JPH081880B2 - Method of manufacturing polarizable electrodes - Google Patents

Method of manufacturing polarizable electrodes

Info

Publication number
JPH081880B2
JPH081880B2 JP62212093A JP21209387A JPH081880B2 JP H081880 B2 JPH081880 B2 JP H081880B2 JP 62212093 A JP62212093 A JP 62212093A JP 21209387 A JP21209387 A JP 21209387A JP H081880 B2 JPH081880 B2 JP H081880B2
Authority
JP
Japan
Prior art keywords
activated carbon
carbon fiber
polarizable electrode
paper
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62212093A
Other languages
Japanese (ja)
Other versions
JPS6454721A (en
Inventor
一郎 棚橋
昭彦 吉田
西野  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62212093A priority Critical patent/JPH081880B2/en
Publication of JPS6454721A publication Critical patent/JPS6454721A/en
Publication of JPH081880B2 publication Critical patent/JPH081880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気二重層キャパシタや電池あるいはエレ
クトロクロミックディスプレイに用いる分極性電極の製
造法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a polarizable electrode used in an electric double layer capacitor, a battery or an electrochromic display.

従来の技術 従来の技術を電気二重層キャパシタを例にとり、説明
する。ペーパ状の分極性電極に黒鉛を含んだものとして
は特開昭61-84819号公報に示されているものがある。こ
のものは活性炭繊維とバインダーとから構成されたペー
パ状の分極性電極1の片面にアルミニウム,ニッケル等
の集電体2を形成し、その一対(2個)をセパレータ3
を介して相対向させ、これらを電解液とともに金属ケー
ス4と封口板5および両者を絶縁するガスケット6によ
って図に示す状態に密封したものである。
2. Description of the Related Art Conventional technology will be described by taking an electric double layer capacitor as an example. An example of a paper-like polarizable electrode containing graphite is disclosed in JP-A-61-84819. This is a paper-like polarizable electrode 1 composed of activated carbon fibers and a binder, and a current collector 2 of aluminum, nickel or the like is formed on one surface of the polarizable electrode 1.
And a metal case 4, a sealing plate 5, and a gasket 6 that insulates the two from each other and is sealed together with the electrolytic solution in the state shown in the figure.

また活性炭繊維布を分極性電極に用いるものは、比表
面積が2500m2/gと大きくでき、また不純物も少なく電気
二重層キャパシタに適しているが、活性炭粉末と比較す
ると大変高価であり、加圧しないと空隙率が90%以上占
めており、(加圧しても60%以上占める)空間部分のロ
スが大きい。以上のように空間部分が多いため、繊維ど
うしの接触が少なく、接触抵抗が大きくなる。
Also, the one using activated carbon fiber cloth for the polarizable electrode has a large specific surface area of 2500 m 2 / g and is suitable for electric double layer capacitors with few impurities, but it is much more expensive than activated carbon powder and Otherwise, the porosity occupies 90% or more, and the loss in the space (60% or more even if pressurized) is large. As described above, since there are many spaces, the fibers do not come into contact with each other and the contact resistance increases.

さらに活性炭粉末をフッ素樹脂で結合させ、集電体に
保持させて分極性電極としたものもある。
Further, there is also one in which activated carbon powder is bound with a fluororesin and held on a current collector to form a polarizable electrode.

発明が解決しようとする問題点 上記のような構成の分極性電極は、ペーパ状の場合強
度を高めるためにバインダーの含有量が多くなり、抵抗
値が大きいためインピーダンスも高くなり、また純度が
低く使用電圧を高くできない。また活性炭繊維布の場合
には、空間効率が低く高価である。活性炭粉末を用いた
場合でもバインダーの含有量が多くなり抵抗値が大きく
なる。さらに上記のような構成では分極性電極の加工時
に粉塵が飛散し、ケーシング時に問題が生じる。
Problems to be Solved by the Invention In the polarizable electrode having the above-described structure, in the case of a paper-like material, the content of the binder is increased to increase the strength, the resistance value is high, the impedance is also high, and the purity is low. The working voltage cannot be increased. Further, the activated carbon fiber cloth is low in space efficiency and expensive. Even when activated carbon powder is used, the content of the binder increases and the resistance value increases. Further, with the above-mentioned structure, dust is scattered during processing of the polarizable electrode, which causes a problem during casing.

