methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5172307A (en) | Activated carbon/polyacene composite and process for producing the same | |
JPH10275747A (en) | Electric double layer capacitor | |
JP2006140142A (en) | Conductive paste, its manufacturing method and usage | |
JP2001502117A (en) | Multi-electrode double-layer capacitor | |
KR20110132571A (en) | Conductive sheet and electrode | |
US6198621B1 (en) | Electric double layer capacitor using polarizable electrode of single particle layer | |
US7209341B2 (en) | Polarizing electrode, manufacturing method thereof, and electric double-layer capacitor | |
JP2009212131A (en) | Collector for hybrid capacitor and electrode sheet for hybrid capacitor using the same | |
KR100511363B1 (en) | Process for the preparation of carbon nanotube or carbon nanofiber electrodes by using metal particles as a binder and electrode prepared thereby | |
JPH0821525B2 (en) | Polarizable electrode and manufacturing method thereof | |
JPH0574659A (en) | Polarizable electrode, electric double layer capacitor and manufacture thereof | |
JPH09289142A (en) | Active carbon electrode, manufacture thereof and electric double layer capacitor | |
WO2023019850A1 (en) | Aluminum electrolytic capacitor and manufacturing method therefor | |
JPH0241885B2 (en) | ||
CN113611538A (en) | Powder cell solid polymer capacitor and manufacturing method thereof | |
JPH0770448B2 (en) | Method of manufacturing polarizable electrodes | |
JPS6355205B2 (en) | ||
JP2723578B2 (en) | Organic electrolyte battery | |
JP3114337B2 (en) | Electric double layer capacitor | |
CN215911317U (en) | Aluminum electrolytic capacitor | |
JPH05144672A (en) | Manufacture of electric double layer capacitor | |
JP4617525B2 (en) | ELECTRIC DOUBLE LAYER CAPACITOR, ELECTRODE AND ITS MANUFACTURING METHOD | |
JPH0645189A (en) | Manufacture of polarizable electrode | |
JPH0521274A (en) | Polarizing electrode and manufacturing method thereof | |
JP3152990B2 (en) | Manufacturing method of polarized electrode |