JPH0574206B2 - - Google Patents

Info

Publication number
JPH0574206B2
JPH0574206B2 JP59157271A JP15727184A JPH0574206B2 JP H0574206 B2 JPH0574206 B2 JP H0574206B2 JP 59157271 A JP59157271 A JP 59157271A JP 15727184 A JP15727184 A JP 15727184A JP H0574206 B2 JPH0574206 B2 JP H0574206B2
Authority
JP
Japan
Prior art keywords
polarizable electrode
electrode body
capacitor
current collector
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59157271A
Other languages
Japanese (ja)
Other versions
JPS6136920A (en
Inventor
Ichiro Tanahashi
Atsushi Nishino
Akihiko Yoshida
Yasuhiro Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15727184A priority Critical patent/JPS6136920A/en
Priority to US06/848,376 priority patent/US4737889A/en
Priority to EP85902107A priority patent/EP0187163B1/en
Priority to PCT/JP1985/000182 priority patent/WO1986000750A1/en
Priority to DE8585902107T priority patent/DE3576878D1/en
Publication of JPS6136920A publication Critical patent/JPS6136920A/en
Publication of JPH0574206B2 publication Critical patent/JPH0574206B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、小型薄型大容量の湿式電気二重層キ
ヤパシタに関する。 (従来例の構成とその問題点) 第1図に従来のこの種のキヤパシタの1構成例
を示す。分極性電極体1として活性炭繊維布を用
いまた集電体2として、アルミニウム、チタン、
ニツケル等の金属層、または導電性樹脂層を形成
しセパレータ3を介し相対向させたのち電解液を
注入後ケース4と封口板5およびガスケツト6を
用い封口ケーシングした構成を有する。またここ
で分極性電極体1に用いる活性炭繊維は、フエノ
ール系(硬化ノボラツク繊維)、レーヨン系、ア
クリル系、ピツチ系の繊維布を直接炭化賦活する
か、一度炭化後さらに賦活して得られる。得られ
る活性炭繊維の電気抵抗、強度、賦活収率等を考
慮すると上記の繊維の中でフエノール系のものが
一番優れている。また金属の集電体2は、プラズ
マ溶射法やアーク溶射法あるいはガス溶射法によ
り、また導電性樹脂などの導電性物質からなる導
電性電極はスクリーン印刷法やスプレイ法、デイ
ツプ法のいずれかにより容易に形成できる。この
ような形状を有する分極性電極体1は所望の経の
円に打ちぬき可能であり第1図に示したコイン型
平板小型大容量キヤパシタを実現できる。またこ
の種の分極性電極体1はバインダーを用いないた
め内部抵抗を低減できるだけでなく、バインダー
により活性炭表面が被覆されることなく、二重層
形成有効面積のロスが小さく小型大容量化がはか
れる。 特に溶射法により集電体2を形成すると、溶射
金属層と活性炭繊維層との密着強度が強く、接触
抵抗が小さくなり、良好なキヤパシタ特性を得る
ことができる。 しかしながら、今日、電子機器特に半導体メモ
リの特性向上には著るしいものがあり、従来より
小容量を有するキヤパシタでも、その充放電特性
(急速充電)が優れているものが強く要求されて
いる。さらに機器の軽薄短小化に伴ない、二重層
キヤパシタもさらに小型、薄型化が要求されてお
り、従来の活性炭繊維布を用いているかぎりにお
いてキヤパシタの厚みを封口ケーシング後で1mm
以下におさえることが極めて困難である。 また第2図に活性炭繊維布7にアルミニウム等
の金属集電体層8を形成した分極性電極体1を示
す。このような構成の分極性電極体1は、集電体
層近くのa−a′方向における導電性は良好である
が、b−b′方向の導電性は非常に悪いと考えられ
る。したがつてインピーダンスも大きくなり、急
速充電には適さないキヤパシタとなる。またさら
に大型のキヤパシタを構成する場合、結合剤を必
要としない活性炭繊維布は体積効率が良好であ
る。フエノール系ノボラツク樹脂繊維から得られ
た活性炭繊維布は、比表面積が2500m2/gにまで
大きくすることができるが、2300m2/g以上にな
ると著しく機械的強度が低下し、バインダーを用
いないと、作業性が悪く実使用に耐えない。 (発明の目的) 本発明は、従来の電気二重層キヤパシタの充放
電特性を改善し、さらに薄型、小型大容量化する
ことを目的とする。 (発明の構成) 本発明は、上記の目的を達成するものであり、
分極性電極体が、活性炭繊維と金属短繊維および
結合媒体からなる紙状またはフエルト状のもので
あり、この分極性電極体の少なくとも片面に集電
体を有し、さらにこれらをセパレータを介して相
対向させ電解液を注入した構成を有する。 (実施例 1) 分極性電極体として フエノール系硬化ノボラツク樹脂繊維を炭化
賦活して得られた比表面積がBET法で2300
m2/g細孔径が20〜40Åに50%以上存在する活
性炭繊維。 通常「ビビリ振動法」と呼ばれる方法により
丸棒の金属を1〜20μφ、長さ1〜10mmのチツ
プ状にしたもの。 セルロース繊維とポリエチレンテレフタレー
ト、1:1からなる結合剤。 上記,,を重量比で75:5:20で十分混
ぜ、できうるだけそれぞれの材料の比重差による
不均一な分散が起こらないような条件下で湿式抄
紙法によりペーパ状の分極性電極体12を形成す
る。このようにして形成した分極性電極体12の
模式図を第3図に示す。図中9が活性炭繊維、1
0が金属短繊維、11がセルロース繊維とポリエ
チレンテレフタレートからなる結合剤を示す。さ
らにこの分極性電極体12の表面にプラズマ溶射
法を用い、ニツケルの集電体13をおよそ100〜
200μm形成する。[第5図B参照]このように集
電体13を形成後、第1図に示すように封口板
5、封口ケース4に集電体13をスポツト溶接
し、ポリプロピレン製のセパレータ14[第5図
B参照]を介し、電解液として20wt%の水酸化
カリウムを注入後、ガスケツト6で正、負極を絶
縁し、封口ケーシングする。本実施例における分
極性電極体12は表面抵抗が110Ω/cmであり直
径が14mm、厚みが800μmのものである。 第4図に本発明のキヤパシタを1Vの定電圧で
充電した時の充電カーブを示す。実線が本実施例
の、点線が金属短繊維10をまつたく含有しない
活性炭繊維9と結合剤11が75:25からなるもの
のキヤパシタの充電カーブである。 同図から明らかに、伝導性の良い金属短繊維1
0を含有すると急速充電が可能である。 また第1表に本キヤパシタの諸特性を示す。非
常に充放電特性に優れ、しかも電極が1mm以下で
ある小型大容量のキヤパシタであることがわか
る。
(Industrial Application Field) The present invention relates to a small, thin, large capacity wet type electric double layer capacitor. (Conventional Structure and its Problems) FIG. 1 shows an example of the structure of a conventional capacitor of this type. Activated carbon fiber cloth is used as the polarizable electrode body 1, and aluminum, titanium,
It has a structure in which a metal layer such as nickel or a conductive resin layer is formed and made to face each other with a separator 3 interposed therebetween, and then an electrolytic solution is injected and then a case 4, a sealing plate 5 and a gasket 6 are used to form a sealed casing. The activated carbon fibers used in the polarizable electrode body 1 can be obtained by directly carbonizing and activating phenolic (cured novolac fiber), rayon, acrylic, or pitch fiber cloth, or by further activating it after carbonization. Considering the electrical resistance, strength, activation yield, etc. of the activated carbon fibers obtained, phenolic fibers are the best among the above fibers. The metal current collector 2 is formed by plasma spraying, arc spraying, or gas spraying, and the conductive electrode made of a conductive material such as conductive resin is formed by screen printing, spraying, or dipping. Easy to form. The polarizable electrode body 1 having such a shape can be punched into a circle of a desired diameter, and the coin-shaped flat plate small-sized large-capacity capacitor shown in FIG. 1 can be realized. Furthermore, since this type of polarizable electrode body 1 does not