JPH011219A - Manufacturing method of polarizable electrodes - Google Patents
Manufacturing method of polarizable electrodesInfo
- Publication number
- JPH011219A JPH011219A JP62-156824A JP15682487A JPH011219A JP H011219 A JPH011219 A JP H011219A JP 15682487 A JP15682487 A JP 15682487A JP H011219 A JPH011219 A JP H011219A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- molded body
- polarizable
- polarizable electrode
- polarizable electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 25
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 10
- 239000005011 phenolic resin Substances 0.000 claims description 7
- 238000001125 extrusion Methods 0.000 claims description 6
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 238000004898 kneading Methods 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 claims 1
- 238000010000 carbonizing Methods 0.000 claims 1
- 239000003990 capacitor Substances 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000003763 carbonization Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920001568 phenolic resin Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000001994 activation Methods 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000005486 organic electrolyte Substances 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910019785 NBF4 Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000011134 resol-type phenolic resin Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、電気二重層キャパシタや電池あるいはエレク
トロクロミックデイスプレィに用いる分極性電極の製造
法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing polarizable electrodes for use in electric double layer capacitors, batteries, or electrochromic displays.
従来の技術
従来の技術を電気二重層キャパシタを例にとり説明する
。ペーパ状の分極性電極としては特開昭159−932
16号公報に示されているものかある。このものは活性
炭繊維とバインダーとから構成されたペーパ状の分極性
電極1の片面にアルミニウム、ニッケル等の導電層2を
形成し、セパレータ3を介し相対向させ、これらを電解
液とともに金属ケース6と封口板6および両者を絶縁す
るガスケット4によって密封したものである。BACKGROUND ART A conventional technique will be explained using an electric double layer capacitor as an example. As a paper-like polarizable electrode, Japanese Patent Application Laid-Open No. 159-932
There is one shown in Publication No. 16. In this device, a conductive layer 2 made of aluminum, nickel, etc. is formed on one side of a paper-like polarizable electrode 1 made of activated carbon fibers and a binder, and these are placed facing each other with a separator 3 in between, and are placed in a metal case 6 along with an electrolyte. and a sealing plate 6 and a gasket 4 that insulates both.
また活性炭繊維布を分極性電極に用いるものは比表面積
が2500rd/gと大きくでき、また不純物も少なく
電気二重層キャパシタに適しているが活性炭粉末と比較
すると大変高価であり、加圧しないと空隙率が90%以
上占めており(加圧しても60%以上占める)空間部分
のロスが大きい。Furthermore, those using activated carbon fiber cloth for polarizable electrodes have a large specific surface area of 2,500rd/g, and have few impurities, making them suitable for electric double layer capacitors, but they are very expensive compared to activated carbon powder, and voids can occur unless pressure is applied. The loss of space is large, as the ratio occupies more than 90% (occupies more than 60% even when pressurized).
以上のように空間部分が多いため、繊維−本どうしの接
触が少なく、接触抵抗が大きくなる。As described above, since there are many spaces, there is little contact between the fibers and the book, and the contact resistance increases.
さらに活性炭粉末をフッ素樹脂で結合させ集電体に保持
させ分極性電極としたものがある。Furthermore, there is a polarizable electrode in which activated carbon powder is bonded with a fluororesin and held on a current collector.
発明が解決しようとする問題点
上記のような構成の分極性電極はペーパ状の場合強度を
高めるためにバインダーの含有量を多くなり従って、抵
抗値が大きくなり、インピーダンスも高くなる。また純
度が低く使用電圧を高くできない。さらに、活性炭繊維
布の場合空間効率が低く高価である。活性炭粉末を用い
た場合でもバインダーの含有量が多くなり抵抗値が大き
くなる。Problems to be Solved by the Invention When a polarizable electrode having the above structure is in paper form, the content of binder is increased in order to increase the strength, and therefore the resistance value becomes large and the impedance also becomes high. In addition, the purity is low and the operating voltage cannot be increased. Furthermore, activated carbon fiber cloth has low space efficiency and is expensive. Even when activated carbon powder is used, the binder content increases and the resistance value increases.
本発明は上記問題点を解決し、低抵抗で均一な分極性電
極を提供することを目的とする。The present invention aims to solve the above problems and provide a low resistance and uniformly polarizable electrode.
問題点を解決するための手段
本発明は、上記問題点を解決するため、活性炭粉末ある
いは活性炭繊維とフェノール樹脂とを混練し、押し出し
成型法により円柱状成型体とした後、フェノール樹脂を
硬化し、さらに炭化あるいは賦活工程を経て活性炭粉末
あるいは活性炭繊維と、炭素とから成る成型体を円盤状
に切断して構成される分極性電極の製造法である。Means for Solving the Problems In order to solve the above problems, the present invention involves kneading activated carbon powder or activated carbon fibers with phenolic resin, forming a cylindrical molded body by extrusion molding, and then curing the phenolic resin. This is a method for producing a polarizable electrode, which is formed by cutting a molded body made of activated carbon powder or activated carbon fiber and carbon into disk shapes through a carbonization or activation process.
作 用
上記の構成により、分極性電極の製造工程が簡素化され
るとともに活性炭密度を高め抵抗を低減し容量密度を高
くするとともに、信頼性の高い分極性電極を実現するこ
とができる。Function The above configuration simplifies the manufacturing process of the polarizable electrode, increases activated carbon density, reduces resistance, and increases capacitance density, and makes it possible to realize a highly reliable polarizable electrode.
実施例 以下本発明の詳細な説明する。Example The present invention will be explained in detail below.
(実施例1)
比表面積200077//gの粉砕した活性炭繊維(フ
ェノール系)トレゾール型フェノール樹脂トを重量比で
80対20の比率で混合し若干の水を加え押し出し成型
機を用いて直径6,2−の円柱状に連続して押し出した
。このものを100℃で1時間硬化後窒素ガス雰囲気下
昇温速度40℃/hrで9oo℃まで加熱し結合剤であ
るフェノール樹脂を炭化した。尚、900℃では6時間
保持した。(Example 1) Pulverized activated carbon fiber (phenolic) Tresol type phenolic resin with a specific surface area of 200,077 g was mixed at a weight ratio of 80:20, added with some water, and molded using an extrusion molding machine to a diameter of 6 mm. , 2- were continuously extruded into a cylindrical shape. This material was cured at 100° C. for 1 hour and then heated to 90° C. at a temperature increase rate of 40° C./hr in a nitrogen gas atmosphere to carbonize the phenol resin as a binder. Note that the temperature was maintained at 900°C for 6 hours.
上記成型体は長さが500 ff1ffl +直径6M
である。The above molded body has a length of 500 ff1ffl + a diameter of 6M.
It is.
炭化収率は92%であった。このようにして得られた活
性炭繊維と炭素との成型体を0.7.の厚みに切断し、
さらに切断した物の片面にアルミニウム層をプラズマ溶
射法を用い200μm形成した。The carbonization yield was 92%. The molded body of activated carbon fiber and carbon thus obtained was 0.7. Cut to a thickness of
Furthermore, an aluminum layer of 200 μm in thickness was formed on one side of the cut product using a plasma spraying method.
このようにして作成した分極性電極を用いて図に示した
コイン型キャパシタを構成した。セパレータには、直径
10閣のポリプロピレン製多孔膜を用いた。このセパレ
ータを介し上記分極性電極を相対向させた後、テトラエ
チルアンモニウムのホウフッ化塩(Et4NBF4)を
電解質とした1モル/lのプロピレンカーボネート有機
電解液として注入後封口ケーシングし、コイン型キャパ
シタを作成した。このキャパシタを2.4Vで充電後1
mAで定電流放電し容量0.26 F、インピーダンス
16Ωを得た。また70℃の雰囲気下で常時2.4■を
印加したところ初期容量に対する1000時間後の容量
減少率は9%であった。従来の活性炭繊維布およびベー
パ状活性炭繊維を分極性電極に用いたキャパシタの特性
は容量がそれぞれ0.2F 、 0.21 Fであり、
インピーダンス(IKHz)はそれぞれ21Ω、23Ω
であった。The coin-shaped capacitor shown in the figure was constructed using the polarizable electrodes thus created. A polypropylene porous membrane with a diameter of 10 mm was used as the separator. After the polarizable electrodes were faced to each other through this separator, a 1 mol/l propylene carbonate organic electrolyte with tetraethylammonium borofluoride salt (Et4NBF4) as an electrolyte was injected into a sealed casing to create a coin-shaped capacitor. did. After charging this capacitor with 2.4V, 1
A constant current discharge was performed at mA to obtain a capacity of 0.26 F and an impedance of 16 Ω. When 2.4 μm was constantly applied in an atmosphere of 70° C., the capacity reduction rate after 1000 hours was 9% with respect to the initial capacity. The characteristics of conventional capacitors using activated carbon fiber cloth and vaporized activated carbon fiber as polarizable electrodes are that the capacitance is 0.2 F and 0.21 F, respectively.
Impedance (IKHz) is 21Ω and 23Ω respectively
Met.
(実施例2)
比表面積g5oyyf/17の活性炭粉末とフェノール
樹脂とを実施例1と同様な比で混合し、同様な方法で押
し出し成型後、分極性電極とし図のキャパシタ(実施例
1と同様)を作成したところ容量0.22 F 、イン
ピーダンス18Ωを得た。(Example 2) Activated carbon powder with a specific surface area of g5oyyf/17 and phenol resin were mixed in the same ratio as in Example 1, and after extrusion molding in the same manner, a polarizable electrode was formed into the capacitor shown in the figure (same as in Example 1). ), the capacitance was 0.22 F and the impedance was 18 Ω.
(実施例3)
実施例1と同様な押し出し成型体を300′cまでは8
0℃/h r 、 1000℃までは30℃/ h r
で窒素気流中で昇温した。このような条件で作成した分
極性電極を用いて実施例1と同様なフィン型キャパシタ
を作成し次の特性を得た。容量0.20F、インピーダ
ンス17Ω。(Example 3) The same extrusion molded body as in Example 1 was heated up to 300'c by 8
0℃/hr, 30℃/hr up to 1000℃
The temperature was raised in a nitrogen stream. A fin-type capacitor similar to that in Example 1 was produced using the polarizable electrode produced under these conditions, and the following characteristics were obtained. Capacity 0.20F, impedance 17Ω.
(実施例4)
比表面積1000 m / 9の粉砕した活性炭繊維(
フェノール系)とレゾール型フェノール樹脂とを第1表
に示す重量比で混合し若干の水を加え押し出し成型機を
用いて直径8.2市の円柱状に連続して押し出した。こ
れらのものを100℃で1時間硬化後窒素ガス、水蒸気
雰囲気下で3o分間炭化、賦活した。上記成型体は長さ
がsoomms直径emm程度である。炭化、賦活収率
および下記に示した条件で作成したキャパシタの特性も
同表に付記する。活性炭繊維と活性炭との成型体を0.
7柵の厚みに切断し、さら【切断した物の片面にアルミ
ニウム層をプラズマ溶射法を用い200μm形成した。(Example 4) Pulverized activated carbon fibers with a specific surface area of 1000 m/9 (
The mixture was mixed with a resol-type phenolic resin in the weight ratio shown in Table 1, added with some water, and continuously extruded into a cylinder having a diameter of 8.2 cm using an extrusion molding machine. These materials were cured at 100° C. for 1 hour, and then carbonized and activated for 3 minutes in a nitrogen gas and water vapor atmosphere. The molded body has a length of approximately somms and a diameter of emm. Carbonization, activation yield, and characteristics of capacitors produced under the conditions shown below are also added to the same table. A molded body of activated carbon fibers and activated carbon is 0.
It was cut to a thickness of 7 fences, and an aluminum layer of 200 μm was formed on one side of the cut piece using plasma spraying.
このようにして作成した分極性電極を用いて?図に示し
たコイン型キャノくシタを構成した。セパレータには、
直径1oInI11のポリプロピレン製多孔膜を用いた
。このセパレータを介し上記分極性電極を相対向させた
後、テトラエチルアンモニウムのホウフッ化塩(Et4
NBF4) をi解質とした1モル/lのプロピレンカ
ーボネート有機電解液として注入後封口ケーシングし、
コイン型キャパシタを作成した。このキャパシタを2.
4Vで充電後1mAで定電流放電し容量、インピーダン
ス、70℃の雰囲気下で常時2.4vを印加したところ
初期容量に対する1000時間後の容量減少率を得た。Using polarizable electrodes created in this way? The coin-shaped canopy shown in the figure was constructed. The separator has
A polypropylene porous membrane with a diameter of 1 oInI11 was used. After making the polarizable electrodes face each other through the separator, the borofluoride salt of tetraethylammonium (Et4
NBF4) was injected as a 1 mol/l propylene carbonate organic electrolyte solution as i solute, then sealed in a casing.
I made a coin type capacitor. This capacitor 2.
After charging at 4 V and discharging at a constant current of 1 mA, the capacity, impedance, and 2.4 V were constantly applied in an atmosphere of 70° C., and the capacity reduction rate after 1000 hours with respect to the initial capacity was obtained.
従来の活性炭繊維布およびペーパ状活性炭繊維を分極性
電極に用いたキャパシタの特性は容量がそれぞれ0.2
F 、 0.21 Fであり、インピーダンス(I K
Hz )はそれぞれ21Ω。The characteristics of conventional capacitors using activated carbon fiber cloth and paper-like activated carbon fiber as polarizable electrodes are that the capacitance is 0.2, respectively.
F, 0.21 F, and the impedance (I K
Hz) is 21Ω each.
23Ωであった。It was 23Ω.
(実施例6)
正極側分極性電極として実施例4.←表泥3と同様な電
極を用い、負極としてSnと−の比が85:15の合金
(ウッド合金)にリチウムを吸蔵させた非分極性電極を
周込て電気二重層キャパシタを作成した。本実施例にお
いても他の構成材料は実施例1と同様である。このキャ
パシタは3Vの電圧、0・41Fの容量を示した。(Example 6) Example 4 as a positive polarizable electrode. An electric double layer capacitor was prepared by using the same electrode as in Table 3, and surrounding it with a non-polarizable electrode in which lithium was occluded in an alloy (wood alloy) with an Sn to - ratio of 85:15 as a negative electrode. In this embodiment, other constituent materials are the same as in the first embodiment. This capacitor exhibited a voltage of 3V and a capacitance of 0.41F.
本発明の分極性電極は、上記のような電気二重。The polarizable electrode of the present invention is an electric double electrode as described above.
層キャパシタのみならず電池fエレクトロクコミックデ
イスプレィ等に広く使用できる。It can be widely used not only in layered capacitors but also in battery electronic comic displays and the like.
発明の効果
以上のように、本発明によれば従来よりエネルギー密度
の高い、低抵抗でしかも均一な分極性電極が容易に生産
性良く得られる。Effects of the Invention As described above, according to the present invention, a polarizable electrode with higher energy density, lower resistance, and uniformity can be obtained easily and with good productivity than before.
図は本発明および従来例に共通の構造をもつ電気二重層
キャパシタの一例の断面構成図である。
1・・・・・・分極性電翫、2・・・・・・集電体、3
・・・・・・セノ(レータ、4・・・・・・ガスケット
、6・・・・・・封口板、6・・・・・・ケース。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名!
・−分担性電極
2−@ 電体′
3− セパレーク
4−ガスケット
5−4t口抜
6−ケースThe figure is a cross-sectional configuration diagram of an example of an electric double layer capacitor having a structure common to the present invention and a conventional example. 1... Polarizable wire, 2... Current collector, 3
・・・・・・Seno (retar, 4・・・gasket, 6・・・sealing plate, 6・・・case. Name of agent: Patent attorney Toshio Nakao and 1 other person) given name!
・-Sharing electrode 2-@ Electric body' 3- Separate lake 4- Gasket 5- 4t opening 6- Case
Claims (1)
混練し、押し出し成型法により円柱状成型体とした後、
フェノール樹脂を硬化し、さらに炭化あるいは賦活工程
を経て活性炭粉末あるいは活性炭繊維と、炭素とから成
る成型体を得、前記成型体を円盤状に切断して構成され
る分極性電極の製造法。After kneading activated carbon powder or activated carbon fiber and phenol resin and forming a cylindrical molded body by extrusion molding method,
A method for producing a polarizable electrode, which comprises curing a phenol resin, further carbonizing or activating it to obtain a molded body made of activated carbon powder or activated carbon fibers, and carbon, and cutting the molded body into disk shapes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62156824A JPH0770449B2 (en) | 1987-06-24 | 1987-06-24 | Method of manufacturing polarizable electrodes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62156824A JPH0770449B2 (en) | 1987-06-24 | 1987-06-24 | Method of manufacturing polarizable electrodes |
Publications (3)
Publication Number | Publication Date |
---|---|
JPH011219A true JPH011219A (en) | 1989-01-05 |
JPS641219A JPS641219A (en) | 1989-01-05 |
JPH0770449B2 JPH0770449B2 (en) | 1995-07-31 |
Family
ID=15636148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62156824A Expired - Fee Related JPH0770449B2 (en) | 1987-06-24 | 1987-06-24 | Method of manufacturing polarizable electrodes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0770449B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01164017A (en) * | 1987-12-21 | 1989-06-28 | Elna Co Ltd | Manufacture of electrode for electric double layer condenser |
JPH04142017A (en) * | 1990-10-02 | 1992-05-15 | Osaka Titanium Co Ltd | Electric double-layred battery |
JPH05174870A (en) * | 1991-12-25 | 1993-07-13 | Osaka Titanium Co Ltd | Electric double-layer battery |
JPH08138978A (en) * | 1994-11-02 | 1996-05-31 | Japan Gore Tex Inc | Electric double layer capacitor and manufacture of its electrode |
JP2700137B2 (en) * | 1995-04-20 | 1998-01-19 | エルナー株式会社 | Method for manufacturing electrode of electric double layer capacitor |
JP3628822B2 (en) * | 1996-10-25 | 2005-03-16 | パイロットプレシジョン株式会社 | Film electrode and method for producing the same |
JP5687620B2 (en) * | 2009-06-23 | 2015-03-18 | クラレケミカル株式会社 | Liquid-permeable capacitor, deionized water production method, and deionized water production apparatus |
-
1987
- 1987-06-24 JP JP62156824A patent/JPH0770449B2/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3689948B2 (en) | Electric double layer capacitor | |
WO2019114554A1 (en) | Natural graphite-based modified composite material, preparation method therefor, and lithium ion battery comprising modified composite material | |
JP5081214B2 (en) | Organic electrolyte capacitor | |
US6139989A (en) | Cathode formed of graphite/carbon composite for lithium ion secondary battery | |
CN114447325B (en) | Porous carbon material, preparation method thereof, negative electrode and lithium metal battery | |
JPH011219A (en) | Manufacturing method of polarizable electrodes | |
JPH0770448B2 (en) | Method of manufacturing polarizable electrodes | |
JP4802868B2 (en) | Electrochemical capacitor and manufacturing method thereof | |
JPH0770449B2 (en) | Method of manufacturing polarizable electrodes | |
JPH09232190A (en) | Electric double layer capacitor | |
JPH1111921A (en) | Solid activated carbon | |
JP2778425B2 (en) | Polarizing electrode, method of manufacturing the same, and electric double layer capacitor using the same | |
JP3097305B2 (en) | Electric double layer capacitor and method of manufacturing the same | |
JP2000124084A (en) | Electric double-layer capacitor | |
JPH0521274A (en) | Polarizing electrode and manufacturing method thereof | |
JPH02185008A (en) | Electric double layer capacitor | |
JPS63314821A (en) | Manufacture of activated carbon structure for polarizable electrode | |
JP4039071B2 (en) | Secondary power supply | |
JPS63194319A (en) | Energy storage device | |
JP2667837B2 (en) | Electric Double Layer Capacitor | |
JPS6126207A (en) | Electric double layer capacitor | |
JPH012314A (en) | Manufacturing method for polarizable electrodes | |
JPH03289116A (en) | Electric double-layer capacitor | |
JP2001332456A (en) | Electric double-layer capacitor | |
JP2002289481A (en) | Activated carbonaceous structure and electric double layer capacitor using the same |