問題点を解決するための手段 本発明は、上記問題点を解決するため黒鉛微粉末,活
性炭繊維,パルプおよび分散剤の混合物を抄造して得た
活性炭繊維ペーパをコロイダルカーボン溶液,フッ素樹
脂溶液あるいはこれらの混合溶液に浸漬しその後乾燥し
て活性炭繊維ペーパに黒鉛とフッ素樹脂を担持させるも
のである。
Means for Solving the Problems In order to solve the above problems, the present invention uses activated carbon fiber paper obtained by making a mixture of graphite fine powder, activated carbon fiber, pulp and a dispersant into a colloidal carbon solution, a fluororesin solution or It is immersed in these mixed solutions and then dried to support graphite and fluororesin on activated carbon fiber paper.

作用 上記の構成により、分極性電極の活性炭繊維密度を高
め、抵抗を低減してエネルギー密度を高くするととも
に、急速充電に適し、信頼性の高い分極性電極を実現す
ることができる。またケーシング時に分極性電極の崩壊
あるいは粉塵の飛散がなくなる。
Action With the above configuration, it is possible to increase the activated carbon fiber density of the polarizable electrode, reduce the resistance to increase the energy density, and realize a highly reliable polarizable electrode suitable for rapid charging. In addition, there is no collapse of the polarizable electrode or scattering of dust during casing.

実施例 以下本発明のキャパシタの実施例を説明する。なお、
本発明のキャパシタの構成は、図に示したものと同様で
ある。
Examples Examples of capacitors of the present invention will be described below. In addition,
The structure of the capacitor of the present invention is similar to that shown in the figure.

(実施例1) 黒鉛微粉末(平均粒径5ミクロンの鱗状黒鉛)、活性
炭繊維(長さ2〜3mm、比表面積2000m2/g(フェノール
系))、パルプ(クラフトパルプ)、分散剤(ポリエチ
レングリコール)とを抄造し黒鉛微粉末,活性炭繊維,
パルプがそれぞれ重量比で20対65対15の活性炭繊維ペー
パ(厚み550ミクロン、坪量130g/m2)を得た。分散剤は
ペーパにほとんど残留していなかった。このものをコロ
イダルカーボン水溶液に浸漬後130℃で0.5時間熱風乾燥
した。ここで用いたコロイダルカーボンは、サブミクロ
ンの黒鉛粒子と微量のアンモニアおよび2%程度の有機
バインダーから成り、現在主にブラウン管の内壁に塗装
し、集電皮膜として使用されている。上記の加工物を次
に0.5重量%濃度のフッ素樹脂水溶液に浸漬した後、遠
赤外線を用いて150℃で乾燥した。このような成型体を
直径6mmに打ち抜いたところ、ほとんど粉塵は生じなか
った。コロイダルカーボンの担持量は20g/m2であり、繊
維間に皮膜を形成して繊維を連結している。このように
して得られた分極性電極1の片面に集電体2としてアル
ミニウム層をプラズマ溶射法を用い200μmの厚さに形
成し、図に示したコイン型キャパシタを構成した。な
お、セパレータ3には、直径10mmのポリプロピレン製多
孔膜を用いた。このセパレータを介し上記2個の分極性
電極1を相対向させた後、テトラエチルアンモニウムの
ホウフッ化塩(Et4NBF4)を電解質とした1モル/lのプ
ロピレンカーボネートを電解液として注入後封口し、コ
イン型キャパシタを作成した。このキャパシタを2.8Vで
充電後1mAで定電流放電した。これを70℃の雰囲気下で
常時2.8Vを印加したところの初期容量に対する1000時間
後の容量減少率、初期の容量、内部抵抗を第1表のNo.1
で示した。No.2は本発明においてフッ素樹脂処理のみ行
っていないもの、No.3,4は従来の活性炭繊維布および活
性炭繊維ペーパに黒鉛を担持させたキャパシタの特性を
示している。本発明のものは特に信頼性の面で従来のも
のに比べ優れている。さらにフッ素樹脂溶液の濃度は5
重量%以上を用いるとペーパの抵抗が増大するため、キ
ャパシタの特性は逆に悪くなった。
(Example 1) Graphite fine powder (scaly graphite having an average particle size of 5 microns), activated carbon fibers (length 2 to 3 mm, specific surface area 2000 m 2 / g (phenolic)), pulp (kraft pulp), dispersant (polyethylene) Glycol) and graphite fine powder, activated carbon fiber,
Activated carbon fiber paper (thickness: 550 μm, basis weight: 130 g / m 2 ) in which the weight ratio of pulp was 20:65:15 was obtained. Almost no dispersant remained on the paper. This was immersed in an aqueous colloidal carbon solution and then dried with hot air at 130 ° C. for 0.5 hour. The colloidal carbon used here consists of submicron graphite particles, a trace amount of ammonia and an organic binder of about 2%, and is currently used mainly as a current collector coating on the inner wall of a cathode ray tube. The above processed product was then immersed in a 0.5 wt% concentration fluororesin aqueous solution and then dried at 150 ° C. using far infrared rays. When such a molded product was punched out to a diameter of 6 mm, almost no dust was generated. The amount of colloidal carbon supported was 20 g / m 2 , and a film was formed between the fibers to connect the fibers. An aluminum layer was formed as a collector 2 on one surface of the polarizable electrode 1 thus obtained to a thickness of 200 μm by a plasma spraying method to form the coin-type capacitor shown in the figure. As the separator 3, a polypropylene porous film having a diameter of 10 mm was used. After the two polarizable electrodes 1 were opposed to each other via this separator, 1 mol / l propylene carbonate using tetrafluoroammonium borofluoride (Et 4 NBF 4 ) as an electrolyte was injected as an electrolytic solution and then sealed. , A coin type capacitor was created. This capacitor was charged at 2.8 V and then discharged at a constant current of 1 mA. Table 1 shows the capacity reduction rate after 1000 hours, the initial capacity, and the internal resistance with respect to the initial capacity when 2.8 V was constantly applied in an atmosphere of 70 ° C.
Indicated by. No. 2 shows the characteristics of the present invention in which only the fluororesin treatment is not performed, and Nos. 3 and 4 show the characteristics of the conventional activated carbon fiber cloth and the capacitor in which graphite is supported on the activated carbon fiber paper. The present invention is superior to the conventional one particularly in terms of reliability. Furthermore, the concentration of the fluororesin solution is 5
If the amount of the material used is more than 10% by weight, the resistance of the paper increases and the characteristics of the capacitor deteriorate.