use a binder, it not only can reduce internal resistance, but also the surface of the activated carbon is not covered with a binder, so the loss of the effective area for forming a double layer is small, and it can be made smaller and have a larger capacity. In particular, when the current collector 2 is formed by a thermal spraying method, the adhesive strength between the thermal sprayed metal layer and the activated carbon fiber layer is strong, the contact resistance is small, and good capacitor characteristics can be obtained. However, today, there has been a remarkable improvement in the characteristics of electronic devices, especially semiconductor memories, and there is a strong demand for capacitors with excellent charging and discharging characteristics (rapid charging) even if they have a smaller capacity than before. Furthermore, as devices become lighter, thinner, and shorter, double-layer capacitors are required to be even smaller and thinner.
It is extremely difficult to keep it below. Further, FIG. 2 shows a polarizable electrode body 1 in which a metal current collector layer 8 of aluminum or the like is formed on an activated carbon fiber cloth 7. It is thought that the polarizable electrode body 1 having such a structure has good conductivity in the a-a' direction near the current collector layer, but very poor conductivity in the b-b' direction. Therefore, the impedance becomes large, making the capacitor unsuitable for rapid charging. Furthermore, when constructing a larger capacitor, the activated carbon fiber cloth, which does not require a binder, has good volumetric efficiency. Activated carbon fiber cloth obtained from phenolic novolac resin fibers can have a specific surface area as large as 2,500 m 2 /g, but when it exceeds 2,300 m 2 /g, the mechanical strength decreases significantly, and it cannot be used without the use of a binder. , the workability is poor and it cannot withstand actual use. (Objective of the Invention) An object of the present invention is to improve the charging and discharging characteristics of a conventional electric double layer capacitor, and to make it thinner, smaller, and larger in capacity. (Structure of the invention) The present invention achieves the above objects,
The polarizable electrode body is paper-like or felt-like made of activated carbon fibers, short metal fibers, and a binding medium, and has a current collector on at least one side of the polarizable electrode body, and is further connected through a separator. It has a configuration in which the electrolyte solution is injected while facing each other. (Example 1) As a polarizable electrode body, the specific surface area obtained by carbonizing and activating phenolic hardened novolac resin fiber was 2300 by BET method.
m 2 /g Activated carbon fiber in which 50% or more of the pore diameters are in the range of 20 to 40 Å. A round metal bar made into chips with a diameter of 1 to 20 μφ and a length of 1 to 10 mm using a method usually called the "chattering vibration method." A binder consisting of cellulose fiber and polyethylene terephthalate in a 1:1 ratio. The above materials are thoroughly mixed in a weight ratio of 75:5:20, and a paper-like polarizable electrode body 12 is formed by a wet paper-making method under conditions that prevent non-uniform dispersion due to the difference in specific gravity of each material as much as possible. form. A schematic diagram of the polarizable electrode body 12 formed in this manner is shown in FIG. 9 in the figure is activated carbon fiber, 1
0 indicates short metal fibers, and 11 indicates a binder consisting of cellulose fibers and polyethylene terephthalate. Furthermore, a nickel current collector 13 of about 100 to
Form 200μm. [See FIG. 5B] After forming the current collector 13 in this way, the current collector 13 is spot-welded to the sealing plate 5 and the sealing case 4 as shown in FIG. After injecting 20 wt % potassium hydroxide as an electrolytic solution through a tube (see Figure B), the positive and negative electrodes are insulated with a gasket 6, and the casing is sealed. The polarizable electrode body 12 in this example has a surface resistance of 110 Ω/cm, a diameter of 14 mm, and a thickness of 800 μm. FIG. 4 shows a charging curve when the capacitor of the present invention is charged at a constant voltage of 1V. The solid line is the charging curve of the capacitor of this example, and the dotted line is the capacitor composed of activated carbon fibers 9 that do not contain any short metal fibers 10 and binder 11 in a ratio of 75:25. It is clear from the figure that the short metal fiber 1 has good conductivity.
If it contains 0, rapid charging is possible. Table 1 also shows various characteristics of this capacitor. It can be seen that this is a small, large-capacity capacitor with extremely excellent charge and discharge characteristics, and the electrode is less than 1 mm.

【表】 (実施例 2) 実施例1と同様第1図に示したコイン型キヤパ
シタを作製した。本実施例では、電解液にテトラ
エチルアンモニウムパークロレイトの1モルプロ
ピレンカーボネートからなる有機電解液を用い
た。また集電体13にはプラズマ溶射法でアルミ
ニウムの100〜300μm厚の層を形成した。 本実施例では、活性炭繊維9と金属短繊維10
の混合比を表2表にあげるように変えキヤパシタ
を作成した。第2表にはそれぞれのキヤパシタの
特性も付記する。表より、金属短繊維10を増加
すればするほど急速充電可能であるが容量は同目
付あたりの電極を比較すると小さくなる。したが
つて使用用途に応じてそれぞれの配合比を変えれ
ば良いと考えられる。また第2表より、フエノー
ル系の活性炭繊維9を用いたものの方が容易が大
きい。これはフエノール系のものが比表面積が
2000m2/g以上と大きくまた細孔分布が20〜40Å
に50%以上存在していることに帰因する。
[Table] (Example 2) As in Example 1, the coin-shaped capacitor shown in FIG. 1 was manufactured. In this example, an organic electrolyte consisting of 1 mol propylene carbonate of tetraethylammonium perchlorate was used as the electrolyte. Further, on the current collector 13, a layer of aluminum with a thickness of 100 to 300 μm was formed by plasma spraying. In this example, activated carbon fibers 9 and short metal fibers 10 are used.
Capacitors were created by changing the mixing ratio of 2 to 2 as shown in Table 2. Table 2 also includes the characteristics of each capacitor. From the table, the more short metal fibers 10 are added, the faster charging is possible, but the capacity becomes smaller when comparing electrodes with the same basis weight. Therefore, it is considered that the respective compounding ratios may be changed depending on the intended use. Also, from Table 2, the ease is greater in the case where the phenolic activated carbon fiber 9 is used. This is because the specific surface area of phenolic substances is
It is large at over 2000m 2 /g and has a pore distribution of 20 to 40 Å.
This is due to the fact that more than 50% of the

【表】 また、結合剤11にパルプだけを用いるより、
パルプとポリエチレンテレフタレートなどの混合
物を用いた方が腰の強い分極性電極体12とな
る。 (実施例 3) 集電体には、カーボンを導電性粒子とする導電
性ペイントを実施例2の第2表No.2の分極性電極
体12に塗布形成し、電解液には、ホウフツ化カ
リウムの1モルプロピレンカーボネート溶液を用
い、実施例1,2と同様なコイン型キヤパシタを
試作した。このキヤパシタの諸特性を第3表に示
す。導電性ペーストを集電体13としているた
め、実施例1,2に比べインピーダンスが大きく
なるが、他の特性は、ほぼ実施例1,2と同レベ
ルのキヤパシタが得られる。
[Table] In addition, rather than using only pulp as the binder 11,
The use of a mixture of pulp and polyethylene terephthalate results in a stronger polarizable electrode body 12. (Example 3) For the current collector, a conductive paint containing carbon as conductive particles was applied and formed on the polarizable electrode body 12 of Table 2 No. 2 of Example 2, and for the electrolytic solution, a conductive paint containing carbon as conductive particles was applied. A coin-shaped capacitor similar to Examples 1 and 2 was prototyped using a 1 mol potassium propylene carbonate solution. Table 3 shows the characteristics of this capacitor. Since the electrically conductive paste is used as the current collector 13, the impedance is larger than that of Examples 1 and 2, but a capacitor with other characteristics that is approximately on the same level as Examples 1 and 2 can be obtained.

【表】 (実施例 4) 実施例2の第2表No.4の組成を有し、目付が
300g/m2のペーパ状活性炭繊維9を分極性電極
体12とし、集電体13にはニツケルを約100μ
m形成した。そして第5図A,Bに示すような二
重層キヤパシタを作成した。第5図Bは第5図A
をA−A′で切断した時の断面を示す。第5図中
12はペーパ状約1mm厚の分極性電極体を、13
は、約100μm厚のニツケルからなる集電体を、
14は約1mm厚のポリプロピレン製不織布状セパ
レータを、さらに15はポリエチレンテレフタレ
ートにアイオノマー系接着剤が塗布してある熱溶
着性の100μm厚のフイルムシートである。また
16は、リード線である。17はニツケルからな
る集電板であり分極性電極体12をスポツト溶接
してある本実施例のキヤパシタは分極性電極体1
2の強度が強く、100×200mm2程度の大きさになつ
ても十分作業性良く組み立てることができる。本
実施例のキヤパシタの諸特性を第4表に示す。本
発明に用いた活性炭繊維9の比表面積は、2300
m2/gあり、これほど比表面積が大きくなると、
活性炭繊維布状ではもろすぎてキヤパシタに使用
することが困難である。しかしながら本発明の分
極性電極体12は、非常に腰も強くしつかりして
いる。なお、電解液には20wt%KOHを用いた。
[Table] (Example 4) It has the composition shown in Table 2 No. 4 of Example 2, and has a basis weight of
300 g/m 2 of paper-like activated carbon fiber 9 is used as the polarizable electrode body 12, and the current collector 13 is made of approximately 100 μm of nickel.
m was formed. Then, a double layer capacitor as shown in FIGS. 5A and 5B was created. Figure 5B is Figure 5A
A cross section taken along A-A' is shown. In Fig. 5, 12 indicates a paper-like polarizable electrode body approximately 1 mm thick;
is a current collector made of nickel with a thickness of about 100 μm,
Reference numeral 14 is a polypropylene non-woven separator having a thickness of approximately 1 mm, and 15 is a heat-fusible film sheet having a thickness of 100 μm and is made of polyethylene terephthalate coated with an ionomer adhesive. Further, 16 is a lead wire. 17 is a current collector plate made of nickel, and the capacitor of this embodiment has a polarizable electrode body 12 spot welded to it.
2 is strong and can be assembled with sufficient workability even when the size is about 100 x 200 mm 2 . Table 4 shows various characteristics of the capacitor of this example. The specific surface area of the activated carbon fiber 9 used in the present invention is 2300
m 2 /g, and when the specific surface area becomes this large,
Activated carbon fiber cloth is too brittle to be used in capacitors. However, the polarizable electrode body 12 of the present invention is very stiff and stiff. Note that 20 wt% KOH was used as the electrolyte.

【表】 (実施例 5) 実施例2の第2表No.2の組成を有し、第6図に
示すように、目付が200g/m2のペーパ状活性炭
繊維9を分極性電極体18,19とし、集電体2
0にはアルミニウムを分極性電極体18,19の
それぞれの両面に約100μm形成した。そしてポ
リプロピレン製のセパレータ21を介し、さらに
過塩素酸テトラエチルアンモニウムの1モルプロ
ピレンカーボネート溶液を電解液に用いた。そし
て分極性電極体18,19とセパレータ21を巻
きとり、円筒形のキヤピシタを作製した。本発明
の分極性電極体正極側18、負極側19は、厚み
がおよそ400μmと薄いため、厚み方向の抵抗が
小さく、充放電特性に優れたものとなる。リード
線22は、分極性電極体18,19にかしめて取
りつけた。 第6図中、23がケース、24が封口パツキン
グ、25がガスケツトである。 本発明のキヤパシタの諸特性を第5表に示す。
第5表からわかるように、本実施例のキヤパシタ
も充放電特性良好な小型大容量であることがわか
る。なお分極性電極体の寸法は30×200mm2である。
[Table] (Example 5) Paper-like activated carbon fibers 9 having the composition shown in Table 2 No. 2 of Example 2 and having a basis weight of 200 g/m 2 were added to the polarizable electrode body 18 as shown in FIG. , 19, and current collector 2
In No. 0, aluminum was formed to a thickness of about 100 μm on both sides of each of the polarizable electrode bodies 18 and 19. A 1 mol propylene carbonate solution of tetraethylammonium perchlorate was then used as an electrolytic solution via a polypropylene separator 21. Then, the polarizable electrode bodies 18 and 19 and the separator 21 were wound up to produce a cylindrical capacitor. The positive electrode side 18 and negative electrode side 19 of the polarizable electrode body of the present invention have a thin thickness of about 400 μm, so the resistance in the thickness direction is small and the charge/discharge characteristics are excellent. The lead wire 22 was attached to the polarizable electrode bodies 18 and 19 by caulking. In FIG. 6, 23 is a case, 24 is a sealing packing, and 25 is a gasket. Table 5 shows various characteristics of the capacitor of the present invention.
As can be seen from Table 5, the capacitor of this example is also small and large in capacity with good charging and discharging characteristics. Note that the dimensions of the polarizable electrode body are 30 x 200 mm2 .

【表】 (発明の効果) 以上のように、本発明によれば、充放電特性に
優れ、作業性の良好な小型大容量の電気二重層キ
ヤパシタが得られる。
[Table] (Effects of the Invention) As described above, according to the present invention, a small, large-capacity electric double layer capacitor with excellent charge/discharge characteristics and good workability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の電気二重層キヤパシタの1構
成図、第2図,第3図は、分極性電極体構成図、
第4図は充電特性を示す図、第5図A,Bは本発
明のキヤパシタの1構成例を示す図、第6図は本
発明のキヤパシタの1構成例を示す図である。 1…分極性電極体、2…集電体、3…セパレー
タ、4…ケース、5…封口板、6…ガスケツト、
7…活性炭繊維布、8…金属集電体層、9…活性
炭繊維、10…金属短繊維、11…セルロース繊
維とポリエチレンテレフタレート結合剤、12…
ペーパ状分極性電極体、13…集電体、14…ポ
リプロピレン製セパレータ、15…フイルムシー
ト、16…リード線、17…集電板、18…正極
側分極性電極体、19…負極側分極性電極体、2
0…集電体、21…セパレータ、22…リード
線、23…ケース、24…封口パツキング、25
…ガスケツト。
FIG. 1 is a configuration diagram of a conventional electric double layer capacitor, and FIGS. 2 and 3 are configuration diagrams of a polarizable electrode body.
FIG. 4 is a diagram showing charging characteristics, FIGS. 5A and 5B are diagrams showing one configuration example of the capacitor of the present invention, and FIG. 6 is a diagram showing one configuration example of the capacitor of the present invention. DESCRIPTION OF SYMBOLS 1... Polarizable electrode body, 2... Current collector, 3... Separator, 4... Case, 5... Sealing plate, 6... Gasket,
7...Activated carbon fiber cloth, 8...Metal current collector layer, 9...Activated carbon fiber, 10...Metal staple fiber, 11...Cellulose fiber and polyethylene terephthalate binder, 12...
Paper-like polarizable electrode body, 13... Current collector, 14... Polypropylene separator, 15... Film sheet, 16... Lead wire, 17... Current collector plate, 18... Positive side polarizable electrode body, 19... Negative side polarizability Electrode body, 2
0... Current collector, 21... Separator, 22... Lead wire, 23... Case, 24... Sealing packing, 25
...Gasket.

Claims (1)

【特許請求の範囲】 1 分極性電極体と電解質界面で形成される電気
二重層を利用した電気二重層キヤパシタにおい
て、 活性炭繊維,金属短繊維および結合媒体からな
る紙状またはフエルト状の分極性電極体の少なく
とも片面に集電体を有するものを、セパレータを
介して相対向させ、且つ、前記分極性電極体に電
解液を注入してなる電気二重層キヤパシタ。 2 前記分極性電極体を構成する前記結合媒体
は、パルプのような天然繊維またはポリエチレン
テレフタレートのような合成樹脂であることを特
徴とする特許請求の範囲第1項記載の電気二重層
キヤパシタ。 3 前記分極性電極体の少なくとも片面に形成さ
れた前記集電体は、導電性ケースと接触すること
を特徴とする特許請求の範囲第1項記載の電気二
重層キヤパシタ。
[Claims] 1. In an electric double layer capacitor that utilizes an electric double layer formed between a polarizable electrode body and an electrolyte interface, a paper-like or felt-like polarizable electrode made of activated carbon fibers, short metal fibers, and a binding medium; An electric double layer capacitor comprising two electrode bodies each having a current collector on at least one side of the capacitor, which are opposed to each other with a separator interposed therebetween, and an electrolytic solution is injected into the polarizable electrode body. 2. The electric double layer capacitor according to claim 1, wherein the binding medium constituting the polarizable electrode body is a natural fiber such as pulp or a synthetic resin such as polyethylene terephthalate. 3. The electric double layer capacitor according to claim 1, wherein the current collector formed on at least one side of the polarizable electrode body is in contact with a conductive case.
JP15727184A 1984-07-17 1984-07-30 Electric double layer capacitor Granted JPS6136920A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15727184A JPS6136920A (en) 1984-07-30 1984-07-30 Electric double layer capacitor
US06/848,376 US4737889A (en) 1984-07-17 1985-04-10 Polarizable electrode body and method for its making
EP85902107A EP0187163B1 (en) 1984-07-17 1985-04-10 Polarizable electrode body, a method for its making and an electric double-layer capacitor comprising the polarizable electrode body
PCT/JP1985/000182 WO1986000750A1 (en) 1984-07-17 1985-04-10 Polarizable electrode and production method thereof
DE8585902107T DE3576878D1 (en) 1984-07-17 1985-04-10 POLARIZABLE ELECTRODE BODY, METHOD FOR THE PRODUCTION THEREOF AND ELECTRIC DOUBLE LAYER CAPACITOR WITH THE POLARIZABLE ELECTRODE BODY.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15727184A JPS6136920A (en) 1984-07-30 1984-07-30 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPS6136920A JPS6136920A (en) 1986-02-21
JPH0574206B2 true JPH0574206B2 (en) 1993-10-18

Family

ID=15646005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15727184A Granted JPS6136920A (en) 1984-07-17 1984-07-30 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JPS6136920A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184819A (en) * 1984-10-02 1986-04-30 松下電器産業株式会社 Electric double-layer capacitor
JP2674057B2 (en) * 1988-02-05 1997-11-05 松下電器産業株式会社 Method of manufacturing polarizable electrodes

Also Published As

Publication number Publication date
JPS6136920A (en) 1986-02-21

Similar Documents

Publication Publication Date Title
US4737889A (en) Polarizable electrode body and method for its making
JPH11121301A (en) Electric double layer capacitor
JP3591055B2 (en) Electric double layer capacitor, method of manufacturing the same, and method of manufacturing electrodes therefor
JP2013243205A (en) Electrochemical cell
JPH08250380A (en) Polarizable electrode and its manufacture
JP2002270470A (en) Electric double-layered capacitor
JPH0574206B2 (en)
JPH0845793A (en) Electric double layered capacitor
JPH0330974B2 (en)
JPH08119615A (en) Activated-carbon sheet and electric-double-layer capacitor
JPS63110622A (en) Polarizing electrode
JPS6325694B2 (en)
JPH04286108A (en) Electric double layer capacitor
JPS6134918A (en) Electric double layer capacitor
JP2000068166A (en) Electric-double-layer capacitor
JPH0213453B2 (en)
JPH0213454B2 (en)
JPS6184819A (en) Electric double-layer capacitor
JP3070796B2 (en) Manufacturing method of polarized electrode
JPH0213455B2 (en)
JPS6258131B2 (en)
JPS6314859B2 (en)
JPS61214419A (en) Electric double layer capacitor
JP2002289481A (en) Activated carbonaceous structure and electric double layer capacitor using the same
JPH081880B2 (en) Method of manufacturing polarizable electrodes