JP2000252175A - Electric double-layer capacitor - Google Patents

Electric double-layer capacitor

Info

Publication number
JP2000252175A
JP2000252175A JP5541399A JP5541399A JP2000252175A JP 2000252175 A JP2000252175 A JP 2000252175A JP 5541399 A JP5541399 A JP 5541399A JP 5541399 A JP5541399 A JP 5541399A JP 2000252175 A JP2000252175 A JP 2000252175A
Authority
JP
Japan
Prior art keywords
electric double
layer capacitor
current collector
double layer
polarizable electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5541399A
Other languages
Japanese (ja)
Inventor
Junji Miyahara
諄二 宮原
Katsumi Koike
克巳 小池
Akinori Mogami
明矩 最上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP5541399A priority Critical patent/JP2000252175A/en
Publication of JP2000252175A publication Critical patent/JP2000252175A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To obtain an electric double-layer capacitor, in which electrical resistances between components thereof are small and for which a device for applying pressure to the components is not necessary. SOLUTION: In an electric double-layer capacitor, having polarizable electrodes 3, a separator 4, and collectors 1 laminated one upon another, at least one of a powdered material, a mesh material, and a porous body composed of a material manifesting fluidity when heated is made present between each electrode 3 and collector 1 and on the surfaces of the separator 4, and heated under pressure and thereafter cooled. Thereafter, these components are adhered to one another.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層キャパ
シタに関し、とくに電力貯蔵用に用いられる、集電体と
分極性電極とを積層した電気二重層キャパシタに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double-layer capacitor, and more particularly to an electric double-layer capacitor used for power storage, in which a current collector and a polarizable electrode are laminated.

【0002】[0002]

【従来の技術】電気二重層キャパシタには、電解液とし
て水性電解液を用いたものと非水電解液を用いたものが
ある。水性電解液を用いたものはキャパシタの耐電圧が
水の分解電圧によって制限を受けるのに対して、非水電
解液を用いたキャパシタでは、耐電圧の高いものを得る
ことができるので、単位体積当たりの蓄積エネルギを大
きくすることができる。非水電解液としては、一般に
は、テトラエチルアンモニウムテトラフルオロボレート
をその代表とするオニウムイオン系電解質を炭酸プロピ
レンなどの水素イオンを放出しない極性溶媒に溶かした
溶液を用いている。
2. Description of the Related Art Electric double layer capacitors include those using an aqueous electrolyte as an electrolyte and those using a non-aqueous electrolyte. In the case of using an aqueous electrolyte, the withstand voltage of the capacitor is limited by the decomposition voltage of water, whereas in the case of using a non-aqueous electrolyte, a capacitor with a high withstand voltage can be obtained. The stored energy per hit can be increased. As the non-aqueous electrolyte, a solution obtained by dissolving an onium ion-based electrolyte represented by tetraethylammonium tetrafluoroborate in a polar solvent that does not release hydrogen ions such as propylene carbonate is generally used.

【0003】非水電解液中に、分解電圧の低い水が混入
すると非水電解液の分解が始まるより前に、水の電気分
解が起こり、非水電解液の特性を発揮できなくなるの
で、水の混入を極力避けなければならない。そのため、
構成部品から十分に脱水し、さらに組み立て作業は極め
て乾燥した雰囲気中で行わねばならず、また、製造した
コンデンサ中へ空気中の水分の侵入を避けるように密封
されねばならない。電気二重層キャパシタは分極性電極
を、アルミニウム等からなる集電体上に塗布、または板
状体を重ね合わせ、セパレータを介して積層、あるいは
積層体を巻回して、コンデンサ要素を作製し、真空下で
加熱して脱水した後に、非水電解液を注入し、コンデン
サ容器に入れて、端子等を接続した後に封孔処理を行っ
ている。
[0003] If water having a low decomposition voltage is mixed in the non-aqueous electrolyte, the electrolysis of water occurs before the decomposition of the non-aqueous electrolyte starts, and the characteristics of the non-aqueous electrolyte cannot be exhibited. Contamination must be avoided as much as possible. for that reason,
The components must be sufficiently dewatered and the assembly operation must be performed in an extremely dry atmosphere and sealed to prevent the ingress of moisture from the air into the manufactured capacitor. An electric double layer capacitor is formed by coating a polarizable electrode on a current collector made of aluminum or the like, or by laminating a plate-like body, laminating via a separator, or winding the laminated body to produce a capacitor element, and forming a vacuum. After dehydrating by heating below, a non-aqueous electrolytic solution is injected, put in a capacitor container, and terminals are connected, followed by sealing.

【0004】この分極性電極には、粉末状の活性炭、導
電補助材としてカーボンブラック及びバインダーを混練
りしたシート状のものが一般的に用いられている。バイ
ンダーとしては、ポリテトラフルオロエチレンを代表と
する、いわゆる繊維化が容易で、化学的に安定な高分子
化合物が用いられており、これらの微細な繊維に絡めら
れた構造で、上記活性炭やカーボンブラックの微粉末の
有する自己凝集性により、上記分極性電極はシート状に
形成される。このシート状分極性電極は、キャパシタの
外部の電極もしくは負荷と電気的に結合されなくてはな
らないので、集電体と称される箔状の金属が使用され
る。この金属は、電気的導電性とセル内の電解液に対し
て耐食性の優れている必要があり、一般的にはアルミニ
ウムが使用される。
As the polarizable electrode, a powdery activated carbon, and a sheet-like material obtained by kneading carbon black and a binder as a conductive auxiliary material are generally used. As the binder, a so-called easily fiberized, chemically stable polymer compound represented by polytetrafluoroethylene is used, and the structure entangled with these fine fibers makes it possible to use the activated carbon or carbon. The polarizable electrode is formed in a sheet shape due to the self-aggregation property of the black fine powder. Since the sheet-shaped polarizable electrode must be electrically coupled to an external electrode or a load of the capacitor, a foil-shaped metal called a current collector is used. This metal needs to have excellent electrical conductivity and corrosion resistance to the electrolytic solution in the cell, and aluminum is generally used.

【0005】集電体のアルミニウム箔はその表面が容易
に酸化されて不働態層が形成される。不働態層は耐食性
にとっては有用であるものの、この不働態層は電気的に
は不導体として作用するので、集電体として使用する場
合には問題となる。そこで、アルミニウム箔としては、
電気抵抗が低く、耐食性が大きな純度の高いものが選択
されるだけでなく、表面の酸化層の除去処理と粗面化処
理を化学的に行った基材が用いられる。この処理により
アルミニウム箔の表面はごく薄い自然酸化膜に覆われた
粗面状態となるが、シート状分極性電極との良好な導電
接続を形成するためには、これらの処理工程を経たアル
ミニウム箔をシート状分極性電極に密着させ、さらに添
え板などを使用して両者を機械的に押し付けている。機
械的圧迫はセルに組み上げた後に、パッケージの外部か
ら行っても良く、必要な押し圧は通常1.5〜2kg/
cm2 程度である。
[0005] The surface of the aluminum foil of the current collector is easily oxidized to form a passive layer. Although the passivation layer is useful for corrosion resistance, it becomes a problem when used as a current collector because the passivation layer acts electrically as a nonconductor. Therefore, as aluminum foil,
Not only a material having a low electric resistance, a high corrosion resistance and a high purity is selected, but also a substrate chemically treated to remove and roughen an oxide layer on the surface is used. By this treatment, the surface of the aluminum foil is roughened with a very thin natural oxide film. Is brought into close contact with the sheet-shaped polarizable electrode, and both are mechanically pressed using an attachment plate or the like. The mechanical compression may be performed from the outside of the package after assembling into the cell, and the required pressing pressure is usually 1.5 to 2 kg /.
cm 2 .

【0006】この押し圧により、粗面状態のアルミニウ
ム箔の表面には粗面の局所部に集中応力が加えられた状
態になり、その部分のごく薄い自然酸化膜は機械的に破
壊され、その結果、アルミニウム基材と分極性電極が電
気的に接触した状態となるものと考えられる。この様子
は与える押し圧を変えながら電気抵抗の変化を観察する
ことで容易に確認できる。ところが、通常1.5〜2k
g/cm2 程度必要な機械的押し圧を与えるために、電
気二重層キャパシタの両側に添え板を要するが、セルの
大きさに相応して十分丈夫で容易には変化しないもので
なくてはならず、したがってセルが大型になるほど寸法
・重量ともに大がかりなものならざるを得ない。
Due to this pressing force, a concentrated stress is applied to the surface of the roughened aluminum foil at a local portion of the roughened surface, and a very thin natural oxide film at that portion is mechanically destroyed. As a result, it is considered that the aluminum substrate and the polarizable electrode are brought into electrical contact. This can be easily confirmed by observing the change in the electric resistance while changing the applied pressing pressure. However, usually 1.5-2k
In order to apply the required mechanical pressing force of about g / cm 2, supporting plates are required on both sides of the electric double layer capacitor, but they must be sufficiently strong and not easily changed according to the size of the cell. Therefore, the larger the cell, the larger the size and weight must be.

【0007】例えば、角型セルでその電極側の面が、5
cm×10cm程度とすると、押し圧力は100kgf
となる。もっと大型のセルの場合にはセル自身より添え
板の方が重くなってしまう。このことはセルの単位重量
あたりの蓄積エネルギー密度を大いに損なうことを意味
する。また、電気二重層キャパシタが、何らかの条件で
過電圧または高温度状態に置かれると、内部で電解液の
分解が生じ、ガス発生が起こるが、このガスは微小な気
泡の段階でも集電体と分極性電極の間の電気的接触を劣
化せしめることとなる。
For example, in a rectangular cell, the surface on the electrode side is 5
When the size is about 10 cm × 10 cm, the pressing pressure is 100 kgf
Becomes In the case of a larger cell, the attachment plate becomes heavier than the cell itself. This means that the stored energy density per unit weight of the cell is greatly impaired. Also, if the electric double layer capacitor is placed in an overvoltage or high temperature state under some conditions, the electrolytic solution is decomposed inside and gas is generated, and this gas is separated from the current collector even in the stage of minute bubbles. This will degrade the electrical contact between the polar electrodes.

【0008】また、電気二重層キャパシタの製造方法に
は、分極性電極を別体で作製することなく、集電体の上
にドクターブレード等の塗布装置を用いて直接的に塗布
して製造する方法も知られている。この方法では、活性
炭粉末などの構成材料をポリフッ化ビニリデン(PVD
F)をN−メチルピロリドン(NMP)を溶解した糊材
とともに、撹拌してスラリー状とし、集電極上に塗布
し、加熱ローラー処理で、溶媒を蒸発除去して、集電極
と一体化した分極性電極を得る方法である。この方法に
よって製造した電気二重層キャパシタは、活性炭の細孔
が糊材に埋められるためか、一定量の活性炭での静電容
量が約半分に減少するという問題があり、近年のエネル
ギー貯蔵を目的とした大容量化志向の電気二重層キャパ
シタには、好ましい方法ではない。
In the method of manufacturing an electric double layer capacitor, the polarizable electrode is manufactured by directly applying the current on the current collector using a coating apparatus such as a doctor blade without separately manufacturing the polarizable electrode. Methods are also known. In this method, a constituent material such as activated carbon powder is used to convert polyvinylidene fluoride (PVD).
F) was stirred with an adhesive material in which N-methylpyrrolidone (NMP) was dissolved to form a slurry, and the slurry was applied to the collector electrode. This is a method for obtaining a polar electrode. The electric double layer capacitor manufactured by this method has a problem that the capacitance of a certain amount of activated carbon is reduced to about half, probably because the pores of the activated carbon are filled in the adhesive material. This is not a preferable method for the large-capacity electric double layer capacitor.

【0009】[0009]

【発明が解決しようとする課題】活性炭材料を繊維化バ
インダーで結合した分極性電極と集電体とを積層した電
気二重層キャパシタにおいて、集電体と分極性電極との
間の導電接続を高めるとともに、セルの組立が容易な電
気二重層キャパシタを提供することを課題とするもので
ある。
SUMMARY OF THE INVENTION In an electric double layer capacitor in which a current collector is laminated with a polarizable electrode in which an activated carbon material is bonded with a fibrous binder, the conductive connection between the current collector and the polarizable electrode is enhanced. It is another object of the present invention to provide an electric double layer capacitor in which a cell can be easily assembled.

【0010】[0010]

【課題を解決するための手段】本発明は、分極性電極、
セパレータ、および集電体を積層した電気二重層キャパ
シタにおいて、分極性電極と集電体の間に加熱によって
流動性を発現する物質を存在させて加圧下で加熱した後
に冷却して接着した電気二重層キャパシタである。セパ
レータ面にも加熱によって流動性を発現する物質を存在
させた前記の電気二重層キャパシタである。また、加熱
によって流動性を発現する物質が、ポリエチレン、ポリ
プロピレンから選ばれる粉体、網体、多孔体の少なくと
もいずれかである前記の電気二重層キャパシタである。
SUMMARY OF THE INVENTION The present invention provides a polarizable electrode,
In an electric double-layer capacitor in which a separator and a current collector are laminated, a substance that exhibits fluidity by heating is present between a polarizable electrode and a current collector, and the electric element is heated under pressure, and then cooled and bonded. It is a multilayer capacitor. The electric double layer capacitor according to the above, wherein a substance which exhibits fluidity by heating is also present on the separator surface. Further, the electric double layer capacitor described above, wherein the substance that exhibits fluidity by heating is at least one of a powder, a net, and a porous body selected from polyethylene and polypropylene.

【0011】[0011]

【発明の実施の形態】本発明は、集電体と分極性電極と
を加熱によって流動性を発現する物質を点状あるいは線
状に存在させて加熱して流動させた状態で加圧した後
に、周囲温度に冷却した後に、圧力を取り除くことによ
って集電体と分極性電極とを接着したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a method in which a current collector and a polarizable electrode are heated and fluidized by applying a substance exhibiting fluidity by heating in the form of a dot or a line, and then pressurizing the material. After cooling to ambient temperature, the pressure is removed and the current collector and the polarizable electrode are bonded.

【0012】本発明では、集電体と分極性電極とを接着
する物質として、合成樹脂のような絶縁性物質を用いた
場合にも、接着性物質によって集電体と分極性電極との
間の接着力が高まるために、接着性物質を用いない場合
に比べて両者の間の導電接続を高めることが可能とな
る。
According to the present invention, even when an insulating material such as a synthetic resin is used as a material for bonding the current collector and the polarizable electrode, the adhesive material causes a gap between the current collector and the polarizable electrode. Since the adhesive strength of the two is increased, the conductive connection between the two can be enhanced as compared with the case where no adhesive substance is used.

【0013】本発明の電気二重層キャパシタを図面を参
照して説明する。図1は、本発明の電気二重層キャパシ
タの組立工程を説明する図である。図1(A)に示すよ
うに、表面を粗面化処理したアルミニウム板からなる集
電体1上に、加熱によって流動する接着性物質粒子2の
分散液を塗布する。分散液の塗布は、刷毛塗り等による
塗布方法、スクリーン印刷、孔版印刷等の印刷方法によ
って行うことができる。接着性物質粒子としては、ポリ
エチレン樹脂粒子、ポリプロピレン樹脂粒子等の熱可塑
性合成樹脂粒子を用いることができるが、熱によって流
動性を示し冷却によって固着して両者を接合する物質で
あって、電解液および印加電圧下で電気化学的に安定な
物質であれば、ゴム系の材料等も用いることができる。
The electric double layer capacitor of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining an assembling process of the electric double layer capacitor of the present invention. As shown in FIG. 1A, a dispersion of adhesive substance particles 2 flowing by heating is applied to a current collector 1 made of an aluminum plate whose surface has been roughened. The dispersion can be applied by a coating method such as brush coating or a printing method such as screen printing or stencil printing. As the adhesive substance particles, thermoplastic resin particles such as polyethylene resin particles and polypropylene resin particles can be used. Rubber-based materials and the like can also be used as long as they are electrochemically stable under an applied voltage.

【0014】次いで、図1(B)に示すように、接着性
物質粒子の分散液を塗布した集電体1の2個を、接着性
物質粒子の分散液を塗布した面に活性炭等からなる分極
性電極3を積層し、更に分極性電極の間にはセパレータ
4を積層し、それぞれの構成材料が位置ずれ等を生じな
いようにした状態で、集電体1の両側から加圧治具5に
よって加圧する。
Next, as shown in FIG. 1 (B), two current collectors 1 coated with the dispersion of the adhesive substance particles are made of activated carbon or the like on the surface coated with the dispersion of the adhesive substance particles. A pressing jig is applied from both sides of the current collector 1 in a state where the polarizable electrodes 3 are stacked, and a separator 4 is further stacked between the polarizable electrodes so that the respective constituent materials do not shift. Pressurized by 5.

【0015】接着性物質粒子の分散液の塗布量は、溶融
した状態で集電体の面積の0.1%〜10%を被覆する
量とすることが好ましく、0.5%〜2%とすることが
より好ましい。10%よりも多くなると、導電接触面積
が低下して電気抵抗が大きくなるので好ましくない。一
方、0.5%以下であると十分な接着力が得られなくな
る。
The coating amount of the dispersion of the adhesive substance particles is preferably an amount that covers 0.1% to 10% of the area of the current collector in a molten state, and 0.5% to 2%. Is more preferable. If it exceeds 10%, the conductive contact area decreases and the electric resistance increases, which is not preferable. On the other hand, if it is 0.5% or less, sufficient adhesive strength cannot be obtained.

【0016】また、接着性物質粒子の塗布した集電体1
の2個を、接着性物質粒子の分散液を塗布した面に活性
炭等からなる分極性電極3を積層し、更に分極性電極の
間にはセパレータ4を積層し、それぞれの構成材料が位
置ずれ等を生じないようにした状態で、集電体1の両側
から加圧治具5によって加圧する。加圧する圧力は0.
1kg/cm2 〜5kg/cm2 とすることが好まし
く、0.5kg/cm2 〜2kg/cm2 とすることが
より好ましい。
The current collector 1 coated with the adhesive substance particles
The polarizable electrode 3 made of activated carbon or the like is laminated on the surface to which the dispersion of the adhesive substance particles is applied, and the separator 4 is further laminated between the polarizable electrodes. The pressure is applied from both sides of the current collector 1 by the pressing jig 5 in a state in which the above-mentioned condition does not occur. The pressure to be applied is 0.
It is preferably set to 1kg / cm 2 ~5kg / cm 2 , and more preferably set to 0.5kg / cm 2 ~2kg / cm 2 .

【0017】次いで、加圧した状態で加熱装置において
加熱する。加熱温度は、使用する接着性物質粒子の種
類、セパレータ等の構成材料によって異なるが、ポリエ
チレン樹脂粒子を用いた場合には、120℃〜200℃
に保持することが好ましく、加熱時間は、0.5〜1時
間とすることが好ましい。加熱雰囲気は、空気雰囲気で
も良いが、アルミニウムの酸化が進行しないように、窒
素雰囲気等の不活性雰囲気で行うことが好ましい。
Next, heating is performed in a heating device in a pressurized state. The heating temperature varies depending on the type of the adhesive substance particles to be used and the constituent materials such as the separator. However, when polyethylene resin particles are used, the heating temperature is from 120 ° C to 200 ° C.
, And the heating time is preferably 0.5 to 1 hour. The heating atmosphere may be an air atmosphere, but is preferably performed in an inert atmosphere such as a nitrogen atmosphere so that oxidation of aluminum does not proceed.

【0018】次いで、室温まで冷却後に加圧治具を取り
除くと、図1(C)に示すように、集電体と分極性電極
が一体化した電気二重層キャパシタを得ることができ
る。また、本発明の電気二重層キャパシタにおいては、
集電体と分極性電極の間の接着のみではなく、分極性電
極とセパレータの間の接着においても同様に用いること
ができる。以上の説明では、接着性物質粒子を分散した
分散液を集電体上に塗布することを述べたが、集電体上
に限らず、集電体と接する分極性電極の表面に塗布して
も良い。
Next, when the pressurizing jig is removed after cooling to room temperature, an electric double layer capacitor in which the current collector and the polarizable electrode are integrated as shown in FIG. 1C can be obtained. Further, in the electric double layer capacitor of the present invention,
The present invention can be used not only for bonding between the current collector and the polarizable electrode but also for bonding between the polarizable electrode and the separator. In the above description, it was described that the dispersion liquid in which the adhesive substance particles were dispersed was applied on the current collector. However, not only on the current collector, but also on the surface of the polarizable electrode in contact with the current collector. Is also good.

【0019】また、接着性物質粒子の分散液の塗布に代
えて、図2に示すように、接着性物質からなる網状、繊
維状部材、多孔板等を積層して同様に用いることもでき
る。図2(A)は、集電体1上に接着性物質からなる網
状部材6を設けた例を示す図であり、図2(B)は、多
孔板7を設けた例を示す図である。網状部材としては、
ポリエチレン等を網状に成形したもの、繊維状の部材か
ら織布もしくは不織布を形成したもの、フィルム状の部
材の打ち抜き等によって多孔板としたもの等を用いるこ
とができる。網状の部材としては、網の部分が0.1%
〜30%のものを用いることが好ましく、0.5%〜1
0%のものがより好ましい。10%よりも多くなると、
導電接触面積が低下して電気抵抗が大きくなるので好ま
しくない。一方、0.5%以下であると十分な接着力が
得られなくなる。
In place of the application of the dispersion of the adhesive substance particles, as shown in FIG. 2, a net-like or fibrous member made of an adhesive substance, a perforated plate or the like can be laminated and used in the same manner. FIG. 2A is a diagram illustrating an example in which a net-like member 6 made of an adhesive substance is provided on the current collector 1, and FIG. 2B is a diagram illustrating an example in which a perforated plate 7 is provided. . As a mesh member,
Examples thereof include a net formed from polyethylene or the like, a woven or non-woven fabric formed from a fibrous member, a perforated plate formed by punching a film-like member, and the like. For the net-like member, the net part is 0.1%
-30% is preferred, and 0.5% -1%
0% is more preferable. If more than 10%
It is not preferable because the conductive contact area decreases and the electric resistance increases. On the other hand, if it is 0.5% or less, sufficient adhesive strength cannot be obtained.

【0020】以上のような方法によって、集電体と分極
性電極とを接着すると、外部からの加圧を維持しなくて
も集電体と分極性電極は電気的に接触を保ち、セルの等
価直列抵抗は加圧した場合と同等の値となる。
When the current collector and the polarizable electrode are adhered to each other by the above-described method, the current collector and the polarizable electrode can be kept in electrical contact with each other without maintaining external pressure, and the cell can be electrically connected. The equivalent series resistance has a value equivalent to that when pressure is applied.

【0021】また、外部からの加圧機構は、セルが大型
化するほど重厚なものになり、セルの単位重さあるいは
容積あたりの静電容量値を大いに損なうものであった
が、本発明の電気二重層キャパシタは、大型の電気二重
層キャパシタに適用することによって大きな効果を発揮
する。また、上記の説明では、平板状の集電体と分極性
電極とを積層した形状の電気二重層キャパシタについて
説明したが、帯状の集電体と分極性電極とを巻回した巻
回型の電気二重層キャパシタにおいても、帯状の集電体
と分極性電極との積層する際に、集電体と分極性電極と
を接着した後に、巻回することによって、組立時の部材
の数を少なくすることができる。
In addition, the external pressurizing mechanism becomes heavier as the cell becomes larger, and greatly impairs the capacitance value per unit weight or volume of the cell. The electric double layer capacitor exerts a great effect when applied to a large electric double layer capacitor. Further, in the above description, the electric double-layer capacitor having a shape in which a flat current collector and a polarizable electrode are laminated has been described. However, a winding type in which a belt-shaped current collector and a polarizable electrode are wound. Also in the electric double layer capacitor, when laminating the strip-shaped current collector and the polarizable electrode, the current collector and the polarizable electrode are bonded and then wound to reduce the number of members at the time of assembly. can do.

【0022】[0022]

【実施例】以下に実施例を示し本発明を説明する。 実施例1 活性炭粉末をポリテトラフルオロエチレンを結合剤とし
て形成した縦110mm、横60mm、厚さ0.5mm
の分極性電極の両面に粒径1μmのポリエチレン粉(旭
化成工業製 サンテックPAK)の10mgをエタノー
ル5mlに加えて十分に攪拌した懸濁液を塗布し、塗布
面に厚さ0.05mmのアルミニウムからなる集電体を
積層して、押さえ板によって1kg/cm2 の圧力を加
えた状態で、120℃において0.5時間加熱した後
に、圧力を加えた状態で冷却し、室温において押さえ板
を取り除き測定用セルを作製した。電気抵抗測定用セル
の両側の集電体から圧力を加えた状態で、電気抵抗を測
定し、圧力変化に対する電気抵抗の変化を図3に示す。
The present invention will be described below with reference to examples. Example 1 Activated carbon powder formed by using polytetrafluoroethylene as a binder: 110 mm long, 60 mm wide, 0.5 mm thick
A suspension obtained by adding 10 mg of polyethylene powder having a particle size of 1 μm (Suntech PAK manufactured by Asahi Kasei Kogyo Co., Ltd.) to 5 ml of ethanol and applying sufficient stirring to both surfaces of the polarizable electrode was coated with aluminum having a thickness of 0.05 mm. The current collector was laminated and heated at 120 ° C. for 0.5 hour with a pressure of 1 kg / cm 2 applied by a holding plate, then cooled with the pressure applied, and the holding plate was removed at room temperature. A measurement cell was prepared. The electric resistance was measured in a state where pressure was applied from the current collectors on both sides of the electric resistance measuring cell, and the change of the electric resistance with respect to the pressure change is shown in FIG.

【0023】比較例1 集電体の表面にポリエチレン粉の分散液を塗布せずに、
直接に分極性電極と積層して集電体の外側から圧力を加
えた状態で圧力変化に対する電気抵抗の変化を図3に示
す。
Comparative Example 1 A dispersion of polyethylene powder was not applied to the surface of the current collector.
FIG. 3 shows a change in electric resistance with respect to a change in pressure in a state where the electrode is directly laminated with the polarizable electrode and pressure is applied from outside the current collector.

【0024】[0024]

【発明の効果】本発明の電気二重層キャパシタは、電極
と集電体とが無数の接触点での接着により電気的に一体
化されたので、従来の機械的押し圧機構が不要となっ
た。その結果セル単位重量あたりのエネルギ密度が向上
した。また、構成部品を一体化させたので、組立も容易
となった。
According to the electric double layer capacitor of the present invention, the electrodes and the current collector are electrically integrated by bonding at innumerable contact points, so that a conventional mechanical pressing mechanism is not required. . As a result, the energy density per unit cell weight was improved. In addition, since the components are integrated, assembly is facilitated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の電気二重層キャパシタの組立
工程を説明する図である。
FIG. 1 is a diagram illustrating an assembly process of an electric double layer capacitor according to the present invention.

【図2】図2は、接着性物質からなる他の材料を用いた
例を説明する図である。
FIG. 2 is a diagram illustrating an example in which another material made of an adhesive substance is used.

【図3】図3は、圧力変化に対する電気抵抗の変化を示
す図である。
FIG. 3 is a diagram illustrating a change in electric resistance with respect to a change in pressure.

【符号の説明】[Explanation of symbols]

1…集電体、2…接着性物質粒子、3…分極性電極、4
…セパレータ、5…加圧治具、6…網状部材、7…多孔
DESCRIPTION OF SYMBOLS 1 ... Current collector, 2 ... Adhesive substance particles, 3 ... Polarizable electrode, 4
... Separator, 5 ... Pressing jig, 6 ... Net-like member, 7 ... Perforated plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 分極性電極、セパレータ、および集電体
を積層した電気二重層キャパシタにおいて、分極性電極
と集電体の間に加熱によって流動性を発現する物質を存
在させて加圧下で加熱した後に冷却して接着したことを
特徴とする電気二重層キャパシタ。
1. An electric double layer capacitor having a polarizing electrode, a separator and a current collector laminated thereon, wherein a substance which exhibits fluidity by heating is present between the polarizable electrode and the current collector and heated under pressure. An electric double layer capacitor characterized by being cooled and adhered after cooling.
【請求項2】 セパレータ面にも加熱によって流動性を
発現する物質を存在させたことを特徴とする請求項1記
載の電気二重層キャパシタ。
2. The electric double layer capacitor according to claim 1, wherein a substance which exhibits fluidity by heating is also present on the separator surface.
【請求項3】 加熱によって流動性を発現する物質が、
ポリエチレン、ポリプロピレンから選ばれる粉体、網
体、多孔体の少なくともいずれかであることを特徴とす
る請求項1記載の電気二重層キャパシタ。
3. A substance which exhibits fluidity by heating,
2. The electric double layer capacitor according to claim 1, wherein the electric double layer capacitor is at least one of a powder selected from polyethylene and polypropylene, a mesh body, and a porous body.
JP5541399A 1999-03-03 1999-03-03 Electric double-layer capacitor Pending JP2000252175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5541399A JP2000252175A (en) 1999-03-03 1999-03-03 Electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5541399A JP2000252175A (en) 1999-03-03 1999-03-03 Electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2000252175A true JP2000252175A (en) 2000-09-14

Family

ID=12997890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5541399A Pending JP2000252175A (en) 1999-03-03 1999-03-03 Electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2000252175A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912116B2 (en) 2002-03-29 2005-06-28 Tdk Corporation Electrochemical device and process for producing same
US7236349B2 (en) 2003-11-20 2007-06-26 Tdk Corporation Electrode for electrochemical capacitor and method for manufacturing the same, electrochemical capacitor and method for manufacturing the same
US7256099B2 (en) 2003-11-20 2007-08-14 Tdk Corporation Method of producing electrochemical device, and the electrochemical device
US7326491B2 (en) 2005-03-30 2008-02-05 Tdk Corporation Electrochemical device
JP2022100368A (en) * 2013-04-19 2022-07-05 株式会社半導体エネルギー研究所 Electrode manufacture method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912116B2 (en) 2002-03-29 2005-06-28 Tdk Corporation Electrochemical device and process for producing same
US7236349B2 (en) 2003-11-20 2007-06-26 Tdk Corporation Electrode for electrochemical capacitor and method for manufacturing the same, electrochemical capacitor and method for manufacturing the same
US7256099B2 (en) 2003-11-20 2007-08-14 Tdk Corporation Method of producing electrochemical device, and the electrochemical device
CN100424795C (en) * 2003-11-20 2008-10-08 Tdk株式会社 Method of producing electrochemical device, and the electrochemical device
US7326491B2 (en) 2005-03-30 2008-02-05 Tdk Corporation Electrochemical device
JP2022100368A (en) * 2013-04-19 2022-07-05 株式会社半導体エネルギー研究所 Electrode manufacture method
US11923499B2 (en) 2013-04-19 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same

Similar Documents

Publication Publication Date Title
US5948464A (en) Process of manufacturing porous separator for electrochemical power supply
US5882721A (en) Process of manufacturing porous separator for electrochemical power supply
KR102528734B1 (en) Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
JPH09506209A (en) Improved supercapacitor and manufacturing method thereof
JP2001250742A (en) Electric double layer capacitor and its manufacturing method
JPH10275747A (en) Electric double layer capacitor
CN102959769A (en) Thin flexible electrochemical energy cell
WO1999048163A1 (en) Lithium ion battery and method for forming the same
JP3341886B2 (en) Polarizing electrode, manufacturing method thereof, and electric double layer capacitor using the polarizing electrode
KR100387560B1 (en) Electric double layer condenser and manufacturing method thereof
KR20160048187A (en) Low resistance ultracapacitor electrode and manufacturing method thereof
US6339529B1 (en) Electric double layer capacitor and method of forming the same
KR20040100991A (en) Electric double layer capacitor and electric double layer capacitor stacked body
JP2000252175A (en) Electric double-layer capacitor
WO1999048162A1 (en) Lithium ion battery and method of manufacture thereof
JP2000285896A (en) Electrode structure for battery and capacitor and manufacture thereof
JP2007087680A (en) Electrode-polyelectrolyte film complex for electronic component and its manufacturing method
JP4587522B2 (en) Electric double layer capacitor
JP2006086148A (en) Electric double layer capacitor and its manufacturing method
JPH0845793A (en) Electric double layered capacitor
JPH09270370A (en) Electric double layer capacitor and its manufacturing method
JP3428079B2 (en) Energy conversion device, fuel cell, and method of manufacturing fuel cell
JP2001185452A (en) Electric double layer capacitor and its method of manufacture
JPH11283871A (en) Current collector for electric double layer capacitor and electric double layer capacitor provided with the current collector
JP3692735B2 (en) Current collector for electric double layer capacitor and electric double layer capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041109

A131 Notification of reasons for refusal

Effective date: 20041119

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050311

Free format text: JAPANESE INTERMEDIATE CODE: A02