(実施例2) 黒鉛微粉末(平均粒径5ミクロンの鱗状黒鉛)、活性
炭繊維(長さ2〜3mm、比表面積2000m2/gのフェノール
系)、パルプ(クラフトパルプ)、分散剤(ポリエチレ
ングリコール)とさらにピッチ系炭素繊維(2000℃で焼
成、長さ2〜3mm)とを抄造して黒鉛微粉末,活性炭繊
維,パルプ,炭素繊維がそれぞれ20対35対10対35の活性
炭繊維ペーパ(厚み550ミクロン、坪量130g/m2)を得
た。分散剤はペーパにほとんど残留していなかった。こ
のものをコロイダルカーボン水溶液に浸漬後130℃で0.5
時間熱風乾燥、次に0.5重量%のフッ素樹脂水溶液に浸
漬した後、遠赤外線を用いて150℃で乾燥する。このよ
うな成型体を直径6mmに打ち抜いたところ、発生粉塵は
実施例1のものよりさらに少なかった。なお、コロイダ
ルカーボンの担持量は10g/m2であった。このようにして
得られた分極性電極の片面にアルミニウム層をプラズマ
溶射法を用い200μm形成し図に示したコイン型キャパ
シタを構成した。セパレータには、直径10mmのポリプロ
ピレン製多孔膜を用いた。このセパレータを介し上記分
極性電極を相対向させた後、テトラエチルアンモニウム
のホウフッ化塩(Et4NBF4)を電解質とした1モル/lの
プロピレンカーボネートを電解液として注入後封口し、
コイン型キャパシタを作成した。このキャパシタを2.8V
で充電後1mAで定電流放電し特性を得た。容量は0.13F、
内部抵抗38Ω、また70℃の雰囲気下で常時2.8Vを印加し
たところ初期容量に対する1000時間後の容量減少率はナ
イマス2.0%であった。本発明のものは特に内部抵抗が
低く、信頼性の面で従来のものに比べ優れている。
(Example 2) Graphite fine powder (scaly graphite having an average particle size of 5 microns), activated carbon fiber (length 2 to 3 mm, specific surface area 2000 m 2 / g phenolic), pulp (kraft pulp), dispersant (polyethylene glycol) ) And pitch-based carbon fiber (fired at 2000 ° C, length 2 to 3 mm) into paper, and graphite fine powder, activated carbon fiber, pulp, and carbon fiber are 20: 35: 10: 35 activated carbon fiber paper (thickness). 550 micron, basis weight 130 g / m 2 ) was obtained. Almost no dispersant remained on the paper. After soaking this in a colloidal carbon solution, 0.5 at 130 ℃
After being dried with hot air for an hour, it is immersed in a 0.5 wt% fluororesin aqueous solution, and then dried at 150 ° C. using far infrared rays. When such a molded body was punched out to a diameter of 6 mm, the generated dust was even smaller than that of Example 1. The amount of colloidal carbon supported was 10 g / m 2 . An aluminum layer having a thickness of 200 μm was formed on one surface of the polarizable electrode thus obtained by a plasma spraying method to form the coin-type capacitor shown in the figure. A polypropylene porous membrane having a diameter of 10 mm was used as the separator. After making the polarizable electrodes face each other through this separator, 1 mol / l propylene carbonate using tetraethylammonium borofluoride (Et 4 NBF 4 ) as an electrolyte was injected as an electrolytic solution and then sealed.
A coin type capacitor was created. This capacitor is 2.8V
After charging at 1, the battery was discharged at a constant current of 1 mA and the characteristics were obtained. The capacity is 0.13F,
When the internal resistance was 38Ω and 2.8V was constantly applied in an atmosphere of 70 ° C, the capacity reduction rate after 1000 hours was 2.0% of the initial capacity. The present invention has a particularly low internal resistance and is superior to the conventional one in terms of reliability.

同様な効果はフェルト状の活性炭繊維についても見ら
れた。
A similar effect was seen with felt-like activated carbon fibers.

(実施例3) 実施例1,2に用いた活性炭繊維ペーパ製分極性電極
を、それぞれあらかじめ比重1.1のコロイダルカーボン
水溶液と0.5重量%のフッ素樹脂水溶液とを混合した水
溶液に浸漬した後遠赤外層線もちいて150℃で乾燥し
た。このような成型体を直径6mmに打ち抜いたときの発
生粉塵は実施例1,2と同様少く、また黒鉛の担持量にも
変化は見られなかった。このようにして得られた分極性
電極を用いてコイン型キャパシタを構成したところ、70
℃の雰囲気下で常時2.8Vを印加した時の初期容量に対す
る1000時間後の容量減少率、初期の容量、内部抵抗いず
れも実施例1,2と変わらなかった。このようにコロイダ
ルカーボンとフッ素の担持を同時に行うことができる。
(Example 3) The polarizable electrodes made of activated carbon fiber paper used in Examples 1 and 2 were respectively immersed in an aqueous solution prepared by previously mixing a colloidal carbon aqueous solution having a specific gravity of 1.1 and a fluororesin aqueous solution of 0.5% by weight, and then a far infrared layer. A line was used to dry at 150 ° C. Dust generated when such a molded body was punched out to a diameter of 6 mm was as small as in Examples 1 and 2, and the amount of graphite carried was not changed. When a coin-type capacitor was constructed using the polarizable electrodes thus obtained,
The capacity reduction rate after 1000 hours, the initial capacity, and the internal resistance were the same as those in Examples 1 and 2 with respect to the initial capacity when 2.8 V was constantly applied in the atmosphere of ° C. In this way, colloidal carbon and fluorine can be loaded simultaneously.

(実施例4) 実施例1,2に用いた活性炭繊維布とペーパ状活性炭繊
維分極性電極を、それぞれあらかじめ比重1.1のコロイ
ダルカーボン水溶液と2.0重量%のフッ素樹脂水溶液と
を混合した水溶液に浸漬後遠赤外線を用いて150℃で乾
燥し、さらに150℃圧力110kg/cm2で10分間加熱,加圧し
た。厚みはそれぞれ0.4mmになった。またこのような成
型体を直径6mmに打ち抜いたときの発生粉塵は実施例1,
2,3に比べ著しく少なくなった。このようにして得られ
た分極性電極を用いてコイン型キャパシタを構成したと
ころ、70℃の雰囲気下で常時2.8Vを印加した時の初期容
量に対する1000時間後の容量減少率、初期の容量、内部
抵抗いずれも実施例1,2,3と比較したところ信頼性のみ1
0〜20%良くなっていた。
Example 4 After immersing the activated carbon fiber cloth and the paper-like activated carbon fiber polarizable electrode used in Examples 1 and 2 in an aqueous solution in which a colloidal carbon aqueous solution having a specific gravity of 1.1 and a fluororesin aqueous solution of 2.0 wt% were mixed in advance, respectively. It was dried at 150 ° C. using far infrared rays, and further heated and pressed at 150 ° C. and pressure of 110 kg / cm 2 for 10 minutes. The thickness was 0.4 mm each. In addition, the dust generated when such a molded body was punched out to a diameter of 6 mm was
It was significantly less than that of a few. When a coin-type capacitor was constructed using the polarizable electrodes thus obtained, the capacity reduction rate after 1000 hours with respect to the initial capacity when 2.8 V was constantly applied in an atmosphere of 70 ° C., the initial capacity, All internal resistances are only reliability when compared with Examples 1, 2 and 3 1
It was 0-20% better.

(実施例5) 正極側分極性電極として実施例1のNo.1と同様な電極
を用い、負極としてSnとCdの比が85:15の合金(ウッド
合金)にリチウムを吸蔵させた非分極性電極を用いて電
気二重層キャパシタを作成した。本実施例においても他
の構成材料は実施例1と同様である。このキャパシタは
3Vの電圧、0.23Fの容量を示した。
(Example 5) An electrode similar to that of No. 1 of Example 1 was used as the polarizable electrode on the positive electrode side, and an alloy (Wood alloy) having a Sn: Cd ratio of 85:15 was used as a negative electrode. An electric double layer capacitor was prepared using a polar electrode. Also in this embodiment, the other constituent materials are the same as in the first embodiment. This capacitor
It showed a voltage of 3V and a capacity of 0.23F.

本発明の分極性電極は、上記のような電気二重層キャ
パシタのみならず、電池やエレクトロクロミックディス
プレイ等に広く使用できる。
The polarizable electrode of the present invention can be widely used not only in the electric double layer capacitor as described above, but also in batteries, electrochromic displays and the like.

発明の効果 以上のように、本発明によれば従来よりエネルギー密
度の高い、低抵抗でしかも均一な分極性電極が得られ
る。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to obtain a uniform polarizable electrode having a higher energy density, lower resistance, and lower resistance.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の分極性電極を用いた電気二重層キャパシタ
の構成を示す図である。 1……分極性電極、2……集電体、3……セパレータ、
4……ガスケット、5……封口板、6……ケース。
The figure is a diagram showing a configuration of an electric double layer capacitor using the polarizable electrode of the present invention. 1 ... Polarizable electrode, 2 ... Current collector, 3 ... Separator,
4 ... Gasket, 5 ... Seal plate, 6 ... Case.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−67617(JP,A) 特開 昭61−26209(JP,A) 特開 昭62−40011(JP,A) 特開 昭61−26207(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-59-67617 (JP, A) JP-A-61-26209 (JP, A) JP-A-62-40011 (JP, A) JP-A-61- 26207 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】黒鉛微粉末、活性炭繊維、パルプおよび分
散剤の混合物を抄造して得た活性炭繊維ペーパをコロイ
ダルカーボン溶液とフッ素樹脂溶液あるいはこれらの混
合溶液に浸漬し、その後乾燥して活性炭繊維ペーパに黒
鉛とフッ素樹脂を担持させた分極性電極の製造法。
1. Activated carbon fiber paper obtained by forming a mixture of fine graphite powder, activated carbon fiber, pulp and a dispersant into a colloidal carbon solution and a fluororesin solution or a mixed solution thereof, and then dried to activate the activated carbon fiber. A method for manufacturing a polarizable electrode in which graphite and fluororesin are supported on paper.
【請求項2】活性炭繊維ペーパに、炭素繊維を含んだも
のを用いることを特徴とする特許請求の範囲第1項記載
の分極性電極の製造法。
2. The method for producing a polarizable electrode according to claim 1, wherein an activated carbon fiber paper containing carbon fiber is used.
JP62212093A 1987-08-26 1987-08-26 Method of manufacturing polarizable electrodes Expired - Fee Related JPH081880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62212093A JPH081880B2 (en) 1987-08-26 1987-08-26 Method of manufacturing polarizable electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62212093A JPH081880B2 (en) 1987-08-26 1987-08-26 Method of manufacturing polarizable electrodes

Publications (2)

Publication Number Publication Date
JPS6454721A JPS6454721A (en) 1989-03-02
JPH081880B2 true JPH081880B2 (en) 1996-01-10

Family

ID=16616758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62212093A Expired - Fee Related JPH081880B2 (en) 1987-08-26 1987-08-26 Method of manufacturing polarizable electrodes

Country Status (1)

Country Link
JP (1) JPH081880B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005222825A (en) * 2004-02-06 2005-08-18 Ntt Data Ex Techno Corp Storage battery, pole plate coating composition for storage battery, pole plate for storage battery, and manufacturing method of storage battery
JP2016173985A (en) * 2015-03-17 2016-09-29 株式会社リコー Nonaqueous electrolyte power storage device

Also Published As

Publication number Publication date
JPS6454721A (en) 1989-03-02

Similar Documents

Publication Publication Date Title
JPH0963905A (en) Electric double-layer capacitor and manufacture thereof
RU2427052C1 (en) Electrode material for electric capacitor, its manufacturing method, and electric supercapacitor
JP2002270470A (en) Electric double-layered capacitor
JPH081880B2 (en) Method of manufacturing polarizable electrodes
JPS63110622A (en) Polarizing electrode
JPS63226019A (en) Manufacture of polarizing electrode
JPH08138651A (en) Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery
JP2002260970A (en) Activated carbonaceous structure and electric double- layer capacitor using the same
JPH0266918A (en) Electric double layer capacitor
JPH02185008A (en) Electric double layer capacitor
JPH081879B2 (en) Method of manufacturing polarizable electrodes
JPS62136011A (en) Polarizing electrode
JPS61102023A (en) Electric double-layer capacitor
JPS6136920A (en) Electric double layer capacitor
JPS6164113A (en) Electric doulbe layer capacitor
JP3446393B2 (en) Electric double layer capacitor and method of manufacturing the same
JPS63194319A (en) Energy storage device
JP4026806B2 (en) Electric double layer capacitor
JPS60254564A (en) Nickel positive electrode for alkaline storage battery
JP3070796B2 (en) Manufacturing method of polarized electrode
JP3315807B2 (en) Electric double layer capacitor and method of manufacturing the same
JPS6184819A (en) Electric double-layer capacitor
JPS6258131B2 (en)
JP2002289481A (en) Activated carbonaceous structure and electric double layer capacitor using the same
JPH02239572A (en) Polyaniline battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees