JP3114337B2 - Electric double layer capacitor - Google Patents

Electric double layer capacitor

Info

Publication number
JP3114337B2
JP3114337B2 JP8317592A JP8317592A JP3114337B2 JP 3114337 B2 JP3114337 B2 JP 3114337B2 JP 8317592 A JP8317592 A JP 8317592A JP 8317592 A JP8317592 A JP 8317592A JP 3114337 B2 JP3114337 B2 JP 3114337B2
Authority
JP
Japan
Prior art keywords
electric double
layer capacitor
double layer
activated carbon
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8317592A
Other languages
Japanese (ja)
Other versions
JPH05251271A (en
Inventor
ゆかり 吉備
順次 田渕
貴之 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8317592A priority Critical patent/JP3114337B2/en
Publication of JPH05251271A publication Critical patent/JPH05251271A/en
Application granted granted Critical
Publication of JP3114337B2 publication Critical patent/JP3114337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PURPOSE:To enable an electrolytic double-layer capacitor to be enhanced in both productivity and reliability by a method wherein electrolytic solution is made to contain surface-active agent as a second component. CONSTITUTION:A polypropylene case 4a is evacuated, and two polarizable electrodes 1 are inserted into the case 4a as electrolytic solution is filled into the case 4a, whereby the polarizable electrodes 1 are impregnated with electrolytic solution. For instance, 0.01wt.% nonylphenol/ethylene oxide as (7mol) adduct dissolved uniformly into sulfuric acid water solution is used as electrolytic solution. By this setup, the impregnation of a polarizable electrode with electrolytic solution can be sharply shortened in time. An electric double-layer capacitor can be lessened in electrostatic capacity change with time due to the separation of electrolytic solution from the impregnated surface of activated carbon, and gas is restrained from being generated when a voltage is applied to a capacitor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電気二重層コンデンサに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor.

【0002】[0002]

【従来の技術】電気二重層コンデンサは、電極と電解液
の界面に生じる電気二重層を利用した大容量コンデンサ
であり、用途は主にVTR、カメラ、電話機などのマイ
コンやメモリのバックアップである。近年、電子部品の
小型化が強く要求されており、電気二重層コンデンサの
小型化を図るためには、単位重量当たりの容量が大きな
電極材料を開発することと、電極材料の充填密度を向上
させる必要がある。従来の電気二重層コンデンサの分極
性電極としては活性炭粉末または活性炭繊維が用いられ
てきた。これらの分極性電極では粉末間または繊維間の
電気的接続を取るために加圧圧縮されなければならない
ため、小型化、電気二重層コンデンサの低抵抗化に限界
があった。また単位体積当たりの容量の向上にも限界が
あった。
2. Description of the Related Art An electric double layer capacitor is a large-capacity capacitor utilizing an electric double layer generated at an interface between an electrode and an electrolytic solution, and is mainly used for backing up a microcomputer or memory of a VTR, a camera, a telephone, or the like. In recent years, there has been a strong demand for miniaturization of electronic components, and in order to reduce the size of electric double-layer capacitors, it is necessary to develop an electrode material having a large capacity per unit weight and to improve the packing density of the electrode material. There is a need. Activated carbon powder or activated carbon fiber has been used as a polarizable electrode of a conventional electric double layer capacitor. These polarizable electrodes must be pressurized and compressed in order to make electrical connection between powders or fibers, so there are limits to miniaturization and low resistance of the electric double layer capacitor. In addition, there is a limit in improving the capacity per unit volume.

【0003】そこで、これらの問題点を解決する分極性
電極が近年開発されるに至った。例えば、特願平3−8
1262号に開示されているように、活性炭粉末とフェ
ノール樹脂粉末の混合物を加熱加圧下で金型成型し、さ
らに熱処理することにより得られる活性炭/ポリアセン
系材料複合体がこれに適した分極性電極であることが見
い出されている。また、特開昭64−2314号公報に
開示されているように、活性炭粉末または活性炭繊維と
コールタールまたはピッチを混合し、非酸化性雰囲気中
で熱処理することにより得られる活性炭粉末あるいは活
性炭繊維と炭素質から構成される電極もある。また、特
開昭62−292612号公報に開示されているような
粘結性を有する石炭を型枠に入れ、固化温度以上で乾留
焼成後、水蒸気賦活して得られるような固体活性炭も電
気二重層コンデンサの分極性電極として使用することが
できる。さらに、特開平3−78221号公報に開示さ
れているように、活性炭粉末を高温、加圧下でパルス状
電圧を印加して活性炭粉末を焼結せしめることにより得
られる固体活性炭も電気二重層コンデンサの分極性電極
として使用することができる。これらのいずれの方法に
よっても固体活性炭が得られることは周知となってい
る。
[0003] Therefore, a polarizable electrode that solves these problems has recently been developed. For example, Japanese Patent Application No. 3-8
As disclosed in No. 1262, an activated carbon / polyacene-based material composite obtained by molding a mixture of activated carbon powder and phenol resin powder under heat and pressure and further heat treatment is a polarizable electrode suitable for this. It has been found that Further, as disclosed in JP-A-64-2314, activated carbon powder or activated carbon fiber obtained by mixing activated carbon powder or activated carbon fiber with coal tar or pitch and heat-treating in a non-oxidizing atmosphere is mixed with activated carbon powder or activated carbon fiber. Some electrodes are composed of carbonaceous materials. Further, solid activated carbon obtained by putting coal having caking properties as disclosed in Japanese Patent Application Laid-Open No. 62-292612 into a mold, sintering at a solidification temperature or higher, and steam activation is also used. It can be used as a polarizable electrode of a multilayer capacitor. Further, as disclosed in JP-A-3-78221, solid activated carbon obtained by sintering activated carbon powder by applying a pulsed voltage to the activated carbon powder under high temperature and pressure is also used as an electric double layer capacitor. It can be used as a polarizing electrode. It is well known that solid activated carbon can be obtained by any of these methods.

【0004】またコンデンサの小型化、薄型化の点か
ら、特願平3−81262号に開示されているように、
活性炭粉末とフェノール樹脂に溶媒を加えて混合したペ
ーストを基板上に成膜し、熱処理を施すことによって得
られる厚さ数十から数百ミクロンの活性炭厚膜電極が開
発されている。また特開昭61−110416号公報お
よび特開平2−266509号公報に開示されているよ
うに、従来の活性炭粉末を用いたペースト状分極性電極
の場合、ペースト性向上のために電解液に界面活性剤を
添加する方法が開発されている。
[0004] Further, from the viewpoint of miniaturization and thinning of the capacitor, as disclosed in Japanese Patent Application No. 3-81262,
Activated carbon thick-film electrodes having a thickness of several tens to several hundreds of microns, which are obtained by forming a paste obtained by adding a solvent to activated carbon powder and a phenol resin and mixing them on a substrate and subjecting the paste to heat treatment, have been developed. Also, as disclosed in JP-A-61-110416 and JP-A-2-266509, in the case of a pasty polarizable electrode using a conventional activated carbon powder, an interface between the electrolyte and the electrolyte is used to improve the pasteability. Methods for adding activators have been developed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような固体活性炭あるいは活性炭厚膜を分極性電極とし
て用いた場合、分極性電極である活性炭が疎水性である
ため電解液の含浸に非常に時間がかかり、特にブロック
状固体活性炭においては電極の細孔内部まで電解液を含
浸するのに6時間以上必要であった。また、一度含浸し
ても時間が経つにつれて活性炭表面と電解液が分離する
ため静電容量の経時変化が大きく、また電解液が充分に
含浸されていない場合にはコンデンサの静電容量が低下
し、コンデンサへの電圧印加時に活性炭電極の細孔中に
残ったガスが発生するという問題点があった。本発明の
目的は、このような従来の問題点を解決して、電解液が
短時間で充分に分極性電極内部に合浸される電気二重層
コンデンサを提供することにある。
However, when the above-mentioned solid activated carbon or activated carbon thick film is used as a polarizable electrode, it takes a very long time to impregnate the electrolytic solution because the activated carbon as the polarizable electrode is hydrophobic. In particular, in the case of block-shaped solid activated carbon, it took 6 hours or more to impregnate the electrolyte into the inside of the pores of the electrode. Even after impregnation once, the surface of the activated carbon separates from the electrolytic solution with the lapse of time, so that the capacitance changes over time.If the electrolytic solution is not sufficiently impregnated, the capacitance of the capacitor decreases. In addition, there is a problem that gas remaining in the pores of the activated carbon electrode is generated when a voltage is applied to the capacitor. An object of the present invention is to solve such a conventional problem and to provide an electric double layer capacitor in which an electrolytic solution is sufficiently impregnated inside a polarizable electrode in a short time.

【0006】[0006]

【課題を解決するための手段】 本発明の第1は、固体
活性炭を分極性電極として用いる電気二重層コンデンサ
において、前記分極性電極が活性炭及びポリアセン系材
料複合体であり、電解液に界面活性剤を第2成分として
含有したことを特徴とする電気二重層コンデンサであ
る。本発明の第2は、活性炭厚膜を分極性電極として用
いる電気二重層コンデンサにおいて、前記分極性電極が
活性炭及びポリアセン系材料複合体であり、電解液に界
面活性剤を第2成分として含有したことを特徴とする電
気二重層コンデンサである。
Means for Solving the Problems A first aspect of the present invention is an electric double layer capacitor using solid activated carbon as a polarizable electrode, wherein the polarizable electrode is made of activated carbon and a polyacene-based material.
An electric double layer capacitor comprising a composite material and a surfactant as a second component in an electrolytic solution. A second aspect of the present invention is an electric double layer capacitor using an activated carbon thick film as a polarizable electrode, wherein the polarizable electrode is
An electric double layer capacitor comprising a composite of activated carbon and a polyacene-based material, wherein the electrolyte contains a surfactant as a second component.

【0007】界面活性剤としては、非イオン性界面活性
剤またはスルホン酸塩型界面活性剤が望ましい。このう
ち非イオン性界面活性剤は、アルキルフェノールにエチ
レンオキサイドを付加させた下記一般式で示されるポリ
オキシエチレンアルキルフェノールであるか、
As the surfactant, a nonionic surfactant or a sulfonate type surfactant is desirable. Among them, the nonionic surfactant is a polyoxyethylene alkylphenol represented by the following general formula in which ethylene oxide is added to an alkylphenol,

【化3】 (式中、R1は炭素数が5〜20の炭化水素基、nは1
〜20の整数である。)あるいは、高級アルコールにエ
チレンオキサイドを付加させた下記一般式で示されるポ
リオキシエチレン高級アルコールのようなポリエチレン
グリコール型界面活性剤が好ましい。 R2−O(CH2CH2O)nH (式中、R2は炭素数が8〜22の炭化水素基、nは1
〜20の整数である。)また、スルホン酸塩型界面活性
剤は、下記一般式で表される界面活性剤であるか、 R3SO3M (式中、R3は炭化水素基、Mはアルカリ金属を示
す。)あるいは下記一般式で表される界面活性剤である
ことが好ましい。
Embedded image (Wherein, R 1 is a hydrocarbon group having 5 to 20 carbon atoms, and n is 1
Is an integer of up to 20. Alternatively, a polyethylene glycol type surfactant such as a polyoxyethylene higher alcohol represented by the following general formula in which ethylene oxide is added to a higher alcohol is preferable. R 2 —O (CH 2 CH 2 O) n H ( where R 2 is a hydrocarbon group having 8 to 22 carbon atoms, and n is 1
Is an integer of up to 20. In addition, the sulfonate type surfactant is a surfactant represented by the following general formula, or R 3 SO 3 M (wherein, R 3 represents a hydrocarbon group and M represents an alkali metal.) Alternatively, a surfactant represented by the following general formula is preferable.

【化4】 (式中、R4は炭素数が5〜20の炭化水素基、Mはア
ルカリ金属を示す。)電解液中の界面活性剤添加量は
0.001〜0.5重量%の範囲が適当である。
Embedded image (In the formula, R 4 represents a hydrocarbon group having 5 to 20 carbon atoms, and M represents an alkali metal.) The amount of the surfactant to be added in the electrolyte is preferably in the range of 0.001 to 0.5% by weight. is there.

【0008】[0008]

【作用】固体活性炭あるいは活性炭厚膜を分極性電極に
用いた電気二重層コンデンサにおいて、電解液に硫酸水
溶液中でも分解しない非イオン性界面活性剤あるいはス
ルホン酸塩型界面活性剤を第2成分として含有させるこ
とによって、電解液を短時間で含浸させることができ、
また電解液が充分分極性電極内部に含浸されるため、コ
ンデンサとしての静電容量が向上し、電圧印加時のガス
の発生を防ぐことができ、また静電容量の経時変化を低
減させることができる。
In an electric double layer capacitor using a solid activated carbon or an activated carbon thick film as a polarizable electrode, a nonionic surfactant or a sulfonate type surfactant which does not decompose even in an aqueous sulfuric acid solution is contained as an electrolytic solution as a second component. By doing so, the electrolyte can be impregnated in a short time,
Also, since the electrolyte is sufficiently impregnated inside the polarizable electrode, the capacitance as a capacitor is improved, generation of gas at the time of applying a voltage can be prevented, and the change with time of the capacitance can be reduced. it can.

【0009】[0009]

【実施例】次に本発明の実施例について説明する。 実施例1 フェノール系活性炭粉末とフェノール樹脂粉末(商品名
ベルパール(登録商標)・鐘紡株式会社製)の重量比が
70/30になるように秤量し、ボールミルにて乾式混
合を行った。この混合粉末10gを150℃、100k
g/cm2の圧力で10分間、金型成型し、50×35
mm2、厚さ6mmの活性炭含有フェノール樹脂板を得
た。これを電気炉中、N2雰囲気下で900℃で2時間
熱処理を行った。昇降温速度は10℃/hとした。得ら
れた固体活性炭の寸法は、47×33×6mm3の直方
体であり、分極性電極となる。ガラス状カーボン製集電
体は一部に円筒形の突起が設けてあり、円筒形の突起部
にはネジ穴が設けてある。これらをカーボン系導電性接
着剤で一体化した。導電性接着剤をガラス状カーボン製
集電体に塗布し、分極性電極と接着し、150℃で30
分間熱硬化した。この後、電気炉中、N2雰囲気下で8
00℃で30分間熱処理を行い、導電性接着剤を炭化し
た。
Next, an embodiment of the present invention will be described. Example 1 A phenol-based activated carbon powder and a phenol resin powder (trade name: Bellpearl (registered trademark), manufactured by Kanebo Co., Ltd.) were weighed so as to have a weight ratio of 70/30, and were dry-mixed with a ball mill. 10 g of this mixed powder is placed at 150 ° C. and 100 k
mold at a pressure of g / cm 2 for 10 minutes, 50 × 35
An activated carbon-containing phenol resin plate having a thickness of 2 mm and a thickness of 6 mm was obtained. This was subjected to a heat treatment at 900 ° C. for 2 hours in an N 2 atmosphere in an electric furnace. The temperature rise / fall rate was 10 ° C./h. The size of the obtained solid activated carbon is a rectangular parallelepiped of 47 × 33 × 6 mm 3 , which becomes a polarizable electrode. The current collector made of glassy carbon has a cylindrical projection in part, and a screw hole is provided in the cylindrical projection. These were integrated with a carbon-based conductive adhesive. A conductive adhesive is applied to the current collector made of glassy carbon and adhered to the polarizable electrode.
Heat cured for minutes. After that, 8 hours in an electric furnace under N 2 atmosphere.
Heat treatment was performed at 00 ° C. for 30 minutes to carbonize the conductive adhesive.

【0010】次に本実施例で作製した電気二重層コンデ
ンサの構造を図1を用いて説明する。上述した集電体2
を一体化した分極性電極1を片側電極として同じ構成の
片側電極をもう一つ用意し、厚さ25μmのポリプロピ
レン製セパレータ3を挟んで向かい合わせた。これらを
ポリプロピレン製容器蓋4bにエポキシ樹脂をシーリン
グ剤として接着封止した。分極性電極1に電解液を含浸
させるために、全体を真空にした後、ポリプロピレン製
容器4aに電解液を注入しながら、上述した2つの分極
性電極1を挿入した。電解液として、30重量%の硫酸
水溶液にノニルフェノールエチレンオキサイド7モル付
加物を0.01重量%溶解させて均一溶液とし、30分
間真空含浸した。ポリプロピレン製容器4aと蓋4bの
封止断面の4つの角とも封止が行い易いように外周で半
径4mmに角を丸めてある。この蓋4bと容器4aを出
力1200W、周波数21kHzの超音波融着機により
封止した。超音波融着の条件は、融着前および融着中
1.0kg/cm2の加圧、加圧後発振、融着時間0.
5秒とした。封止した容器4aの蓋4bの外側からネジ
が切ってあるステンレス製端子5を接続した。このよう
にして本発明の電気二重層コンデンサを試作した。
Next, the structure of the electric double layer capacitor manufactured in this embodiment will be described with reference to FIG. Current collector 2 described above
Another one-sided electrode having the same configuration was prepared using the polarizable electrode 1 in which the above was integrated as one-sided electrode, and faced each other with a polypropylene separator 3 having a thickness of 25 μm interposed therebetween. These were bonded and sealed to a polypropylene container lid 4b using an epoxy resin as a sealing agent. In order to impregnate the polarizable electrode 1 with the electrolytic solution, the whole was evacuated, and then the above-mentioned two polarizable electrodes 1 were inserted while pouring the electrolytic solution into the polypropylene container 4a. As an electrolytic solution, 0.01% by weight of a 7 mol nonylphenol ethylene oxide adduct was dissolved in a 30% by weight aqueous sulfuric acid solution to form a uniform solution, which was impregnated with a vacuum for 30 minutes. The four corners of the sealing cross section of the polypropylene container 4a and the lid 4b are also rounded to a radius of 4 mm on the outer periphery so as to facilitate sealing. The lid 4b and the container 4a were sealed with an ultrasonic welding machine having an output of 1200 W and a frequency of 21 kHz. The conditions of the ultrasonic fusion are as follows: a pressure of 1.0 kg / cm 2 before and during fusion, oscillation after pressure, and a fusion time of 0.1 kg / cm 2 .
5 seconds. A stainless steel terminal 5 threaded from the outside of the lid 4b of the sealed container 4a was connected. Thus, an electric double-layer capacitor of the present invention was experimentally manufactured.

【0011】このようにして得られた電気二重層コンデ
ンサ10個の静電容量と等価直列抵抗を測定した。電気
二重層コンデンサの両極の間に0.9Vを印加し、6時
間定電圧充電を行い、100mAおよび10Aで定電流
放電させ、電圧が0.54Vから0.45Vに降下する
のに要した時間から、電気二重層コンデンサの容量を求
めた。また、交流四端子法によりこれらの電気二重層コ
ンデンサのインピーダンスを測定した。入力信号電圧を
10mVrmsとし、1kHzの時のインピーダンスの実
数部を等価直列抵抗とした。また電解液にノニルフェノ
ールエチレンオキサイド7モル付加物を添加しないとい
う条件以外は前述の内容と全く同一の電気二重層コンデ
ンサを作製した。これらの本発明例と従来例の電気二重
層コンデンサそれぞれ10個について測定した静電容量
と等価直列抵抗の平均値を次の表1にまとめる。
The capacitance and equivalent series resistance of the ten electric double layer capacitors thus obtained were measured. 0.9V is applied between both electrodes of the electric double layer capacitor, constant voltage charging is performed for 6 hours, constant current discharge is performed at 100mA and 10A , and time required for the voltage to drop from 0.54V to 0.45V , The capacity of the electric double layer capacitor was determined. The impedance of these electric double layer capacitors was measured by the AC four-terminal method. The input signal voltage was 10 mV rms, and the real part of the impedance at 1 kHz was the equivalent series resistance. In addition, an electric double layer capacitor having exactly the same contents as described above was prepared except that no 7 mol adduct of nonylphenol ethylene oxide was added to the electrolytic solution. Table 1 below summarizes the average values of the capacitance and the equivalent series resistance measured for each of the ten electric double layer capacitors of the present invention and the conventional example.

【0012】[0012]

【表1】 ―――――――――――――――――――――――――――――――― 電解液含浸時間 静電容量 静電容量 等価直列抵抗 (時間) (100mA放電)(10A放電) (mΩ) (F) (F) ―――――――――――――――――――――――――――――――― 本発明例 0.5 1004 951 39.0 6.0 1008 949 38.2 ―――――――――――――――――――――――――――――――― 従来例 0.5 296 54 50.1 6.0 984 627 38.0 ――――――――――――――――――――――――――――――――[Table 1] ―――――――――――――――――――――――――――――― Electrolyte impregnation time Capacitance Capacitance equivalent series resistance ( (Time) (100mA discharge) (10A discharge) (mΩ) (F) (F) ――――――――――――――――――――――――――――――― -Example of the present invention 0.5 1004 951 39.0 6.0 1008 949 38.2 ―――――――――――――――――――――――――――――― ―― Conventional example 0.5 296 54 50.1 6.0 984 627 38.0 ―――――――――――――――――――――――――――― -

【0013】このように、従来は固体活性炭分極性電極
への電解液の含浸に6時間以上要していたのに対し、本
発明のように界面活性剤を電解液に含有させることによ
り、約30分で充分となった。また電圧印加時における
ガス発生はみられなかった。また、ここに示した固体活
性炭以外にも、活性炭粉末または活性炭繊維とコールタ
ールまたはピッチを混合し、非酸化性雰囲気中で熱処理
して得られる固体活性炭、粘結性を有する石炭を型枠に
入れ固化温度以上で乾留焼成後、水蒸気賦活して得られ
る固体活性炭、あるいは活性炭粉末を高温、加圧下でパ
ルス状電圧を印加して活性炭粉末を焼結して得られる固
体活性炭においても同様の結果が得られた。
As described above, conventionally, it took 6 hours or more to impregnate the solid activated carbon polarizable electrode with the electrolytic solution. 30 minutes was enough. No gas was generated when voltage was applied. In addition to the solid activated carbon shown here, solid activated carbon obtained by mixing activated carbon powder or activated carbon fiber with coal tar or pitch and heat-treating in a non-oxidizing atmosphere, coal having caking properties is used in a mold. The same results were obtained for solid activated carbon obtained by steam activation after dry distillation and firing at a temperature equal to or higher than the solidification temperature, or solid activated carbon obtained by sintering activated carbon powder by applying pulsed voltage to activated carbon powder under high temperature and pressure. was gotten.

【0014】実施例2 実施例1においてノニルフェノールエチレンサキサイド
7モル付加物0.01重量%をヤシ油還元アルコールエ
チレンオキサイド10モル付加物0.01重量%に置き
換えたほかは、実施例1と同様にして電気二重層コンデ
ンサを作製した。得られた電気二重層コンデンサの電解
液含浸時間0.5(時間)における静電容量と等価直列
抵抗はそれぞれ991(F)、48.3(mΩ)であっ
た。
Example 2 The same procedure as in Example 1 was carried out except that 0.01% by weight of a 7 mol adduct of nonylphenolethylene sacoxide and 0.01% by weight of an adduct of 10 mol of ethylene oxide reduced alcohol ethylene oxide were used in Example 1. To produce an electric double layer capacitor. The capacitance and the equivalent series resistance of the obtained electric double layer capacitor at an electrolyte impregnation time of 0.5 (hour) were 991 (F) and 48.3 (mΩ), respectively.

【0015】実施例3 図2に本実施例の電気二重層コンデンサの基本構成の断
面図を示す。まず、図3、図4に分極性電極(活性炭厚
膜)13の作製方法を説明する。フェノール系活性炭粉
末とフェノール樹脂粉末(商品名ベルパール(登録商
標)・鐘紡株式会社製)とメチルセロソルブの重量比が
70/30/82になるようにペースト状に混合した。
このペースト状混合物を200メッシュのステンレス製
スクリーンを用いて、図3に示すように、面積50×5
0mm2 、厚さ0.2mmのガラス状カーボン基板11
の片面に40×40mm2の面積に印刷し、オーブン
中、150℃で30分間熱硬化させた。また、図4は面
積50×50mm2、厚さ0.2mmのガラス状カーボ
ン基板12の両面に図3と同様の熱硬化膜を形成した。
これらを電気炉中、N2雰囲気下で900℃、2時間熱
処理を行い、活性炭厚膜電極13を作製した。昇降温速
度は100℃/hとした。これらの活性炭厚膜に30w
t%硫酸水溶液にドデシルベンゼンスルホン酸ナトリウ
ムを0.02重量%溶解させ均一溶液としたものを滴下
し、30分間真空含浸を行い、活性炭厚膜内部に電解質
溶液を含浸させた。
Embodiment 3 FIG. 2 shows a sectional view of the basic structure of an electric double layer capacitor of this embodiment. First, a method for manufacturing the polarizable electrode (activated carbon thick film) 13 will be described with reference to FIGS. A phenol-based activated carbon powder, a phenol resin powder (trade name: Bellpearl (registered trademark), manufactured by Kanebo Co., Ltd.) and methyl cellosolve were mixed in a paste so that the weight ratio was 70/30/82.
As shown in FIG. 3, the paste-like mixture was applied to a 50 × 5 area using a 200-mesh stainless steel screen.
0 mm 2 , 0.2 mm thick glassy carbon substrate 11
Was printed in an area of 40 × 40 mm 2 on one side and heat-cured in an oven at 150 ° C. for 30 minutes. In FIG. 4, a thermosetting film similar to that of FIG. 3 was formed on both surfaces of a glassy carbon substrate 12 having an area of 50 × 50 mm 2 and a thickness of 0.2 mm.
These were heat-treated at 900 ° C. for 2 hours in an N 2 atmosphere in an electric furnace to produce an activated carbon thick film electrode 13. The temperature rise / fall rate was 100 ° C./h. 30w for these activated carbon thick films
A uniform solution obtained by dissolving 0.02% by weight of sodium dodecylbenzenesulfonate in a t% aqueous sulfuric acid solution was added dropwise, followed by vacuum impregnation for 30 minutes to impregnate the active carbon thick film with the electrolyte solution.

【0016】次に、図3の構造の活性炭厚膜13が形成
されたガラス状カーボン基板11の活性炭厚膜側に、5
0×50mm2、厚さ0.2mmのブチルゴムシートか
ら中心部40×40mm2を切りとったガスケット10
を貼り合わせものを1枚、ブチルゴム製ガスケット10
のないものを1枚用意した。図4の構造の活性炭厚膜1
3が形成されたガラス状カーボン基板12の片側に同様
にブチルゴム製ガスケット10を貼り合わせたものを5
組用意した。次に図2に示すように、図3の構造のガラ
ス状カーボン基板11上分極性電極13が内側になるよ
うに両端に配置し、その間に図4の構造のガラス状カー
ボン基板12上分極性電極13と、30wt%硫酸水溶
液を浸した厚さ110μmのポリエチレン製セパレータ
9を交互に挟み、全体を加熱加圧することにより、ブチ
ルゴム製ガスケット10とガラス状カーボン基板7を貼
り合わせ、さらに外側から耐硫酸性エポキシ樹脂を塗り
込むことによって封止した。次に図5に示すように外側
のガラス状カーボン基板側にそれぞれ端子取り出し用突
起部を有する厚さ0.3mmのステンレス板15を導電
性接着剤を用いて接着し、全体を絶縁性フィルムで絶縁
した後、厚さ0.2mmのステンレス製ケース16に収
納した。
Next, the glassy carbon substrate 11 on which the activated carbon thick film 13 having the structure shown in FIG.
Gasket 10 obtained by cutting a central portion of 40 × 40 mm 2 from a butyl rubber sheet having a thickness of 0 × 50 mm 2 and a thickness of 0.2 mm.
Butyl rubber gasket 10
One without was prepared. Activated carbon thick film 1 having the structure of FIG.
A glassy carbon substrate 12 on which one of the above 3 is formed and a butyl rubber gasket 10 similarly bonded to one side
I prepared a pair. Next, as shown in FIG. 2, the polarizable electrodes 13 on the glassy carbon substrate 11 having the structure of FIG. 3 are arranged at both ends such that they are inside, and the polarizable electrodes 13 on the glassy carbon substrate 12 having the structure of FIG. The electrode 13 and the 110 μm-thick polyethylene separator 9 immersed in a 30 wt% sulfuric acid aqueous solution are alternately sandwiched, and the whole is heated and pressurized, so that the butyl rubber gasket 10 and the glassy carbon substrate 7 are bonded to each other. Sealing was performed by applying a sulfuric epoxy resin. Next, as shown in FIG. 5, a stainless steel plate 15 having a thickness of 0.3 mm and having terminal protruding portions is bonded to the outer glassy carbon substrate side using a conductive adhesive, and the whole is formed of an insulating film. After being insulated, it was stored in a stainless steel case 16 having a thickness of 0.2 mm.

【0017】このように作製した電気二重層コンデンサ
10個と、電解液にドデシルベンゼンスルホン酸ナトリ
ウムを添加しないという条件以外は前述の内容と全く同
一の従来の電気二重層コンデンサ10個に、5.0Vを
印加し、1時間定電圧充電を行った後、1mAで定電流
放電させ、電圧が3.0Vから2.5Vに降下するのに
要した時間から静電容量を求めた。また等価直列抵抗
は、1kHz、10mAの定電流をこの電気二重層コン
デンサに流し、その時両端に現れる電圧から求めた。そ
れぞれの平均値を表2に示す。
The ten electric double-layer capacitors thus produced and the conventional electric double-layer capacitors exactly the same as those described above, except that sodium dodecylbenzenesulfonate was not added to the electrolytic solution, were used. After applying 0 V and performing constant-voltage charging for 1 hour, the battery was discharged at a constant current of 1 mA, and the capacitance was determined from the time required for the voltage to drop from 3.0 V to 2.5 V. The equivalent series resistance was determined from the voltage appearing at both ends when a constant current of 1 kHz and 10 mA was passed through this electric double layer capacitor. Table 2 shows the respective average values.

【0018】[0018]

【表2】 [Table 2]

【0019】また、前述の本発明例及び従来例のそれぞ
れ10個の電気二重層コンデンサを70℃の温度雰囲気
で各コンデンサに直流5.5Vの電圧を印加した状態で
72時間の高温負荷試験を実施した後、各コンデンサの
静電容量を測定した。試験前の初期値に対する試験後の
値の静電容量の変化率は下の表3のようになった。
A high-temperature load test was performed for 72 hours at a temperature of 70 ° C. with a DC 5.5 V applied to each of the ten electric double layer capacitors of the present invention and the conventional example. After implementation, the capacitance of each capacitor was measured. Table 3 below shows the rate of change in the capacitance after the test with respect to the initial value before the test.

【0020】[0020]

【表3】 [Table 3]

【0021】このように、本発明の電気二重層コンデン
サは従来の電気二重層コンデンサに比べて静電容量の経
時的な変化が減少することがわかった。
As described above, it has been found that the electric double layer capacitor of the present invention has a smaller change in capacitance with time than the conventional electric double layer capacitor.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば電
解液に界面活性剤を第2成分として含有させることによ
って、分極性電極への電解液の含浸時間を著しく短縮す
ることができる。また含浸後の活性炭表面と電解液の分
離による静電容量の経時変化の低減、コンデンサへの電
圧印加時のガスの発生を抑える効果がある。
As described above, according to the present invention, the impregnation time of the polarizable electrode with the electrolytic solution can be remarkably reduced by adding the surfactant to the electrolytic solution as the second component. In addition, there is an effect that a change in capacitance with time due to separation of the electrolytic solution from the activated carbon surface after impregnation is reduced, and generation of gas when voltage is applied to the capacitor is suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による固体活性炭を分極性電極に用いた
電気二重層コンデンサの一例の断面図である。
FIG. 1 is a cross-sectional view of an example of an electric double layer capacitor using solid activated carbon according to the present invention for a polarizable electrode.

【図2】本発明による活性炭厚膜を分極性電極に用いた
電気二重層コンデンサの一例の断面図である。
FIG. 2 is a cross-sectional view of an example of an electric double layer capacitor using a thick activated carbon film as a polarizable electrode according to the present invention.

【図3】集電体基板の片面に形成した活性炭厚膜分極性
電極の断面図である。
FIG. 3 is a sectional view of an activated carbon thick film polarizable electrode formed on one surface of a current collector substrate.

【図4】集電体基板の両面に形成した活性炭厚膜分極性
電極の断面図である。
FIG. 4 is a cross-sectional view of an activated carbon thick film polarizable electrode formed on both surfaces of a current collector substrate.

【図5】本発明の活性炭厚膜を分極性電極に用いた電気
二重層コンデンサの一例の外観説明図である。
FIG. 5 is an external view illustrating an example of an electric double-layer capacitor using the activated carbon thick film of the present invention as a polarizable electrode.

【符号の説明】[Explanation of symbols]

1 固体活性炭分極性電極 2 ガラス状カーボン製集電体 3 セパレータ 4a 容器 4b 容器蓋 5 端子 9 セパレータ 10 ブチルゴム製ガスケット 11,12 ガラス状カーボン基板 13 活性炭厚膜 14 電気二重層コンデンサ 15 ステンレス板 16 ステンレス製ケース DESCRIPTION OF SYMBOLS 1 Solid activated carbon polarizable electrode 2 Current collector made of glassy carbon 3 Separator 4a Container 4b Container lid 5 Terminal 9 Separator 10 Gasket made of butyl rubber 11, 12 Glassy carbon substrate 13 Activated carbon thick film 14 Electric double layer capacitor 15 Stainless steel plate 16 Stainless steel Case

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−266509(JP,A) 特開 昭61−110416(JP,A) 特開 平4−288361(JP,A) 特開 昭63−226019(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01G 9/058 H01G 9/038 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-266509 (JP, A) JP-A-61-110416 (JP, A) JP-A-4-288361 (JP, A) JP-A 63-110 226019 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01G 9/058 H01G 9/038

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固体活性炭を分極性電極として用いる電
気二重層コンデンサにおいて、前記分極性電極が活性炭
/ポリアセン系材料複合体であり、電解液に界面活性剤
を第2成分として含有したことを特徴とする電気二重層
コンデンサ。
1. An electric double-layer capacitor using solid activated carbon as a polarizable electrode, wherein the polarizable electrode is activated carbon.
An electric double layer capacitor comprising : a polyacene-based material composite, wherein a surfactant is contained as a second component in an electrolytic solution.
【請求項2】 活性炭厚膜を分極性電極として用いる電
気二重層コンデンサにおいて、前記分極性電極が活性炭
/ポリアセン系材料複合体であり、電解液に界面活性剤
を第2成分として含有したことを特徴とする電気二重層
コンデンサ。
2. An electric double layer capacitor using an activated carbon thick film as a polarizable electrode, wherein the polarizable electrode is an activated carbon.
An electric double layer capacitor comprising : a polyacene-based material composite, wherein a surfactant is contained as a second component in an electrolytic solution.
【請求項3】 界面活性剤が非イオン性界面活性剤で
ある請求項1または2に記載の電気二重層コンデンサ。
3. The electric double layer capacitor according to claim 1, wherein the surfactant is a nonionic surfactant.
【請求項4】 非イオン性界面活性剤が、ポリエチレン
グリコール型界面活性剤である請求項3記載の電気二重
層コンデンサ。
4. The electric double layer capacitor according to claim 3, wherein the nonionic surfactant is a polyethylene glycol type surfactant.
【請求項5】 非イオン性界面活性剤が、アルキルフェ
ノールにエチレンオキサイドを付加させた下記一般式で
示されるポリオキシエチレンアルキルフェノールである
請求項4記載の電気二重層コンデンサ。 【化1】 (式中、Rは炭素数が5〜20の炭化水素基、nは1
〜20の整数である。)
5. The electric double layer capacitor according to claim 4, wherein the nonionic surfactant is a polyoxyethylene alkylphenol represented by the following general formula obtained by adding ethylene oxide to an alkylphenol. Embedded image (Wherein, R 1 is a hydrocarbon group having 5 to 20 carbon atoms, and n is 1
Is an integer of up to 20. )
【請求項6】 非イオン性界面活性剤が、高級アルコー
ルにエチレンオキサイドを付加させた下記一般式で示さ
れるポリオキシエチレン高級アルコールである請求項4
記載の電気二重層コンデンサ。 R−O(CHCHO)H (式中、R2は炭素数が8〜22の炭化水素基、nは1
〜20の整数である。)
6. The non-ionic surfactant is a polyoxyethylene higher alcohol represented by the following general formula in which ethylene oxide is added to a higher alcohol.
The electric double-layer capacitor as described. R 2 —O (CH 2 CH 2 O) n H (wherein, R 2 is a hydrocarbon group having 8 to 22 carbon atoms, and n is 1
Is an integer of up to 20. )
【請求項7】 界面活性剤がスルホン酸塩型界面活性剤
である請求項1または2に記載の電気二重層コンデン
サ。
7. The electric double layer capacitor according to claim 1, wherein the surfactant is a sulfonate type surfactant.
【請求項8】 スルホン酸塩型界面活性剤が、下記一般
式で表される界面活性剤である請求項7記載の電気二重
層コンデンサ。 RSOM (式中、R3は炭化水素基、Mはアルカリ金属を示
す。)
8. The electric double layer capacitor according to claim 7, wherein the sulfonate type surfactant is a surfactant represented by the following general formula. R 3 SO 3 M (wherein, R 3 represents a hydrocarbon group and M represents an alkali metal.)
【請求項9】 スルホン酸塩型界面活性剤が、下記一般
式で表される界面活性剤である請求項7記載の電気二重
層コンデンサ。 【化2】 (式中、Rは炭素数が5〜20の炭化水素基、Mはア
ルカリ金属を示す。)
9. The electric double layer capacitor according to claim 7, wherein the sulfonate type surfactant is a surfactant represented by the following general formula. Embedded image (In the formula, R 4 represents a hydrocarbon group having 5 to 20 carbon atoms, and M represents an alkali metal.)
JP8317592A 1992-03-05 1992-03-05 Electric double layer capacitor Expired - Fee Related JP3114337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8317592A JP3114337B2 (en) 1992-03-05 1992-03-05 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8317592A JP3114337B2 (en) 1992-03-05 1992-03-05 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPH05251271A JPH05251271A (en) 1993-09-28
JP3114337B2 true JP3114337B2 (en) 2000-12-04

Family

ID=13794955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8317592A Expired - Fee Related JP3114337B2 (en) 1992-03-05 1992-03-05 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3114337B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8777370B2 (en) 2010-11-30 2014-07-15 Ricoh Company, Ltd. Image forming apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339553B2 (en) 1996-12-09 2002-10-28 エヌイーシートーキン株式会社 Electric double layer capacitor
JPWO2008020649A1 (en) * 2006-08-15 2010-01-07 国立大学法人 岡山大学 Electrolyte and capacitor
US8050013B2 (en) * 2007-07-09 2011-11-01 Panasonic Corporation Capacitor and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8777370B2 (en) 2010-11-30 2014-07-15 Ricoh Company, Ltd. Image forming apparatus

Also Published As

Publication number Publication date
JPH05251271A (en) 1993-09-28

Similar Documents

Publication Publication Date Title
US8411413B2 (en) High voltage EDLC cell and method for the manufacture thereof
US6937460B2 (en) Electrochemical capacitor and method for its preparation
US7468222B2 (en) Electrochemical device
KR950010193B1 (en) Electrical double-layer capacitor
JPH10275747A (en) Electric double layer capacitor
JP2001250742A (en) Electric double layer capacitor and its manufacturing method
KR20100129307A (en) Ionic liquid-containing electrode membrane and electrode, process for producing the electrode membrane and the electrode, and electric storage device
US6198621B1 (en) Electric double layer capacitor using polarizable electrode of single particle layer
US5303118A (en) Electric double layer capacitor
JP3436189B2 (en) Electric double layer capacitor and method of manufacturing the same
JP3114337B2 (en) Electric double layer capacitor
JPWO2013002119A1 (en) Electric storage device and manufacturing method thereof
JP2000285896A (en) Electrode structure for battery and capacitor and manufacture thereof
JP3270175B2 (en) Electric double layer capacitor
JPH065467A (en) Electric double layer capacitor
JP4587522B2 (en) Electric double layer capacitor
JP2000252175A (en) Electric double-layer capacitor
WO2011155164A1 (en) Capacitor
JPH0574657A (en) Electric double layer capacitor and manufacture thereof
JP2716334B2 (en) Electric double layer capacitor
JPH10149956A (en) Electric double layered capacitor and its manufacture
WO2013076762A1 (en) Capacitor
JP2009200368A (en) Electric double-layer capacitor
JPH05343263A (en) Manufacture of electric double layered capacitor
JPH05304047A (en) Polarized electrode and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees