JPH0521274A - Polarizing electrode and manufacturing method thereof - Google Patents

Polarizing electrode and manufacturing method thereof

Info

Publication number
JPH0521274A
JPH0521274A JP3169861A JP16986191A JPH0521274A JP H0521274 A JPH0521274 A JP H0521274A JP 3169861 A JP3169861 A JP 3169861A JP 16986191 A JP16986191 A JP 16986191A JP H0521274 A JPH0521274 A JP H0521274A
Authority
JP
Japan
Prior art keywords
activated carbon
polarizable electrode
fine particle
dimensional structure
carbon precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3169861A
Other languages
Japanese (ja)
Inventor
Ichiro Tanahashi
一郎 棚橋
Tsuneo Mitsuyu
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3169861A priority Critical patent/JPH0521274A/en
Publication of JPH0521274A publication Critical patent/JPH0521274A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To obtain an electric double-layer capacitor with small internal resistance and high reliability especially by enhancing collecting efficiency in a polarizing electrode for use in the electric double-layer capacitor and an electrochromic display. CONSTITUTION:After a furfuryl alcohol resin is vacuum-impregnated into zeolite, it is heated at 700 deg.C in a nitrogen gas flow to make the furfuryl alcohol resin an active carbon precursor. Thereafter, the zeolite is dissolved with a hot sulfuric acid to obtain an active carbon precursor fine particle assembled body having three-dimensional structure which is connected each other. Further, the active carbon precursor fine particle is carbide-activated at a temperature 1000 deg.C in the nitrogen gas including steam to obtain a polarizing electrode comprising the active carbon fine particle assembled body having the three- dimensional structure which is connected each other. If this polarizing electrode is used for an electric double-layer capacitor, at capacitance of 0.20F, at impedance of 6OMEGA, and under an atmosphere of 70 deg.C, a capacitance reducing rate to a primary capacitance at 1000H later was 7%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気二重層キャパシタ
やエレクトロクロミックディスプレイ等の分野に用いら
れる分極性電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizable electrode used in the fields of electric double layer capacitors and electrochromic displays.

【0002】[0002]

【従来の技術】この分野の従来の分極性電極としては、
活性炭粉末を用いる場合と、活性炭繊維布を用いる場合
とがあり、電気二重層キャパシタを例にとり以下説明す
るが、他の分極性電極についても同様である。 (1)活性炭粉末を分極性電極に用いるものは、例えば
特開昭50−44462号公報に開示されているよう
に、活性炭粉末とバインダ−とを金属ネット集電体に圧
延して形成していた。 (2)活性炭繊維布を分極性電極に用いるものは、例え
ば特開昭59−48917号公報に開示されているもの
がある。この電気二重層キャパシタの構成は、活性炭素
繊維の分極性電極の片面にアルミニウム、ニッケル等の
導電層(集電体)を形成し、セパレ−タを介し相対向さ
せ、これらを電解液とともに金属ケ−スと封口板および
両者を絶縁するガスケットによって密封したものであ
る。この分極性電極の導電層(集電体)は溶射法を用い
て形成されている。
2. Description of the Related Art As a conventional polarizable electrode in this field,
There are cases where activated carbon powder is used and cases where activated carbon fiber cloth is used. An electric double layer capacitor will be described below as an example, but the same applies to other polarizable electrodes. (1) What uses activated carbon powder for a polarizable electrode is formed by rolling activated carbon powder and a binder into a metal net current collector, as disclosed in, for example, Japanese Patent Application Laid-Open No. 50-44462. It was (2) An example of using activated carbon fiber cloth for the polarizable electrode is disclosed in, for example, JP-A-59-48917. This electric double layer capacitor has a structure in which a conductive layer (current collector) of aluminum, nickel, or the like is formed on one surface of a polarizable electrode of activated carbon fiber, and they are made to face each other through a separator, and these are combined with an electrolytic solution to form a metal The case is sealed with a sealing plate and a gasket that insulates the case and the sealing plate. The conductive layer (current collector) of this polarizable electrode is formed by using a thermal spraying method.

【0003】[0003]

【発明が解決しようとする課題】上記のような構成の分
極性電極では、 (1)活性炭粉末を用いた場合、バインダ−を用いない
と強度の高い分極性電極が得られない。しかしながら、
バインダ−を用いると電気抵抗が大きくなり放電特性の
優れた分極性電極を得ることが困難である。 (2)活性炭繊維を分極性電極に用いた場合、活性炭繊
維布は繊維一本一本の接触が少なく、活性炭繊維布の表
面のみに集電体層が形成され、活性炭繊維間での集電は
十分ではなく、接触抵抗の大きな従って内部抵抗値の小
さな電気二重層キャパシタを得ることができない。
In the polarizable electrode having the above-described structure, (1) When activated carbon powder is used, a polarizable electrode having high strength cannot be obtained unless a binder is used. However,
When a binder is used, the electric resistance increases and it is difficult to obtain a polarizable electrode having excellent discharge characteristics. (2) When activated carbon fibers are used for the polarizable electrode, the activated carbon fiber cloth does not come into contact with each other one by one, and a current collector layer is formed only on the surface of the activated carbon fiber cloth. Is not sufficient, and an electric double layer capacitor having a large contact resistance and thus a small internal resistance cannot be obtained.

【0004】本発明は、内部抵抗値が小さい分極性電極
を提供することを目的とする。
An object of the present invention is to provide a polarizable electrode having a small internal resistance value.

【0005】[0005]

【課題を解決するための手段】本発明は、上記従来技術
の課題を解決するため、多孔質媒体の細孔内に樹脂を挿
入し、不活性ガス雰囲気中加熱後多孔質媒体を除去する
ことにより活性炭前駆体とし、この前駆体を賦活するこ
とにより、活性炭微粒子を互いに接続し3次元状の構造
とした活性炭微粒子集合体とした分極性電極を作製す
る。
In order to solve the above-mentioned problems of the prior art, the present invention is to insert a resin into the pores of a porous medium and remove the porous medium after heating in an inert gas atmosphere. As a result, an activated carbon precursor is obtained, and by activating the precursor, activated carbon fine particles are connected to each other to prepare a polarizable electrode as an activated carbon fine particle aggregate having a three-dimensional structure.

【0006】[0006]

【作用】上記の構成により、本発明の分極性電極は、バ
インダ−を用いないため分極性電極内の抵抗値を低くす
ることができる。また、本発明の分極性電極は、活性炭
微粒子が互いに接続した3次元状の構造を有するため、
分極性電極の集電効率を高めることができる。
With the above construction, since the polarizable electrode of the present invention does not use a binder, the resistance value in the polarizable electrode can be lowered. Further, since the polarizable electrode of the present invention has a three-dimensional structure in which activated carbon fine particles are connected to each other,
The collecting efficiency of the polarizable electrode can be improved.

【0007】[0007]

【実施例】本発明の分極性電極は、活性炭微粒子が互い
に接続した3次元状構造を有し、その製法としては、多
孔質媒体中に活性炭の原料となる樹脂を注入し、不活性
ガス中で加熱して樹脂成分を炭化し、その後多孔質媒体
だけを除去し活性炭前駆体を得、この活性炭前駆体を賦
活することにより3次元状構造を有した活性炭集合体を
得る。
EXAMPLE The polarizable electrode of the present invention has a three-dimensional structure in which activated carbon fine particles are connected to each other. The production method is as follows. Is heated to carbonize the resin component, then only the porous medium is removed to obtain an activated carbon precursor, and the activated carbon precursor is activated to obtain an activated carbon aggregate having a three-dimensional structure.

【0008】本発明に供される多孔質媒体としては、不
活性ガス中での加熱に耐える耐熱性と、炭化した後多孔
質媒体だけを除去できることが要請され、例えば滑石等
が挙げられる。滑石の中でも人工のゼオライトが、孔が
均一なため好ましい。
The porous medium used in the present invention is required to have heat resistance to withstand heating in an inert gas and to be able to remove only the porous medium after carbonization, and examples thereof include talc. Among talc, artificial zeolite is preferable because it has uniform pores.

【0009】本発明に供される樹脂としては、多孔質媒
体中に容易に注入される樹脂であれば何れでも良いが、
フルフリルアルコール樹脂又はフェノール樹脂が炭化収
率が高く多孔質媒体中に含浸し易いため好ましい。
The resin used in the present invention may be any resin as long as it can be easily injected into the porous medium.
Furfuryl alcohol resin or phenol resin is preferable because it has a high carbonization yield and is easily impregnated into the porous medium.

【0010】樹脂を多孔質媒体中に注入する方法として
は、真空注入等通常の手法でよく、特別な手法を用いる
必要はない。
As a method for injecting the resin into the porous medium, an ordinary method such as vacuum injection may be used, and it is not necessary to use a special method.

【0011】このようにして樹脂を注入した多孔質媒体
を、不活性ガス雰囲気中で加熱により樹脂を炭化して、
活性炭前駆体を多孔質媒体中で形成させる。本発明の不
活性ガスとは例えば窒素ガスもしくはアルゴンガス等酸
化還元性の無いガスであれば何れでも良いが、窒素ガス
が安価で安全で入手し易く、工業上好ましい。
The porous medium thus injected with the resin is heated in an inert gas atmosphere to carbonize the resin,
An activated carbon precursor is formed in the porous medium. The inert gas of the present invention may be any gas having no redox property such as nitrogen gas or argon gas, but nitrogen gas is industrially preferable because it is inexpensive, safe and easily available.

【0012】加熱条件は、多孔質媒体が分解せず多孔質
媒体中に注入した樹脂が炭化する温度・時間であれば良
い。具体的には加熱温度は500〜900℃程度が挙げ
られ、700℃程度が好ましい。また、加熱時間は大き
さで変わるため一概にはいえないが、1〜10時間程度
であり、5時間程度が好ましい。
The heating conditions may be any temperature and time such that the resin injected into the porous medium is carbonized without decomposing the porous medium. Specifically, the heating temperature is about 500 to 900 ° C, preferably about 700 ° C. Further, the heating time varies depending on the size and cannot be generally stated, but it is about 1 to 10 hours, preferably about 5 hours.

【0013】次に多孔質媒体だけを取り除き、多孔質媒
体中で樹脂が炭化することによって3次元状構造を有す
る活性炭前駆体を取り出す。この工程では多孔質媒体の
材質によって異なるが、一般には熱濃硫酸が供される。
Then, only the porous medium is removed, and the activated carbon precursor having a three-dimensional structure is taken out by carbonizing the resin in the porous medium. In this step, hot concentrated sulfuric acid is generally provided, though it depends on the material of the porous medium.

【0014】活性炭前駆体は賦活処理を施し、活性炭微
粒子集合体とする。賦活処理は、水蒸気、酸素もしくは
炭化水素等の雰囲気中で、800〜1300℃の温度
(好ましくは1000℃)程度で処理を行う所謂通常の
手法でよい。
The activated carbon precursor is subjected to activation treatment to obtain an activated carbon fine particle aggregate. The activation treatment may be a so-called ordinary method in which the treatment is performed at a temperature of about 800 to 1300 ° C. (preferably 1000 ° C.) in an atmosphere of steam, oxygen, hydrocarbon or the like.

【0015】このようにして得られた3次元状構造を有
する活性炭微粒子集合体を、使用目的に応じて加工して
分極性電極に供される。
The activated carbon fine particle aggregate having a three-dimensional structure thus obtained is processed according to the purpose of use and provided to a polarizable electrode.

【0016】以下に、本発明の実施例を説明する。 実施例1 Xタイプゼオライト(細孔径74nm)にフルフリルア
ルコ−ル樹脂を真空含浸した後、窒素ガスフロ−中70
0℃で加熱することにより、フルフリルアルコ−ルを活
性炭前駆体とした。その後ゼオライトを熱濃硫酸で溶解
し、互いに接続された3次元状の構造を有する活性炭前
駆体微粒子集合体を得た。さらにこの活性炭前駆体微粒
子を水蒸気を含んだ窒素ガス中1000℃の温度で炭化
賦活することにより、互いに接続された3次元状の構造
を有する活性炭微粒子集合体から成る分極性電極を作製
した。この3次元状の構造を有する活性炭微粒子集合体
を直径6mm、厚さ0.5mmのタブレット状に加工し
た後、プラズマ溶射法によりタブレットの片面に100
μmのアルミニウム層からなる集電体を形成した。この
ようにして作成した分極性電極を用いて、コイン型電気
二重層キャパシタを構成した。セパレ−タには、直径1
0mmのポリプロピレン製多孔膜を用いた。このセパレ
ータを介し上記分極性電極を相対向させた後、テトラエ
チルアンモニウムのホウフッ化塩(Et4NBF4)を電
解質とした1モル/lのプロピレンカ−ボネ−ト有機電
解液として注入後封口ケ−シングし、コイン型キャパシ
タを作製した。このキャパシタを2.4Vで充電後、1
mAで定電流放電し容量0.20F、インピ−ダンス6
オ−ムを得た。また70℃の雰囲気下で常時2.4Vを
印加したところ初期容量に対する1000時間後の容量
減少率は7%であった。
The embodiments of the present invention will be described below. Example 1 X-type zeolite (pore size 74 nm) was vacuum impregnated with a furfuryl alcohol resin, and then 70% in a nitrogen gas flow.
Furfuryl alcohol was used as an activated carbon precursor by heating at 0 ° C. Then, the zeolite was dissolved in hot concentrated sulfuric acid to obtain an activated carbon precursor fine particle aggregate having a three-dimensional structure connected to each other. Further, the activated carbon precursor fine particles were activated by carbonization in a nitrogen gas containing water vapor at a temperature of 1000 ° C. to prepare a polarizable electrode composed of activated carbon fine particle aggregates having a three-dimensional structure connected to each other. This activated carbon fine particle aggregate having a three-dimensional structure was processed into a tablet shape having a diameter of 6 mm and a thickness of 0.5 mm, and 100 tablets were formed on one side of the tablet by plasma spraying.
A current collector made of an aluminum layer of μm was formed. A coin-type electric double layer capacitor was constructed using the polarizable electrode thus prepared. The separator has a diameter of 1
A 0 mm polypropylene porous membrane was used. After the polarizable electrodes were opposed to each other via this separator, a 1 mol / l propylene carbonate organic electrolytic solution containing tetraethylammonium borofluoride (Et 4 NBF 4 ) as an electrolyte was injected and the sealing case was sealed. -Thing was performed to produce a coin-type capacitor. 1 after charging this capacitor at 2.4V
Constant current discharge at mA, capacity 0.20F, impedance 6
I got an homme. When 2.4 V was constantly applied in an atmosphere of 70 ° C., the capacity reduction rate after 1000 hours was 7% with respect to the initial capacity.

【0017】一方、従来の活性炭繊維布にプラズマ溶射
法を用いて集電体を形成した分極性電極を用いたキャパ
シタの特性は、容量が0.16F,インピ−ダンス(1
KHz)が21オ−ムであった。
On the other hand, the characteristics of a capacitor using a polarizable electrode in which a current collector is formed on a conventional activated carbon fiber cloth by a plasma spraying method are as follows: capacitance is 0.16F, impedance (1
KHz) was 21 ohms.

【0018】実施例2 実施例1と同様な方法を用いてXタイプゼオライト(細
孔径74nm)に、フェノ−ル樹脂を真空含浸した後、
窒素ガスフロ−中700℃で加熱することにより、フェ
ノ−ル樹脂を活性炭前駆体とした。その後ゼオライトを
熱濃硫酸で溶解し、互いに接続された3次元構造を有す
る活性炭前駆体微粒子集合体を得た。さらにこの活性炭
前駆体微粒子を水蒸気を含んだ窒素ガス中1000℃の
温度で炭化賦活することにより、互いに接続された3次
元状の構造を有する活性炭微粒子集合体から成る分極性
電極を作製した。この3次元状の構造を有する活性炭微
粒子集合体を直径6mm、厚さ0.5mmのタブレット
状に加工した後、プラズマ溶射法によりタブレットの片
面に100μmのアルミニウム層からなる集電体を形成
した。このようにして作成した分極性電極を用いて、コ
イン型電気二重層キャパシタを構成した。セパレ−タに
は、直径10mmのポリプロピレン製多孔膜を用いた。
このセパレータを介し上記分極性電極を相対向させた
後、テトラエチルアンモニウムのホウフッ化塩(Et4
NBF4)を電解質とした1モル/lのプロピレンカ−
ボネ−ト有機電解液として注入後封口ケ−シングし、コ
イン型キャパシタを作製した。このキャパシタを2.4
Vで充電後、1mAで定電流放電し容量0.19F、イ
ンピ−ダンス5オ−ムを得た。また70℃の雰囲気下で
常時2.4Vを印加したところ初期容量に対する100
0時間後の容量減少率は7%であった。
Example 2 An X type zeolite (pore size: 74 nm) was vacuum impregnated with a phenol resin in the same manner as in Example 1, and then,
The phenol resin was used as an activated carbon precursor by heating at 700 ° C. in a nitrogen gas flow. Then, the zeolite was dissolved in hot concentrated sulfuric acid to obtain an activated carbon precursor fine particle aggregate having a three-dimensional structure connected to each other. Further, the activated carbon precursor fine particles were activated by carbonization in a nitrogen gas containing water vapor at a temperature of 1000 ° C. to prepare a polarizable electrode composed of activated carbon fine particle aggregates having a three-dimensional structure connected to each other. This activated carbon fine particle aggregate having a three-dimensional structure was processed into a tablet having a diameter of 6 mm and a thickness of 0.5 mm, and then a current collector composed of an aluminum layer of 100 μm was formed on one surface of the tablet by a plasma spraying method. A coin-type electric double layer capacitor was constructed using the polarizable electrode thus prepared. A polypropylene porous membrane having a diameter of 10 mm was used as the separator.
After allowing the polarizable electrodes to face each other through this separator, tetraethylammonium borofluoride (Et 4
NBF 4 ) as electrolyte and 1 mol / l propylene car
A coin type capacitor was manufactured by injecting as a Bonnet organic electrolyte and then sealing the case. This capacitor is 2.4
After charging with V, constant current discharge was performed at 1 mA to obtain a capacity of 0.19 F and an impedance of 5 ohm. Moreover, when 2.4 V was constantly applied in an atmosphere of 70 ° C.
The capacity reduction rate after 0 hour was 7%.

【0019】一方、従来の活性炭繊維布にプラズマ溶射
法を用いて集電体を形成した分極性電極を用いたキャパ
シタの特性は容量が0.16F,インピ−ダンス(1K
Hz)が21オ−ムであった。
On the other hand, the characteristics of a capacitor using a polarizable electrode in which a current collector is formed on a conventional activated carbon fiber cloth by a plasma spraying method have a capacitance of 0.16F and an impedance (1K).
Hz) was 21 ohms.

【0020】実施例3 実施例1と同様な方法を用いてAタイプゼオライト(細
孔径42nm)に、フルフリルアルコ−ルとフェノ−ル
樹脂とを50対50の重量比で混合した樹脂を真空含浸
した後、窒素ガスフロ−中700℃で加熱することによ
り、樹脂を活性炭前駆体とした。その後ゼオライトを熱
濃硫酸で溶解し、互いに接続された3次元構造を有する
活性炭前駆体微粒子集合体を得た。さらにこの活性炭前
駆体微粒子を水蒸気を含んだ窒素ガス中1000℃の温
度で炭化賦活することにより、互いに接続された3次元
状の構造を有する活性炭微粒子集合体から成る分極性電
極を作製した。この3次元状の構造を有する活性炭微粒
子集合体を直径6mm、厚さ0.5mmのタブレット状
に加工した後、プラズマ溶射法によりタブレットの片面
に100μmのアルミニウム層からなる集電体を形成し
た。このようにして作成した分極性電極を用いて、コイ
ン型電気二重層キャパシタを構成した。セパレ−タに
は、直径10mmのポリプロピレン製多孔膜を用いた。
このセパレータを介し上記分極性電極を相対向させた
後、テトラエチルアンモニウムのホウフッ化塩(Et4
NBF4)を電解質とした1モル/lのプロピレンカ−
ボネ−ト有機電解液として注入後封口ケ−シングし、コ
イン型キャパシタを作製した。このキャパシタを2.4
Vで充電後、1mAで定電流放電し容量0.21F、イ
ンピ−ダンス5オ−ムを得た。また70℃の雰囲気下で
常時2.4Vを印加したところ初期容量に対する100
0時間後の容量減少率は7%であった。
Example 3 Using the same method as in Example 1, the A type zeolite (pore size 42 nm) was mixed with furfuryl alcohol and phenol resin in a weight ratio of 50:50 to obtain a vacuum resin. After impregnation, the resin was made into an activated carbon precursor by heating at 700 ° C. in a nitrogen gas flow. Then, the zeolite was dissolved in hot concentrated sulfuric acid to obtain an activated carbon precursor fine particle aggregate having a three-dimensional structure connected to each other. Further, the activated carbon precursor fine particles were activated by carbonization in a nitrogen gas containing water vapor at a temperature of 1000 ° C. to prepare a polarizable electrode composed of activated carbon fine particle aggregates having a three-dimensional structure connected to each other. This activated carbon fine particle aggregate having a three-dimensional structure was processed into a tablet having a diameter of 6 mm and a thickness of 0.5 mm, and then a current collector composed of an aluminum layer of 100 μm was formed on one surface of the tablet by a plasma spraying method. A coin-type electric double layer capacitor was constructed using the polarizable electrode thus prepared. A polypropylene porous membrane having a diameter of 10 mm was used as the separator.
After allowing the polarizable electrodes to face each other through this separator, tetraethylammonium borofluoride (Et 4
NBF 4 ) as electrolyte and 1 mol / l propylene car
A coin type capacitor was manufactured by injecting as a Bonnet organic electrolyte and then sealing the case. This capacitor is 2.4
After charging with V, constant current discharge was carried out at 1 mA to obtain a capacity of 0.21 F and an impedance of 5 ohms. Moreover, when 2.4 V was constantly applied in an atmosphere of 70 ° C.
The capacity reduction rate after 0 hour was 7%.

【0021】一方、従来の活性炭繊維布にプラズマ溶射
法を用いて集電体を形成した分極性電極を用いたキャパ
シタの特性は容量が0.16F,インピ−ダンス(1K
Hz)が21オ−ムであった。
On the other hand, the characteristics of a capacitor using a polarizable electrode in which a current collector is formed on a conventional activated carbon fiber cloth by a plasma spraying method have characteristics of a capacitance of 0.16F and an impedance (1K).
Hz) was 21 ohms.

【0022】実施例4 正極側分極性電極として実施例1と同様な分極性電極を
用い、負極としてSnとCdの比が85:15の合金
(ウッド合金)にリチウムを吸蔵させた非分極性電極を
用いて、電気二重層キャパシタを作成した。本実施例に
おいても他の構成材料は実施例1と同様である。このキ
ャパシタは3Vの電圧、0.47Fの容量を示した。
Example 4 The same polarizable electrode as in Example 1 was used as the positive electrode side polarizable electrode, and lithium was occluded in an alloy (Wood alloy) having a Sn: Cd ratio of 85:15 as the negative electrode. An electric double layer capacitor was prepared using the electrodes. Also in this embodiment, the other constituent materials are the same as in the first embodiment. This capacitor showed a voltage of 3V and a capacitance of 0.47F.

【0023】本発明の分極性電極は、上記のような電気
二重層キャパシタのみならず電池やエレクトロクロミッ
クディスプレイ等に広く使用できる。
The polarizable electrode of the present invention can be widely used not only in the electric double layer capacitor as described above but also in batteries, electrochromic displays and the like.

【0024】[0024]

【発明の効果】本発明の、活性炭微粒子を互いに接続し
た3次元状の構造を有する活性炭微粒子集合体により、
従来より内部抵抗の小さい、しかも信頼性の高い分極性
電極が得る効果がある。
According to the present invention, the activated carbon fine particle aggregate having a three-dimensional structure in which the activated carbon fine particles are connected to each other,
The polarizable electrode having smaller internal resistance and higher reliability than the conventional one is effective.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 活性炭微粒子を互いに接続し、3次元状
の構造を有する活性炭微粒子集合体から成る分極性電
極。
1. A polarizable electrode composed of an activated carbon fine particle aggregate having a three-dimensional structure in which activated carbon fine particles are connected to each other.
【請求項2】 多孔質媒体の細孔内に樹脂を挿入し、不
活性ガス雰囲気中で加熱後、前記多孔質媒体を除去して
活性炭前駆体を得、前記活性炭前駆体を賦活し3次元状
の構造を有する活性炭微粒子集合体とすることを特徴と
する分極性電極の製造方法。
2. A resin is inserted into the pores of a porous medium, heated in an inert gas atmosphere, and then the porous medium is removed to obtain an activated carbon precursor. The activated carbon precursor is activated and three-dimensionally activated. A method for producing a polarizable electrode, characterized in that it is an aggregate of activated carbon fine particles having a zigzag structure.
【請求項3】 樹脂が、フルフリルアルコ−ル樹脂また
はフェノ−ル樹脂の何れかであることを特徴とする、請
求項2記載の分極性電極の製造方法。
3. The method for producing a polarizable electrode according to claim 2, wherein the resin is either a furfuryl alcohol resin or a phenol resin.
JP3169861A 1991-07-10 1991-07-10 Polarizing electrode and manufacturing method thereof Pending JPH0521274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3169861A JPH0521274A (en) 1991-07-10 1991-07-10 Polarizing electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3169861A JPH0521274A (en) 1991-07-10 1991-07-10 Polarizing electrode and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH0521274A true JPH0521274A (en) 1993-01-29

Family

ID=15894306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3169861A Pending JPH0521274A (en) 1991-07-10 1991-07-10 Polarizing electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0521274A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0680061A1 (en) * 1994-03-09 1995-11-02 TDK Corporation Electric double-layer capacitor
US5945234A (en) * 1995-05-05 1999-08-31 Rayovac Corporation Metal-air cathode can having reduced corner radius and electrochemical cells made therewith
JP2006310514A (en) * 2005-04-28 2006-11-09 Tohoku Univ Electrode material for electric double layer capacitor
WO2009058226A3 (en) * 2007-10-31 2009-12-17 Corning Incorporated High energy density ultracapacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0680061A1 (en) * 1994-03-09 1995-11-02 TDK Corporation Electric double-layer capacitor
US5945234A (en) * 1995-05-05 1999-08-31 Rayovac Corporation Metal-air cathode can having reduced corner radius and electrochemical cells made therewith
JP2006310514A (en) * 2005-04-28 2006-11-09 Tohoku Univ Electrode material for electric double layer capacitor
WO2009058226A3 (en) * 2007-10-31 2009-12-17 Corning Incorporated High energy density ultracapacitor
US7976587B2 (en) 2007-10-31 2011-07-12 Corning Incorporated High energy density ultracapacitor

Similar Documents

Publication Publication Date Title
EP1870912B1 (en) Electrode material for electric double layer capacitor and process for producing the same, electrode for electric double layer capacitor, and electric double layer capacitor
US7199997B1 (en) Asymmetric electrochemical supercapacitor and method of manufacture thereof
US20030179537A1 (en) Activated carbon, method for production thereof and use thereof
JPH11297578A (en) Electric double-layer capacitor
KR20110063472A (en) Carbon material for electric double layer capacitor and process for producing the carbon material
TW201034942A (en) Activated carbon materials for high energy density ultracapacitors
JPH0963905A (en) Electric double-layer capacitor and manufacture thereof
WO2009005170A1 (en) Process for producing activated carbon for electric double layer capacitor electrode
US20170301484A1 (en) High Surface Area Carbon Materials and Methods for Making Same
KR101051947B1 (en) A method of manufacturing a LTO / AC composite material in which LTO is formed on an AC surface, and a method of manufacturing an electrochemical capacitor using the LTO / AC composite material produced thereby
JPS60263420A (en) Energy storing device
JPH0770448B2 (en) Method of manufacturing polarizable electrodes
JPH0521274A (en) Polarizing electrode and manufacturing method thereof
JPH09232190A (en) Electric double layer capacitor
JPH11135380A (en) Activated carbon for electric double layer capacitor and its manufacture
JPH01204409A (en) Electric double-layer capacitor
JPH011219A (en) Manufacturing method of polarizable electrodes
JPS63110622A (en) Polarizing electrode
JP3807854B2 (en) Electric double layer capacitor
JPH0770449B2 (en) Method of manufacturing polarizable electrodes
JP2005347517A (en) Method of manufacturing activated charcoal for electric double layer capacitor electrode
JPH02185008A (en) Electric double layer capacitor
JPH11121285A (en) Electric double-layer capacitor
KR100715872B1 (en) Preparation method of meso porous activated carbon by KOH for supercapacitor electrode
KR100715873B1 (en) Increasing method of meso porous amount activated carbon for supercapacitor electrode