JPH057390B2 - - Google Patents

Info

Publication number
JPH057390B2
JPH057390B2 JP60237115A JP23711585A JPH057390B2 JP H057390 B2 JPH057390 B2 JP H057390B2 JP 60237115 A JP60237115 A JP 60237115A JP 23711585 A JP23711585 A JP 23711585A JP H057390 B2 JPH057390 B2 JP H057390B2
Authority
JP
Japan
Prior art keywords
reaction
silicon
copper catalyst
metal
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60237115A
Other languages
Japanese (ja)
Other versions
JPS6296433A (en
Inventor
Takaaki Shimizu
Tsutomu Ogiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP60237115A priority Critical patent/JPS6296433A/en
Publication of JPS6296433A publication Critical patent/JPS6296433A/en
Publication of JPH057390B2 publication Critical patent/JPH057390B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアルコキシシランの製造方法、特には
金属けい素とアルキルアルコールとの直接反応に
より液相法でトリアルコキシシランを高収率でか
つ連続的に製造する方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing alkoxysilane, particularly a method for producing trialkoxysilane in high yield and continuously by a liquid phase method by direct reaction of metal silicon and alkyl alcohol. The present invention relates to a method for manufacturing the same.

(従来の技術) アルコキシシランが金属けい素粉末とアルキル
アルコールとの銅触媒存在下での液相反応で得ら
れることはすでによく知られているところである
が、この反応はけい素の反応率が低く、反応速度
も遅いということからこれについては反応媒体を
添加することが行なわれており、この反応媒体と
しては多環状芳香族炭化水素、アリールメタン化
合物、環状ポリエーテル、ドデシルヘンゼン、ジ
アルキルベンゼン、ジフエニルエーテルなどの使
用が提案されている。
(Prior art) It is already well known that alkoxysilanes are obtained through a liquid phase reaction between metal silicon powder and alkyl alcohol in the presence of a copper catalyst. Since the reaction rate is low and the reaction rate is slow, a reaction medium is added to this reaction, and examples of this reaction medium include polycyclic aromatic hydrocarbons, arylmethane compounds, cyclic polyethers, dodecylhenzene, and dialkylbenzene. , diphenyl ether, etc. have been proposed.

しかし、この公知の方法では金属けい素とアル
キルアルコールとの反応の進行と共に反応媒体中
に残存する金属けい素量が少なくなり、この減少
につれてアルコキシシランの生成率が極端に低下
するため、この反応系に反応で消費された金属け
い素に見合う量を定期的に追加することも試みら
れているが、この場合には追加された金属けい素
と銅触媒の間の相互作用がわるく、触媒の反応活
性が失なわれて最終的には殆んど反応しなくなつ
てしまうのでこの反応は回分式の反応方式とさせ
ざるを得ず、工業的生産の常道とされる長時間の
連続運転は不可能とされている。
However, in this known method, as the reaction between silicon metal and alkyl alcohol progresses, the amount of silicon metal remaining in the reaction medium decreases, and as this decreases, the production rate of alkoxysilane extremely decreases. Attempts have also been made to periodically add silicon metal to the system in an amount commensurate with the amount consumed in the reaction, but in this case the interaction between the added silicon metal and the copper catalyst is poor and the catalyst is Since the reaction activity is lost and eventually there is almost no reaction, this reaction has to be carried out in a batchwise manner, and long-term continuous operation, which is common in industrial production, is not possible. It is considered impossible.

(発明の構成) 本発明のこのような不利を解決した高収率で、
かつ連続的にアルコキシシランを製造する方法に
関するものであり、これは金属けい素と銅触媒と
を予じめ水素ガス雰囲気下で加熱処理したのち、
該金属けい素とアルキルアルコールとを該銅触媒
または該銅触媒を助触媒としてのアルカリ金属ア
ルコラートあるいはアルカリ金属の存在下に反応
媒体中で反応させることを特徴とするものであ
る。
(Structure of the Invention) The present invention solves these disadvantages and has a high yield,
It also relates to a method for continuously producing alkoxysilane, which involves heat-treating silicon metal and a copper catalyst in advance in a hydrogen gas atmosphere, and then
The method is characterized in that the silicon metal and the alkyl alcohol are reacted in a reaction medium in the presence of the copper catalyst or an alkali metal alcoholate or an alkali metal as a promoter of the copper catalyst.

すなわち、本発明者らは金属けい素とアルキル
アルコールとの反応によるアルコキシシランの生
成率を高めると共にこれを長時間継続して行なわ
せる方法について種々検討した結果、この反応に
使用される金属けい素と銅触媒とを予かじめ水素
ガス気流中で加熱処理しておくと金属けい素と銅
触媒との間の相互作用が促進されてアルコキシシ
ランの生成率が向上するし、反応途時において反
応系に追加される金属けい素もこの水素による加
熱処理したものとすると銅触媒との相互作用が低
下することもなくなるので連続操業が可能になる
ということを見出すと共に、この反応系に銅触媒
と共にアルカリ金属アルコラートまたはアルカリ
金属を助触媒として添加するとこれらの助触媒に
よつて銅触媒の触媒活性が維持されてアルコキシ
シランのより一層の収率向上と長期連続運転がで
きるようになるということを確認して本発明を完
成させた。
That is, the present inventors investigated various ways to increase the production rate of alkoxysilane through the reaction of metal silicon and alkyl alcohol and to continue this process for a long time. If the metal silicon and the copper catalyst are heat-treated in a hydrogen gas stream in advance, the interaction between the metal silicon and the copper catalyst will be promoted and the production rate of alkoxysilane will be improved. It was discovered that if the metallic silicon added to the system was also heat-treated with this hydrogen, the interaction with the copper catalyst would not deteriorate, making continuous operation possible. It was confirmed that when an alkali metal alcoholate or alkali metal is added as a co-catalyst, these co-catalysts maintain the catalytic activity of the copper catalyst, further improving the yield of alkoxysilane and enabling long-term continuous operation. The present invention was completed.

本発明の方法における始発材料としてのけい素
は純度が80〜99%で平均粒径が100μ以下のもの
であれば特別の制約もなく、したがつて一般市販
品でよい。また、こゝに使用されるアルキルアル
コールはメチルアルコール、エチルアルコール、
n−プロピルアルコール、イソプロピルアルコー
ル、n−ブチルアルコール、アミルアルコールな
どの一般市販品でよく、特には炭素数が1〜5の
アルキル基を含有するものとすることがよいが、
このアルキルアルコールの使用量はけい素1モル
に対し0.01〜50モルの範囲とすればよい。
There are no particular restrictions on silicon as the starting material in the method of the present invention, as long as it has a purity of 80 to 99% and an average particle size of 100 microns or less, and therefore any commercially available silicon may be used. In addition, the alkyl alcohols used here include methyl alcohol, ethyl alcohol,
General commercial products such as n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, and amyl alcohol may be used, and it is particularly preferable to use those containing an alkyl group having 1 to 5 carbon atoms.
The amount of this alkyl alcohol used may be in the range of 0.01 to 50 moles per mole of silicon.

この反応を行なわせるために使用される銅触媒
は公知のものでよく、これには金属銅、塩化第1
銅、塩化第2銅、臭化第1銅、臭化第2銅、ヨウ
化第1銅、ヨウ化第2銅、ギ酸銅、銅アセチルア
セトナート、酢酸第1銅、酢酸第2銅、酸化第1
銅などの銅化合物などが例示されるが、これらは
けい素1モルに対して0.01〜0.5倍モルの範囲で
使用すればよい。
The copper catalyst used to carry out this reaction may be any known one, including metallic copper, monochloride,
Copper, cupric chloride, cuprous bromide, cupric bromide, cuprous iodide, cupric iodide, copper formate, copper acetylacetonate, cuprous acetate, cupric acetate, oxide 1st
Copper compounds such as copper are exemplified, and these may be used in an amount of 0.01 to 0.5 times the mole of silicon.

また、この反応は公知の方法にしたがつて反応
媒体の存在下で行なわれ、この反応媒体としては
多環状芳香族炭化水素、アリールメタン、環状ポ
リエーテル、ドデシルベンゼン、ジアルキルベン
ゼン、水素化トリフエニル、ジフエニルエーテル
などが例示されるが、これは250〜300℃までの耐
熱性のあるものであれば他の熱媒体であつてもよ
い。しかし、この反応媒体はその使用量が少なす
ぎると金属けい素の分散が不充分となり、撹拌操
作が困難となつて均一反応が難しくなり、多すぎ
ると過大な反応容積が必要となるし、けい素とア
ルキルアルコールとの接触も不充分となるので、
けい素1gに対し1ml〜10の範囲、好ましくは
2〜10mlの範囲とすればよい。
Further, this reaction is carried out according to a known method in the presence of a reaction medium, and the reaction medium includes polycyclic aromatic hydrocarbons, arylmethane, cyclic polyether, dodecylbenzene, dialkylbenzene, triphenyl hydride, Diphenyl ether is exemplified, but any other heat medium may be used as long as it is heat resistant up to 250 to 300°C. However, if the amount of this reaction medium used is too small, the dispersion of metal silicon will be insufficient, making stirring operations difficult and making it difficult to achieve a homogeneous reaction. Since the contact between the base and the alkyl alcohol is also insufficient,
The amount may be in the range of 1 ml to 10 ml, preferably 2 to 10 ml, per 1 g of silicon.

本発明の方法は上記した金属けい素とアルキル
アルコールとを前記した銅触媒の存在下に前記の
反応媒体中で反応させるのであるが、この金属け
い素と銅触媒は予じめ水素ガス雰囲気下で加熱処
理しておくことが必要とされる。この処理は目的
とするアルコキシシランの生産量に必要とされる
金属けい素および銅触媒を加熱炉中に装入し、水
素ガス雰囲気下で200℃以上で30分〜1時間加熱
処理すればよい。しかし、これを300℃とすると
テトラアルコキシシランの生成量が増加してトリ
アルコキシシランの選択率が低下するのでこれは
200〜300℃の範囲、特には200〜250℃の範囲とす
ることがよく、この水素ガス雰囲気下については
金属けい素、銅触媒の乾燥させるということから
水素ガス流通下とすることがよい。
In the method of the present invention, the above-mentioned silicon metal and alkyl alcohol are reacted in the presence of the above-mentioned copper catalyst in the above-mentioned reaction medium. heat treatment is required. This treatment can be carried out by charging the metal silicon and copper catalyst required for the desired production amount of alkoxysilane into a heating furnace, and heating it at 200°C or higher for 30 minutes to 1 hour in a hydrogen gas atmosphere. . However, if the temperature is set to 300℃, the amount of tetraalkoxysilane produced increases and the selectivity of trialkoxysilane decreases, so this is not possible.
The temperature is preferably in the range of 200 to 300°C, particularly in the range of 200 to 250°C, and in this hydrogen gas atmosphere, since the metal silicon and copper catalysts are to be dried, it is preferable to use a hydrogen gas flow.

したがつて、本発明の方法は上記のように処理
された金属けい素と銅触媒の所定量を反応媒体中
に仕込み、加熱下にアルキルアルコールと反応さ
せることによつて行なわれるが、この加熱温度は
100℃以下では反応速度が遅く、250℃以上とする
とテトラアルコキシシランの収率が増加してトリ
アルコキシシランの収率が低下するので100〜250
℃の範囲、好ましくは200〜250℃の範囲とするこ
とがよい。また、この反応に使用されるアルキル
アルコールの添加量はそれが少なすぎるとアルコ
キシシランの生成率は高くなるが生産性が低下
し、多すぎるとアルコキシシランの生成率が低く
なるので、これは体積速度(SV)が 0.2〈導入アルコール量(/時)/反応媒体量(
)〈1 の範囲となるようにすることがよい。なお、これ
によれば金属けい素と銅触媒との間の相互作用が
促進されるので目的とするアルコキシシランの収
率を45〜50%にまで向上させることができるし、
反応の進行に伴なつてこの反応系に追加される金
属けい素、銅触媒も上記した水素ガス雰囲気下で
加熱処理したものとすれば金属けい素と銅触媒と
の相互作用が低下することがなくなるのでこの反
応を連続的に長期にわたつて継続させることがで
きるという有利性が与えられる。
Therefore, the method of the present invention is carried out by charging a predetermined amount of silicon metal and a copper catalyst treated as described above into a reaction medium and reacting it with an alkyl alcohol while heating. The temperature is
Below 100℃, the reaction rate is slow, and above 250℃, the yield of tetraalkoxysilane increases and the yield of trialkoxysilane decreases.
℃ range, preferably 200 to 250℃ range. In addition, if the amount of alkyl alcohol added in this reaction is too small, the production rate of alkoxysilane will be high but the productivity will decrease, and if it is too large, the production rate of alkoxysilane will be low. The speed (SV) is 0.2〈Amount of alcohol introduced (/hour)/Amount of reaction medium (
)<1. In addition, according to this, since the interaction between metal silicon and the copper catalyst is promoted, the yield of the target alkoxysilane can be improved to 45 to 50%,
If the metal silicon and copper catalyst added to the reaction system as the reaction progresses are also heat-treated in the hydrogen gas atmosphere described above, the interaction between the metal silicon and the copper catalyst will be reduced. This gives the advantage that this reaction can be continued continuously over a long period of time.

また、本発明の方法は上記した銅触媒と共に助
触媒としてアルキリ金属アルコラートまたはアル
カリ金属を添加することを含むものであり、この
アルカリ金属としてはリチウム、ナトリウム、カ
リウムなどがまたアルキリ金属アルコラートとし
てはこれらの金属のメチラート、エチラート、プ
ロパラート、ブチラートなどが例示され、これら
を反応系に添加すると金属けい素と銅触媒との相
互作用がより一層促進されるのでこれらを水素ガ
ス雰囲気下で熱処理した効果が助長されて、アル
コキシシランをより高い収率で得ることができる
と共に、この連続操業をより安定したものとする
ことができるという有利性が与えられる。なお、
この助触媒の添加量はこれを銅触媒1gに対し
0.1以下とするとその効力が充分に発揮されず、
2g以上とするとテトラアルコキシシランの生成
量が増大してトリアルコキシシランの収率が低下
するので銅触媒量に対し0.1〜2倍量の範囲とす
ればよい。
Further, the method of the present invention includes adding an alkylimetal alcoholate or an alkali metal as a cocatalyst together with the above-mentioned copper catalyst, and the alkali metal includes lithium, sodium, potassium, etc. Methylate, ethylate, proparate, butyrate, etc. of metals are exemplified, and when these are added to the reaction system, the interaction between silicon metal and the copper catalyst is further promoted, so the effect of heat treatment of these metals in a hydrogen gas atmosphere is This gives the advantage that a higher yield of alkoxysilane can be obtained and the continuous operation can be made more stable. In addition,
The amount of co-catalyst added is this per gram of copper catalyst.
If it is less than 0.1, its effectiveness will not be fully demonstrated,
If the amount is 2 g or more, the amount of tetraalkoxysilane produced increases and the yield of trialkoxysilane decreases, so the amount may be in the range of 0.1 to 2 times the amount of copper catalyst.

つぎに本発明の実施例をあげる。 Next, examples of the present invention will be given.

実施例 1 アルコール導入管、温度計、撹拌器および生成
物留出管を取りつけた200mlのフラスコに、純度
98%のけい素粉末40gを仕込み、こゝにアルコー
ル導入管から水素ガスを200Nc.c./分の速度で導
入し撹拌しながら200℃に加熱したのち、これに
塩化第1銅2gを入れて水素ガスを流しながら
200℃で1時間撹拌し、ついでこゝに反応媒体と
してのジフエニルエーテル80mlを入れ水素ガスを
流しながら230℃で1時間撹拌した。
Example 1 In a 200 ml flask equipped with an alcohol inlet tube, a thermometer, a stirrer and a product distillation tube,
Charge 40 g of 98% silicon powder, introduce hydrogen gas through the alcohol inlet tube at a rate of 200 Nc.c./min, and heat to 200°C while stirring, then add 2 g of cuprous chloride. while flowing hydrogen gas.
The mixture was stirred at 200°C for 1 hour, and then 80 ml of diphenyl ether as a reaction medium was added thereto, and the mixture was stirred at 230°C for 1 hour while flowing hydrogen gas.

つぎに水素ガスの導入を止め、液の温度を200
℃に下げたのち、こゝにアルコール導入管からメ
タノールを40ml/時の一定速度で導入し、反応温
度198〜202℃で撹拌しながら1時間反応を行なわ
せ、生成物留出管に冷却器をつけて生成アルコキ
シシラン、未反応アルコールを凝集捕集したとこ
ろ、36.4gの留出物が得られ、このものはガスク
ロマトグラフで分析した結果、これにはトリメト
キシシラン20.0gとテトラメトキシシラン2.1g
が含まれていることが確認され、トリメトキシシ
ランの生成率は54.9%、その選択率は92.2%であ
つた。
Next, stop introducing hydrogen gas and lower the temperature of the liquid to 200℃.
℃, methanol was introduced at a constant rate of 40 ml/hour from the alcohol inlet tube, the reaction was carried out for 1 hour with stirring at a reaction temperature of 198 to 202℃, and a condenser was added to the product distillation tube. When the alkoxysilane produced and the unreacted alcohol were coagulated and collected, 36.4 g of distillate was obtained, which was analyzed by gas chromatography and found to contain 20.0 g of trimethoxysilane and 2.1 g of tetramethoxysilane. g
It was confirmed that trimethoxysilane was contained, and the production rate of trimethoxysilane was 54.9%, and its selectivity was 92.2%.

実施例 2、比較例 1 実施例1においてジフエニルエーテルと同時に
この反応系に助触媒としてのナトリウムメチラー
ト1gを加え、反応時間を7時間としたほかは実
施例1と全く同様に処理したところ、248.5gの
留出物が得られ、このものはトリメトキシシラン
117.3g、テトラメトキシシラン15.4gを含むも
のであつたことから、けい素の仕込み量に対する
消費率は73%、トリメトキシシランの生成率は
47.2%、その選択率は90.5%であつた。
Example 2, Comparative Example 1 The same procedure as in Example 1 was carried out except that 1 g of sodium methylate as a promoter was added to the reaction system simultaneously with diphenyl ether and the reaction time was 7 hours. , 248.5 g of distillate was obtained, which was trimethoxysilane.
Since it contained 117.3g and 15.4g of tetramethoxysilane, the consumption rate of silicon was 73% and the production rate of trimethoxysilane was 73%.
47.2%, and the selection rate was 90.5%.

しかし、比較のためにけい素粉末、銅触媒を水
素処理せず、また助触媒としてのナトリウムメチ
ラツトを添加しないほかは上記と同様に処理した
ところ、この場合には239.6gの留出物が得られ
たが、このものはトリメトキシシラン86.9g、テ
トラメトキシシラン10.5gを含むものであつたこ
とから、けい素の仕込み量に対する消費率は54.7
%、トリメトキシシランの生成率は36.3%でその
選択率は91.2%であつた。
However, for comparison, when silicon powder and copper catalyst were treated in the same manner as above except that they were not hydrogen-treated and sodium methylate was not added as a co-catalyst, 239.6 g of distillate was obtained. However, since this product contained 86.9 g of trimethoxysilane and 10.5 g of tetramethoxysilane, the consumption rate relative to the amount of silicon charged was 54.7.
%, the production rate of trimethoxysilane was 36.3%, and its selectivity was 91.2%.

なお、上記における実施例2および比較例1で
得られた結果からそのメタノール導入量とトリメ
トキシシランの生成率および選択率は第1図に示
したとおりとなるが、これからも本発明の方法に
よれば反応性のすぐれたものであることが明らか
とされる。
Furthermore, from the results obtained in Example 2 and Comparative Example 1 above, the amount of methanol introduced and the production rate and selectivity of trimethoxysilane are as shown in Figure 1. According to this, it is clear that it has excellent reactivity.

実施例 3 実施例2におけるナトリウムメチラートの代わ
りに金属ナトリウム0.5gを加えたほかは実施例
2と全く同様に処理したところ、245.0gの留出
物が得られ、このものはトリメトキシシラン
105.8g、テトラメトキシシラン24.0gを含むも
のであることから、けい素の仕込み量に対する消
費率は71%、トリメトキシシランの生成率は43.2
%、その選択率は85%であることが確認された。
Example 3 The same procedure as in Example 2 was carried out except that 0.5 g of metallic sodium was added in place of sodium methylate in Example 2. 245.0 g of distillate was obtained, which was composed of trimethoxysilane.
Since it contains 105.8g and 24.0g of tetramethoxysilane, the consumption rate of silicon is 71% and the production rate of trimethoxysilane is 43.2%.
%, and its selectivity was confirmed to be 85%.

実施例 4、比較例 2 実施例2の方法において反応生成物をガスクロ
マトグラフで1時間毎に分析し、この結果から反
応系内のけい素が約5g消費されたと判断された
時点でこの反応系に予じめ水素処理をほどこした
けい素粉末5g、塩化第1銅0.25gおよびナトリ
ウムメチラート0.1gを加えることをくり返して
反応を継続させたところ、この反応は16時間以上
も継続させることができ、この場合のトリメトキ
シシランの生成率は第2図に示したように16時間
後も39%を維持し、16時間で597.3gの留出液が
得られ、トリメトキシシラン249.6g、テトラメ
トキシシラン34.5gが得られた。
Example 4, Comparative Example 2 In the method of Example 2, the reaction product was analyzed every hour using a gas chromatograph, and when it was determined from the results that about 5 g of silicon in the reaction system had been consumed, the reaction system When the reaction was continued by repeatedly adding 5 g of silicon powder, 0.25 g of cuprous chloride, and 0.1 g of sodium methylate, which had been subjected to hydrogen treatment in advance, the reaction continued for more than 16 hours. In this case, the production rate of trimethoxysilane remained at 39% even after 16 hours as shown in Figure 2, and 597.3 g of distillate was obtained in 16 hours, and 249.6 g of trimethoxysilane and tetramethoxysilane were obtained. 34.5 g of methoxysilane was obtained.

しかし、比較のために上記において予じめ水素
処理をほどこしてないけい素粉末と銅触媒を使用
し、ナトリウムメチラートを添加しないほかは上
記と同様に処理したところ、この場合にはけい素
粉末、塩化第1銅の追加仕込みをしたにも拘わら
ず第2図に示したように2時間後からトリメトキ
シシランの生成率が低下し、16時間後にはこれが
6%にまで低下したので反応を中止せざるを得な
かつた。
However, for comparison, we used silicon powder that had not been previously hydrogen-treated and a copper catalyst, and treated it in the same manner as above except that sodium methylate was not added. Despite the addition of cuprous chloride, the production rate of trimethoxysilane decreased after 2 hours, as shown in Figure 2, and after 16 hours, this had dropped to 6%, so the reaction was stopped. I had no choice but to cancel it.

実施例 5 実施例1における反応媒体としてのジフエニル
エーテルを重量平均分子量が240〜246のソフト型
ドデシルベンゼン・ソフトアルキルベンゼン
#243〔三菱油化(株)製商品名〕としたほかは実施例
1と全く同様に処理したところ、35.5gの留出液
が得られ、トリメトキシシラン16.0gとテトラメ
トキシシラン1.8gが得られた。
Example 5 Example 1 was repeated except that the diphenyl ether used as the reaction medium in Example 1 was replaced with soft dodecylbenzene/soft alkylbenzene #243 (trade name, manufactured by Mitsubishi Yuka Co., Ltd.) having a weight average molecular weight of 240 to 246. When treated in exactly the same manner as above, 35.5 g of distillate was obtained, and 16.0 g of trimethoxysilane and 1.8 g of tetramethoxysilane were obtained.

実施例 6 実施例1における反応媒体としてのジフエニル
エーテルを芳香族炭化水素・NHK−1000〔日本
石油化学(株)製商品名、φ−CH(CH3)φ(CH32
としたほかは実施例1と全く同様に処理したとこ
ろ、35.6gの留出液が得られ、トリメトキシシラ
ン16.5gとテトラメトキシシラン1.8gが得られ
た。
Example 6 Diphenyl ether as the reaction medium in Example 1 was replaced with aromatic hydrocarbon NHK-1000 [trade name, manufactured by Nippon Petrochemical Co., Ltd., φ-CH( CH3 )φ( CH3 ) 2 ]
The same procedure as in Example 1 was carried out except that 35.6 g of distillate was obtained, and 16.5 g of trimethoxysilane and 1.8 g of tetramethoxysilane were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は金属けい素とアルキルアルコ
ールとの反応によるトリアルコキシシラン生成反
応の反応率は時間的変化を示したグラフであり、
第1図は実施例2と比較例1、第2図は実施例4
と比較例2との結果を示したものである。
Figures 1 and 2 are graphs showing temporal changes in the reaction rate of the trialkoxysilane production reaction by the reaction between metal silicon and alkyl alcohol.
Figure 1 shows Example 2 and Comparative Example 1, Figure 2 shows Example 4.
The results of Comparative Example 2 and Comparative Example 2 are shown.

Claims (1)

【特許請求の範囲】 1 金属けい素と銅触媒とを予じめ水素ガス雰囲
気下で加熱処理したのち、該金属けい素とアルキ
ルアルコールとを該銅触媒または該銅触媒と助触
媒としてのアルカリ金属アルコラートあるいはア
ルカリ金属の存在下に反応媒体中で反応させるこ
とを特徴とするアルコキシシランの製造方法。 2 金属けい素と銅触媒の水素ガス気流中におけ
る加熱処理が200〜300℃で行なわれる特許請求の
範囲第1項記載のアルコキシシランの製造方法。
[Scope of Claims] 1. After heat-treating silicon metal and a copper catalyst in advance in a hydrogen gas atmosphere, the silicon metal and alkyl alcohol are combined with the copper catalyst or the copper catalyst with an alkali as a co-catalyst. A method for producing alkoxysilane, which comprises reacting in a reaction medium in the presence of a metal alcoholate or an alkali metal. 2. The method for producing alkoxysilane according to claim 1, wherein the heat treatment of silicon metal and copper catalyst in a hydrogen gas stream is carried out at 200 to 300°C.
JP60237115A 1985-10-23 1985-10-23 Production of alkoxysilane Granted JPS6296433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60237115A JPS6296433A (en) 1985-10-23 1985-10-23 Production of alkoxysilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60237115A JPS6296433A (en) 1985-10-23 1985-10-23 Production of alkoxysilane

Publications (2)

Publication Number Publication Date
JPS6296433A JPS6296433A (en) 1987-05-02
JPH057390B2 true JPH057390B2 (en) 1993-01-28

Family

ID=17010632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60237115A Granted JPS6296433A (en) 1985-10-23 1985-10-23 Production of alkoxysilane

Country Status (1)

Country Link
JP (1) JPS6296433A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762939A (en) * 1987-09-30 1988-08-09 Union Carbide Corporation Process for trialkoxysilane/tetraalkoxysilane mixtures from silicon metal and alcohol
JP2653700B2 (en) * 1989-07-12 1997-09-17 東燃化学株式会社 Method for producing trimethoxysilane
US5728858A (en) * 1996-10-10 1998-03-17 Osi Specialties, Inc. Activation of copper-silicon slurries for the direct synthesis of trialkoxysilanes
US7339068B2 (en) 2001-01-31 2008-03-04 Momentive Performance Materials Inc. Nanosized copper catalyst precursors for the direct synthesis of trialkoxysilanes
US7858818B2 (en) 2001-01-31 2010-12-28 Momentive Performance Materials Inc. Nanosized copper catalyst precursors for the direct synthesis of trialkoxysilanes
US7652164B2 (en) * 2005-09-13 2010-01-26 Momentive Performance Materials Inc. Process for the direct synthesis of trialkoxysilane
US7429672B2 (en) 2006-06-09 2008-09-30 Momentive Performance Materials Inc. Process for the direct synthesis of trialkoxysilane
JP5527520B2 (en) 2006-12-01 2014-06-18 プロチミー インターナショナル,エルエルシー Preparation process of alkoxysilane

Also Published As

Publication number Publication date
JPS6296433A (en) 1987-05-02

Similar Documents

Publication Publication Date Title
CN103038196B (en) One-step method for butadiene production
JPH057390B2 (en)
US4684741A (en) Selective production of dimethyldichlorosilane
JP2773509B2 (en) Method for producing trialkoxysilane
US4645851A (en) Selective production of dimethyldichlorosilane
EP0517398B1 (en) Preparation of alkoxysilanes
US7238638B2 (en) Composite copper/tin/alkali metal catalysts for the direct synthesis of alkylhalosilanes
US20050283018A1 (en) Composite catalysts for the direct synthesis of alkylhalosilanes
JP2775239B2 (en) Catalytic alkylation method
JPS6341919B2 (en)
EP0440414A1 (en) Process for the production of an active mass for making organohalosilanes
US6211394B1 (en) Process for the preparation of organochlorosilanes
US6156918A (en) Process for the preparation of silanes, with a tertiary hydrocarbon group in the a-position relative to the silicon atom
JP2653700B2 (en) Method for producing trimethoxysilane
JP2001226382A (en) Method for producing organohalosilane
JP2002138093A (en) Method for producing trialkoxy silane using copper fluoride salt as catalyst
JPS633869B2 (en)
JP4584311B2 (en) Method for producing haloorganoalkoxysilane
EP0337322B1 (en) Process for producing monosilane
JPS6217593B2 (en)
JPH0125729B2 (en)
JP2727483B2 (en) Method for producing trialkoxysilane
JP2985461B2 (en) Method for producing trialkoxysilane
JP2727482B2 (en) Method for producing trialkoxysilane
JPH10182660A (en) Production of alkoxysilane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees