JPS6341919B2 - - Google Patents

Info

Publication number
JPS6341919B2
JPS6341919B2 JP53150739A JP15073978A JPS6341919B2 JP S6341919 B2 JPS6341919 B2 JP S6341919B2 JP 53150739 A JP53150739 A JP 53150739A JP 15073978 A JP15073978 A JP 15073978A JP S6341919 B2 JPS6341919 B2 JP S6341919B2
Authority
JP
Japan
Prior art keywords
reaction
methoxysilane
yield
silicon
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53150739A
Other languages
Japanese (ja)
Other versions
JPS5576891A (en
Inventor
Tetsuyoshi Suzuki
Sunao Imaki
Takahisa Yamaura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP15073978A priority Critical patent/JPS5576891A/en
Publication of JPS5576891A publication Critical patent/JPS5576891A/en
Publication of JPS6341919B2 publication Critical patent/JPS6341919B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明は、メトキシシランの製造法に関する。
詳しくは、珪素とメチルアルコールとを、銅触媒
の存在下、溶媒中で反応させてメトキシシラン、
とくに、トリメトキシシランを製造する方法の改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing methoxysilane.
Specifically, silicon and methyl alcohol are reacted in a solvent in the presence of a copper catalyst to produce methoxysilane,
In particular, it relates to improvements in methods for producing trimethoxysilane.

従来、メトキシシランの製法としては、一般式
ClnSiH4-n(mは1〜3の整数を示す。以下同じ)
で表わされるクロルシランとメチルアルコールと
を反応させる方法、および珪素金属とメチルアル
コールとを反応させる方法が知られている。
Traditionally, the manufacturing method for methoxysilane has been based on the general formula
Cl n SiH 4-n (m represents an integer from 1 to 3. The same applies below)
A method of reacting chlorosilane represented by methyl alcohol with methyl alcohol, and a method of reacting silicon metal with methyl alcohol are known.

第1の方法では、下記(1)式に示すように、反応
物中に塩酸が副生する。塩酸は、反応物中からの
回収が困難で、反応装置などの機器を腐食させる
ばかりでなく、生成したメトキシシランを一部分
解するので、メトキシシランの収率を低下させ
る。
In the first method, as shown in the following formula (1), hydrochloric acid is produced as a by-product in the reaction product. Hydrochloric acid is difficult to recover from the reactants and not only corrodes equipment such as reaction equipment, but also partially decomposes the generated methoxysilane, reducing the yield of methoxysilane.

ClnSiH4-n+mCH3OH→(CH3O)nSiH4-n
mHCl …(1) 第2の方法では、反応は、銅触媒の存在下気相
系または液相系で行なわれ、下記(2)式に示すよう
に、種々のメトキシシランおよび水素が生成す
る。
Cl n SiH 4-n +mCH 3 OH→(CH 3 O) n SiH 4-n +
mHCl...(1) In the second method, the reaction is carried out in a gas phase system or a liquid phase system in the presence of a copper catalyst, and various methoxysilanes and hydrogen are produced as shown in the following formula (2).

Si+CH3OH→(CH3O)SiH3 +(CH3O)2SiH2+(CH3O)3SiH +(CH3O)4Si+H2 …(2) 気相系で上記反応を行なわせると、テトラメト
キシシラン(CH3O)4Siの生成が優先し、より有
用なトリメトキシシラン(CH3O)3SiHの生成率
は低い。
Si + CH 3 OH → (CH 3 O) SiH 3 + (CH 3 O) 2 SiH 2 + (CH 3 O) 3 SiH + (CH 3 O) 4 Si + H 2 …(2) Perform the above reaction in a gas phase system , the production of tetramethoxysilane (CH 3 O) 4 Si takes priority, and the production rate of the more useful trimethoxysilane (CH 3 O) 3 SiH is low.

一方、液相系で上記反応を行なわせると、トリ
メトキシシランが比較的高い選択率で生成する
が、珪素の反応率および反応速度等の点で、工業
的製法としては、必ずしも満足し得るものではな
い、 そこで、本発明者らは、銅触媒存在下に、液相
系で、珪素とメチルアルコールとから、メトキシ
シランを製造する方法について研究した結果、反
応溶媒としてドデシルベンゼンを用いることによ
り、メトキシシラン、とくにトリメトキシシラン
を高収率、かつ、高い反応速度で製造し得ること
を見出し、本発明に到達した。
On the other hand, when the above reaction is carried out in a liquid phase system, trimethoxysilane is produced with a relatively high selectivity, but it is not necessarily satisfactory as an industrial production method in terms of silicon reaction rate and reaction rate. Therefore, the present inventors conducted research on a method for producing methoxysilane from silicon and methyl alcohol in the presence of a copper catalyst in a liquid phase system, and found that by using dodecylbenzene as the reaction solvent, The present invention was achieved by discovering that methoxysilane, particularly trimethoxysilane, can be produced in high yield and at a high reaction rate.

すなわち、本発明の目的は高収率、および高反
応速度でメトキシシランを製造することであり、
この目的は、珪素とメチルアルコールとを銅触媒
の存在下に反応させてメトキシシランを製造する
方法において、ドデシルベンゼンを生体とする反
応溶媒を用いることによつて達成される。
That is, the purpose of the present invention is to produce methoxysilane with high yield and high reaction rate,
This object is achieved by using a reaction solvent containing dodecylbenzene as a biological substance in a method for producing methoxysilane by reacting silicon and methyl alcohol in the presence of a copper catalyst.

次に、本発明を詳細に説明する。 Next, the present invention will be explained in detail.

本発明方法において、原料である珪素として
は、通常、純度が80〜99%の珪素金属を、200μ
以下、好ましくは100μ以下の平均粒度に粉末化
したものが用いられる。
In the method of the present invention, the raw material silicon is usually silicon metal with a purity of 80 to 99%.
Hereinafter, powdered powder with an average particle size of preferably 100 μm or less is used.

メチルアルコールの使用量は、珪素金属1モル
に対して0.01〜50倍モルの範囲から選ばれる。
The amount of methyl alcohol to be used is selected from the range of 0.01 to 50 times the mole of silicon metal.

銅触媒としては、金属銅または銅化合物が用い
られる。銅化合物としては、ハロゲン化物、カル
ボン酸塩、キレート化合物、酸化物など種種のも
のを用いることができ、具体的には、例えば、塩
化第1銅、塩化第2銅、シユウ化第1銅、シユウ
化第2銅、ヨウ化第1銅、ヨウ化第2銅、ギ酸
銅、銅アセチルアセトナート、酢酸第1銅、酢酸
第2銅、酸化第1銅などが挙げられる。銅触媒の
使用量は、珪素金属1モルに対して、0.0001〜
0.5倍モルの範囲から選ばれる。
Metallic copper or a copper compound is used as the copper catalyst. Various types of copper compounds can be used, such as halides, carboxylates, chelate compounds, and oxides. Specifically, for example, cuprous chloride, cupric chloride, cuprous oxalide, Examples include cupric oxalide, cuprous iodide, cupric iodide, copper formate, copper acetylacetonate, cuprous acetate, cupric acetate, cuprous oxide, and the like. The amount of copper catalyst used is 0.0001 to 1 mole of silicon metal.
Selected from a range of 0.5 times the mole.

本発明方法では、ドデシルベンゼンを主体とす
る反応溶媒を用いることが必要である。
In the method of the present invention, it is necessary to use a reaction solvent mainly composed of dodecylbenzene.

ドデシルベンゼンは、工業的には、通常、アル
キル基の炭素数の平均値が11〜13で、重量平均分
子量が230〜260の範囲にある各種アルキルベンゼ
ンの混合物として得られる。
Dodecylbenzene is usually obtained industrially as a mixture of various alkylbenzenes in which the average number of carbon atoms in the alkyl group is 11 to 13 and the weight average molecular weight is in the range of 230 to 260.

ドデシルベンゼンの工業的製法としては、例え
ば、ケイソウ土担特固体リン酸触媒を用い、プロ
ピレンおよびプロパンを低重合させてプロピレン
テトラマーを得て、次いで、HF、AlCl3
H2SO4等のフリーデルクラフツ触媒を用いてプ
ロピレンテトラマーをベンゼン核へ付加する方法
または、石油ケロシン留分から炭素数10〜14のn
−パラフインを尿素付加法または分子篩法で分離
し、これを塩素ガスでクロル化してアルキルクロ
リドを得て、次いで、これを用いてフリーデルク
ラフツ触媒の存在下、ベンゼンをアルキル化する
方法等が知られている。
As an industrial method for producing dodecylbenzene, for example, propylene and propane are low-polymerized using a special solid phosphoric acid catalyst supported on diatomaceous earth to obtain propylene tetramer, and then HF, AlCl 3 ,
A method in which propylene tetramer is added to a benzene nucleus using a Friedel-Crafts catalyst such as H 2 SO 4 , or
- A method is known in which paraffin is separated by a urea addition method or a molecular sieve method, and this is chlorinated with chlorine gas to obtain an alkyl chloride, which is then used to alkylate benzene in the presence of a Friedel-Crafts catalyst. It is being

プロピレンテトラマーを原料とする場合には、
アルキル基に多数の枝分れ異性体を有し、かつ、
広い炭素数分布の、いわゆる、ハード型アルキル
ベンゼンが得られる。
When using propylene tetramer as a raw material,
has a large number of branched isomers in the alkyl group, and
A so-called hard alkylbenzene with a wide carbon number distribution is obtained.

一方、n−パラフインを原料とする場合には、
典型的なソフト型アルキルベンゼンが得られる。
On the other hand, when using n-paraffin as a raw material,
A typical soft alkylbenzene is obtained.

溶媒の使用量は、珪素金属1gに対して1ml〜
10の範囲から適宜決定される。
The amount of solvent used is 1ml to 1g of silicon metal.
It is determined as appropriate from a range of 10.

反応温度は100〜300℃、好ましくは150〜250℃
である。
Reaction temperature is 100-300℃, preferably 150-250℃
It is.

以上、説明したように、本発明によれば、珪素
とメチルアルコールとから、高収率かつ、高反応
速度でメトキシシランを製造することができる。
As described above, according to the present invention, methoxysilane can be produced from silicon and methyl alcohol in high yield and at a high reaction rate.

次に、本発明を実施例により、具体的に説明す
るが、本発明はその要旨を超えない限り以下の実
施例に限定されるものではない。
Next, the present invention will be specifically explained with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例 1 アルコール導入管、撹拌器および留出管を有す
る500c.c.反応容器に珪素金属粉末(純度98%、平
均粒度350メツシユ)100g、塩化第1銅5.0gお
よび重量平均分子量243〜249のハード型ドデシル
ベンゼン、ハードアルキルベンゼン#246(三菱油
化株式会社商標)200c.c.を仕込んだ。留出管出口
には冷却器を付し、留出している生成メトキシシ
ランおよび未反応メタノールを捕集できるように
した。
Example 1 100 g of silicon metal powder (98% purity, average particle size 350 mesh), 5.0 g of cuprous chloride, and a weight average molecular weight of 243 to 249 were placed in a 500 c.c. reaction vessel equipped with an alcohol inlet tube, a stirrer, and a distillation tube. hard dodecylbenzene and hard alkylbenzene #246 (trademark of Mitsubishi Yuka Co., Ltd.) 200 c.c. A condenser was attached to the outlet of the distillation tube to collect the produced methoxysilane and unreacted methanol being distilled out.

次に、反応容器を加温し、反応液温が200℃に
達した時点で導入管よりメタノールの導入を開始
した。メタノールの導入速度および反応温度は反
応中それぞれ80c.c./時および200〜202℃の範囲で
一定にした。メタノール導入開始後、7.5時間経
過した時点で導入を停止し、さらに30分間反応を
続けた。
Next, the reaction vessel was heated, and when the reaction liquid temperature reached 200°C, introduction of methanol was started from the introduction tube. The methanol introduction rate and reaction temperature were kept constant during the reaction at 80 c.c./hour and in the range of 200-202°C, respectively. After 7.5 hours had passed after the start of methanol introduction, the introduction was stopped, and the reaction was continued for an additional 30 minutes.

反応後、得られた留出液の全量は、527.4gで
あり、留出液中のトリメトキシシラン量およびテ
トラメトキシシラン量はそれぞれ308.3gおよび
50.4gであつた。
After the reaction, the total amount of the distillate obtained was 527.4 g, and the amounts of trimethoxysilane and tetramethoxysilane in the distillate were 308.3 g and 308.3 g, respectively.
It was 50.4g.

トリメトキシシランの収率(仕込み珪素に対す
るトリメトキシシラン生成量の割合)は72.3%、
テトラメトキシシランの収率(仕込み珪素に対す
るテトラメトキシシラン生成量の割合)は9.5%
であつた。
The yield of trimethoxysilane (the ratio of the amount of trimethoxysilane produced to the silicon charged) is 72.3%,
The yield of tetramethoxysilane (the ratio of the amount of tetramethoxysilane produced to the silicon charged) is 9.5%
It was hot.

実施例 2 溶媒として重量平均分子量が240〜246のソフト
型ドデシルベンゼン、ソフトアルキルベンゼン
#243(三菱油化株式会社商標)を用いた以外は実
施例1と全く同様にして反応を行なつた その結果、トリメトキシシランの収率は71.1
%、テトラメトキシシランの収率は10.3%であつ
た。
Example 2 A reaction was carried out in the same manner as in Example 1, except that soft dodecylbenzene with a weight average molecular weight of 240 to 246, soft alkylbenzene #243 (trademark of Mitsubishi Yuka Co., Ltd.) was used as the solvent. Results , the yield of trimethoxysilane is 71.1
%, and the yield of tetramethoxysilane was 10.3%.

実施例 3 溶媒としてn−ドデシルベンゼン(東京化成工
業株式会社製、比重d≒0.86、純度98重量%)を
用いた以外は実施例1と全く同様にして反応を行
なつた。その結果、トリメトキシシランの収率は
69.8%、テトラキシシランの収率は12.8%であつ
た。
Example 3 A reaction was carried out in exactly the same manner as in Example 1, except that n-dodecylbenzene (manufactured by Tokyo Chemical Industry Co., Ltd., specific gravity d≈0.86, purity 98% by weight) was used as the solvent. As a result, the yield of trimethoxysilane is
The yield of tetraxysilane was 12.8%.

比較例 1 溶媒としてオクチルベンゼンを用いた以外は実
施例1と全く同様に反応を行なつたところ、反応
温度200℃では溶媒が激しく留出し、反応は起ら
なかつた。そこで反応温度を150℃まで下げたと
ころ溶媒の留出は止まつたが反応は起らなかつ
た。
Comparative Example 1 A reaction was carried out in exactly the same manner as in Example 1 except that octylbenzene was used as the solvent. At a reaction temperature of 200° C., the solvent was violently distilled out and no reaction occurred. When the reaction temperature was lowered to 150°C, distillation of the solvent stopped, but no reaction occurred.

比較例 2 溶媒として流動パラフインを用いた以外は実施
例1と全く同様に反応を行なつた。その結果トリ
メトキシシランの収率は24%、テトラメトキシシ
ランの収率は1.5%であつた。
Comparative Example 2 The reaction was carried out in exactly the same manner as in Example 1, except that liquid paraffin was used as the solvent. As a result, the yield of trimethoxysilane was 24%, and the yield of tetramethoxysilane was 1.5%.

Claims (1)

【特許請求の範囲】 1 珪素とメチルアルコールとを銅触媒の存在下
に反応させてメトキシシランを製造する方法にお
いて、ドデシルベンゼンを主体とする反応溶媒を
用いることを特徴とするメトキシシランの製造
法。 2 特許請求の範囲第1項記載の方法において、
反応溶媒として、アルキル基の炭素数の平均値が
11〜13で、重量平均分子量が230〜260の範囲にあ
るアルキルベンゼンの混合物を用いることを特徴
とするメトキシシランの製造法。
[Claims] 1. A method for producing methoxysilane by reacting silicon and methyl alcohol in the presence of a copper catalyst, the method comprising using a reaction solvent mainly composed of dodecylbenzene. . 2. In the method described in claim 1,
As a reaction solvent, the average number of carbon atoms in the alkyl group is
A method for producing methoxysilane, characterized in that a mixture of alkylbenzenes having a weight average molecular weight of 11 to 13 and a weight average molecular weight of 230 to 260 is used.
JP15073978A 1978-12-06 1978-12-06 Production of methoxysilane Granted JPS5576891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15073978A JPS5576891A (en) 1978-12-06 1978-12-06 Production of methoxysilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15073978A JPS5576891A (en) 1978-12-06 1978-12-06 Production of methoxysilane

Publications (2)

Publication Number Publication Date
JPS5576891A JPS5576891A (en) 1980-06-10
JPS6341919B2 true JPS6341919B2 (en) 1988-08-19

Family

ID=15503347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15073978A Granted JPS5576891A (en) 1978-12-06 1978-12-06 Production of methoxysilane

Country Status (1)

Country Link
JP (1) JPS5576891A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611693A (en) * 1984-06-12 1986-01-07 Shin Etsu Chem Co Ltd Preparation of alkoxysilane
US4762939A (en) * 1987-09-30 1988-08-09 Union Carbide Corporation Process for trialkoxysilane/tetraalkoxysilane mixtures from silicon metal and alcohol
US4778910A (en) * 1987-12-14 1988-10-18 Lopata Research & Development Corporation Method of making alkylalkoxysilanes
US7858818B2 (en) 2001-01-31 2010-12-28 Momentive Performance Materials Inc. Nanosized copper catalyst precursors for the direct synthesis of trialkoxysilanes
US7339068B2 (en) 2001-01-31 2008-03-04 Momentive Performance Materials Inc. Nanosized copper catalyst precursors for the direct synthesis of trialkoxysilanes
US7429672B2 (en) 2006-06-09 2008-09-30 Momentive Performance Materials Inc. Process for the direct synthesis of trialkoxysilane
WO2008069859A2 (en) 2006-12-01 2008-06-12 Roston Family Llc Process for preparation of alkoxys i lan es

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511692A (en) * 1974-06-26 1976-01-08 Asahi Chemical Ind KOSEIBUTSUSHITSUKORISUCHINNO SEISEIHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511692A (en) * 1974-06-26 1976-01-08 Asahi Chemical Ind KOSEIBUTSUSHITSUKORISUCHINNO SEISEIHO

Also Published As

Publication number Publication date
JPS5576891A (en) 1980-06-10

Similar Documents

Publication Publication Date Title
JP2562833B2 (en) Method for producing trialkoxysilane-tetraalkoxysilane mixture
JPH0717656B2 (en) An improved process for the production of trialkoxysilanes by the reaction of silicon metal with alcohols.
EP3275886B1 (en) Method for producing dialkylaminosilane
US5338876A (en) Alkenylchlorosilanes and direct synthesis thereof
JP2848908B2 (en) Production method of alkoxysilanes
JPS6341919B2 (en)
KR100879836B1 (en) Nanosized copper catalyst precursors for the direct synthesis of trialkoxysilanes
JP2002097191A (en) Freshly precipitated cupric oxide as catalyst for trialkoxysilane synthesis
JPS6145632B2 (en)
EP0283905B1 (en) Process for preparing chloropolysilanes
US4778910A (en) Method of making alkylalkoxysilanes
EP0459499A1 (en) Process for preparing silacycloalkanes
US5332849A (en) Tris(silyl) alkanes and their preparation methods
US2902504A (en) Process for preparing arylchlorosilanes
JPS633869B2 (en)
JP3658901B2 (en) Method for producing alkoxysilane
JPH057390B2 (en)
JP2002138093A (en) Method for producing trialkoxy silane using copper fluoride salt as catalyst
JP4092746B2 (en) Method for producing alkoxysilane
US5399740A (en) Tris(silyl)methanes and their preparation methods
JP2801422B2 (en) Preparation method of alkylated silane
JP2563305B2 (en) Method for producing trialkoxysilane
JP2985461B2 (en) Method for producing trialkoxysilane
JPH10182660A (en) Production of alkoxysilane
JPH085899B2 (en) Method for producing alkoxysilane