JPH0573826A - Magnetic core and production thereof - Google Patents

Magnetic core and production thereof

Info

Publication number
JPH0573826A
JPH0573826A JP3120469A JP12046991A JPH0573826A JP H0573826 A JPH0573826 A JP H0573826A JP 3120469 A JP3120469 A JP 3120469A JP 12046991 A JP12046991 A JP 12046991A JP H0573826 A JPH0573826 A JP H0573826A
Authority
JP
Japan
Prior art keywords
core
oxide layer
magnetic
oxide
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3120469A
Other languages
Japanese (ja)
Other versions
JP2901373B2 (en
Inventor
Toshio Uehara
敏夫 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP3120469A priority Critical patent/JP2901373B2/en
Priority to MYPI92000880A priority patent/MY108324A/en
Priority to DE4217098A priority patent/DE4217098C2/en
Priority to CN92103779A priority patent/CN1060284C/en
Publication of JPH0573826A publication Critical patent/JPH0573826A/en
Application granted granted Critical
Publication of JP2901373B2 publication Critical patent/JP2901373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/187Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
    • G11B5/21Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features the pole pieces being of ferrous sheet metal or other magnetic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/187Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
    • G11B5/255Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features comprising means for protection against wear
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/22Heat treatment; Thermal decomposition; Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Heads (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide the magnetic core which has an oxide film possessing good wear resistance and excellent adhesion. CONSTITUTION:The magnetic core 1 is constituted by forming a substrate oxide layer 2 consisting of NiO and FeO, an intermediate oxide layer 3 consisting of F3O4 and a surface oxide layer 4 of Fe2O3 on the surface of a core consisting of a magnetic alloy of an Fe-Ni system. The properties relating to the wear resistance and the adhesion of the oxide films which are heretofore inferior to the conventional cores consisting of the magnetic alloy of the Fe-Ni system are improved according to the magnetic core of this invention and the magnetic core more excellent as the magnetic head core required to deal with the increasingly high coercive force of magnetic recording media is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Fe−Ni系の磁性合
金からなるコアの酸化被膜の構成と酸化被膜形成時の酸
化処理条件を規定することで、耐摩耗性が向上し、密着
性が良好な酸化被膜を有する磁気コアを提供せんとする
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides improved wear resistance and adhesion by defining the structure of an oxide film of a core made of a Fe--Ni magnetic alloy and the conditions of oxidation treatment when forming the oxide film. Provide a magnetic core having a good oxide film.

【0002】[0002]

【従来の技術】磁気ヘッドのコア材としてパーマロイ、
センダスト、フェライト、アモルファス等の磁性材料が
使用されている。これらの中でパーマロイ(Fe−Ni
系磁性合金)は磁気特性は良好であるが、耐摩耗性に劣
っているという欠点を有する。このため、Fe−Ni系
の磁性合金からなるコアの耐摩耗性を改善させる一つの
手段として、これを酸素中もしくは、大気中又は水蒸気
中において熱処理しコアの表面に酸化被膜を形成させる
ことで耐摩耗性の改善を行なっている。
2. Description of the Related Art Permalloy as a core material of a magnetic head,
Magnetic materials such as sendust, ferrite, and amorphous are used. Among these, permalloy (Fe-Ni
Magnetic alloys) have good magnetic properties, but have the disadvantage of poor wear resistance. Therefore, as one means for improving the wear resistance of the core made of a Fe-Ni-based magnetic alloy, it is heat-treated in oxygen or in the air or in steam to form an oxide film on the surface of the core. Has improved wear resistance.

【0003】さらに、Fe−Ni系の磁性合金からなる
コアの耐摩耗性を改善させる一つの手段として、酸素中
もしくは大気中又は、水蒸気中において熱処理し、コア
の表面に酸化被膜を形成させることで、耐摩耗性の改善
を行なっている。
Further, as one means for improving the wear resistance of a core made of a Fe--Ni magnetic alloy, heat treatment is carried out in oxygen, air or steam to form an oxide film on the surface of the core. Therefore, wear resistance is improved.

【0004】しかし、この酸化処理は条件次第で耐摩耗
性の効果がなく、酸化被膜の剥離も起こり磁気コアの性
能と品質および製造上の問題となる。
However, this oxidation treatment does not have the effect of abrasion resistance depending on the conditions, and the peeling of the oxide film also occurs, which becomes a problem in the performance and quality of the magnetic core and in manufacturing.

【0005】前記パーマロイは、Fe−Ni系合金であ
り、Ni75〜85wt%,Fe10〜15wt%を含
有し、その他に磁気特性、加工性を向上させるためにN
b,W,Mn,Al,Cr等の元素が添加されている。
しかし、パーマロイの金属酸化物は主にFeもしくはN
iの酸化物であると考えて良い。図2にパーマロイの金
属酸化物の分析結果の一例を示す。
The permalloy is a Fe-Ni type alloy, contains 75 to 85 wt% of Ni and 10 to 15 wt% of Fe, and N in addition to improve magnetic characteristics and workability.
Elements such as b, W, Mn, Al, and Cr are added.
However, the metal oxide of permalloy is mainly Fe or N.
It may be considered to be an oxide of i. FIG. 2 shows an example of the analysis result of the metal oxide of permalloy.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0006】また、この種の酸化被膜は、570℃以下
において、図4に示されるようにパーマロイのコア5の
表面に最も近い部分に、NiO相の下地酸化層6が形成
され、その上にFe34相からなる中間酸化層7とFe
23相からなる表面酸化層8が形成され、膜厚が小でポ
ーラスな被膜が形成されてしまう。
Further, in this type of oxide film, at 570 ° C. or lower, as shown in FIG. 4, a NiO phase underlying oxide layer 6 is formed at a portion closest to the surface of the core 5 of permalloy, and is formed thereon. Fe 3 O 4 intermediate oxide layer 7 and Fe
The surface oxide layer 8 composed of the 2 O 3 phase is formed, and a porous film having a small film thickness is formed.

【0007】ところで一般に、酸素及び大気中の酸化性
雰囲気の中で金属もしくは合金を加熱すると、金属と酸
素とが作用して金属酸化物(スケール)を生じる。合金
の場合、その構成元素の金属酸化物を形成する。この酸
化の原理において、酸化をさらに進行させるためには、
表面にできた金属酸化物を通じて酸素を内部に拡散さ
せ、下地の金属もしくは合金に達するようにしなければ
ならない。しかし、一般に金属イオンの半径の方が酸素
イオン半径よりも小さいので、金属イオンが外部に向か
って拡散してくる方が酸素イオンが内部側に向かって拡
散するより速いといえる。
By the way, generally, when a metal or an alloy is heated in oxygen and an oxidizing atmosphere in the air, the metal and oxygen act to generate a metal oxide (scale). In the case of an alloy, it forms a metal oxide of its constituent elements. On the principle of this oxidation, in order to further promote the oxidation,
Oxygen must be diffused inward through the metal oxide formed on the surface to reach the underlying metal or alloy. However, since the radius of metal ions is generally smaller than the radius of oxygen ions, it can be said that the diffusion of metal ions toward the outside is faster than the diffusion of oxygen ions toward the inside.

【0008】以下に先に説明したそれぞれの層成分の特
徴を示す。 FeO(ウスタイト相) ;金属欠損のP型半導体 Fe34(マグネタイト相);酸素欠損のn型半導体 Fe23(ヘマタイト相) ;酸素欠損のn型半導体 ここで、P型半導体は、酸素分圧に依存するがn型半導
体は、酸素分圧に依存しない。FeOは相中の欠陥がは
るかに大きな易動度を有するため他の層(中間酸化相
3,表面酸化相4)に比較して非常に厚くなる。各酸化
被膜の厚さの相対比は、FeO:Fe34:Fe23
95:4:1である。等温酸化で緻密な酸化被膜が形成
される時、酸化時間の経過とともに酸化被膜は厚さを増
し、被膜中に発生した応力が酸化物の破断応力を超える
と被膜が割れたり剥離を起こしやすいのである。
The characteristics of each layer component described above will be shown below. FeO (wustite phase); metal-deficient P-type semiconductor Fe 3 O 4 (magnetite phase); oxygen-deficient n-type semiconductor Fe 2 O 3 (hematite phase); oxygen-deficient n-type semiconductor where the P-type semiconductor is Although it depends on the oxygen partial pressure, the n-type semiconductor does not depend on the oxygen partial pressure. In FeO, the defects in the phase have a much higher mobility, so that they become very thick as compared with the other layers (intermediate oxide phase 3, surface oxide phase 4). The relative ratio of the thickness of each oxide coating, FeO: Fe 3 O 4: Fe 2 O 3 =
It is 95: 4: 1. When a dense oxide film is formed by isothermal oxidation, the oxide film increases in thickness with the passage of oxidation time, and if the stress generated in the film exceeds the rupture stress of the oxide, the film tends to crack or peel. is there.

【0009】内部応力の原因としては、表面張力被
膜の電気歪応力金属、酸化物の体積の相違水和、脱
水介在物などがあげられる。被膜の内部応力は、次式
によって示される。 P−P0={ε(ε−1)/8π}(E2−r)/x (第1項は電気歪効果、第2項は表面張力効果) P:被膜表面の垂直応力 P0:外気圧 ε:被膜
の誘電率(=2〜15) r:表面張力 x:被膜の厚さ E:電場
の強さ
The causes of the internal stress include electrostrictive stress metal of the surface tension coating, hydration of different volume of oxides, dehydration inclusions and the like. The internal stress of the coating is shown by the following equation. P-P 0 = {ε ( ε-1) / 8π} (E 2 -r) / x ( the first term electrostrictive effect, the second term surface tension effects) P: vertical coating surface stress P 0: External pressure ε: Dielectric constant of coating (= 2 to 15) r: Surface tension x: Thickness of coating E: Strength of electric field

【0010】ゆえに、FeOのスケールが比較的高い塑
性能を有しているにもかかわらず、コア材金属との接着
が失われるという欠点を有する。こうしたスケールの急
速な生成は、関連する応力により外方スケール中に物理
的欠陥とガス分子の侵入を誘導する。
Therefore, although FeO scale has a relatively high plastic performance, it has a drawback that the adhesion with the core material metal is lost. The rapid generation of such scales induces physical defects and gas molecule penetration into the outer scale due to the associated stress.

【0011】また、Niに関しては、温度上昇や酸素分
圧によらずNiOの酸化物が得られる。 NiO;金属欠損のP型半導体
With respect to Ni, an oxide of NiO can be obtained irrespective of temperature rise and oxygen partial pressure. NiO; P-type semiconductor with metal deficiency

【0012】更に、図6に示されているように、NiO
はパーマロイとの熱膨張係数との差が大きく、層構造中
高い熱応力を持つ。こうしたことも酸化被膜の状態が不
安定となりNiO相とFeO相との下地酸化層2とコア
1との密着性が失われる原因となるのである。
Further, as shown in FIG.
Has a large difference in thermal expansion coefficient from that of permalloy, and has high thermal stress in the layered structure. This also causes the state of the oxide film to become unstable, which causes the loss of adhesion between the underlying oxide layer 2 and the core 1 between the NiO phase and the FeO phase.

【0013】また、酸化被膜の割れや剥離は、熱サイク
ル下すなわち加熱、冷却の繰り返しや急熱、急冷など過
酷な条件下で特に起こりやすい。この過程は、特に高温
で酸化後の冷却に際しての熱収縮が原因で酸化物と合金
の熱膨張係数の違いから生じる応力つまり熱応力によっ
て起こるものである。
Further, cracking or peeling of the oxide film is particularly likely to occur under severe conditions such as a thermal cycle, that is, repeated heating and cooling, rapid heating and rapid cooling. This process is caused by stress caused by a difference in thermal expansion coefficient between the oxide and the alloy, that is, thermal stress due to thermal contraction during cooling at a high temperature after oxidation.

【0014】例えば、板状合金の両面が一様な酸化被膜
で覆われている時、温度差ΔTにより酸化物中に発生す
る応力σ0は次式によって示される。 σ0={E0(α0−αM)ΔT}/{1+2(E0/EM)(τ0/τM)} α0:酸化温度と冷却温度の差ΔT間の平均熱膨張係数 E :弾性率 τ:厚さ (添字の0およびMはそれぞれ酸化被膜と合金を表す。) τ0《τMと考えると σ0=E(α0−αM)ΔT
For example, when both surfaces of the plate-shaped alloy are covered with a uniform oxide film, the stress σ 0 generated in the oxide due to the temperature difference ΔT is expressed by the following equation. σ 0 = {E 00 −α M ) ΔT} / {1 + 2 (E 0 / E M ) (τ 0 / τ M )} α 0 : Average thermal expansion coefficient between the difference ΔT between the oxidation temperature and the cooling temperature. E: Elastic modulus τ: Thickness (The subscripts 0 and M represent an oxide film and an alloy, respectively.) Considering τ 0 << τ M , σ 0 = E (α 0 −α M ) ΔT

【0015】従って、熱サイクル下での酸化被膜の割れ
や剥離は、温度差と熱膨張係数との差が重要になる。こ
うして、高温で酸化中の温度と合金が冷却された時の温
度差ΔTにより発生した熱応力は、ΔTの増大とともに
増加し酸化物の破断強度を超えると被膜は破壊し剥離す
るに至る。
Therefore, the difference between the temperature difference and the coefficient of thermal expansion is important for cracking and peeling of the oxide film under the thermal cycle. Thus, the thermal stress generated by the temperature difference ΔT when the alloy is cooled at a high temperature during oxidation increases with the increase in ΔT, and when the fracture strength of the oxide is exceeded, the coating film breaks and peels.

【0016】従って、本発明は上記従来例の欠点を解消
すると同時に、酸化被膜の密着性をより優れたものと
し、より良好な磁気コアを、提供せんとするものであ
る。
Therefore, the present invention solves the above-mentioned drawbacks of the prior art and, at the same time, makes the adhesion of the oxide film more excellent and provides a better magnetic core.

【0017】[0017]

【課題を解決するための手段】請求項1記載の発明は上
記のような問題点を解決するために、Fe−Ni系の磁
性合金からなるコアの表面にNiOとFeOからなる下
地酸化層とFe34からなる中間酸化層と、Fe23
らなる表面酸化層とを形成してなるものである。
In order to solve the above-mentioned problems, the invention according to claim 1 forms a base oxide layer made of NiO and FeO on the surface of a core made of a Fe--Ni magnetic alloy. An intermediate oxide layer made of Fe 3 O 4 and a surface oxide layer made of Fe 2 O 3 are formed.

【0018】請求項2に記載した発明は前記課題を解決
するために、Fe−Ni系の磁性合金からなるコアを酸
素中もしくは大気中、又は水蒸気中において570℃以
上の温度で熱処理後、除冷させ、コアに最も近い部分か
ら順にNiOとFeOからなる下地酸化層とFe34
らなる中間酸化層とFe23からなる表面酸化層とをを
形成するものである。
In order to solve the above-mentioned problems, the invention described in claim 2 heat-treats a core made of a Fe--Ni magnetic alloy in oxygen, air, or steam at a temperature of 570 ° C. or higher and then removes it. After cooling, a base oxide layer made of NiO and FeO, an intermediate oxide layer made of Fe 3 O 4, and a surface oxide layer made of Fe 2 O 3 are formed in order from the portion closest to the core.

【0019】[0019]

【作用】本発明の磁気コアによれば、その酸化被膜形成
において、570℃以上で処理後、除冷することにより
図1に示されるような酸化被膜構造をとり、耐摩耗性の
の良好な、被膜応力の発生を押さえて、密着性に優れた
酸化被膜を形成することができる。ゆえに、優れた磁気
特性と耐摩耗性に富んだ磁気コアを形成することができ
るのである。
According to the magnetic core of the present invention, when the oxide film is formed, the oxide film structure as shown in FIG. Further, it is possible to suppress the generation of film stress and form an oxide film having excellent adhesion. Therefore, it is possible to form a magnetic core having excellent magnetic properties and abrasion resistance.

【0020】[0020]

【実施例】以下に実施例を図面により説明する。図1に
おいて1はFe−Ni系の磁性合金からなるコア、2は
前記コア1を酸素中もしくは、大気中あるいは水蒸気中
において、570℃以上で熱処理することにより形成さ
れたNiOとFeOからなる下地酸化層、3はFe34
(マグネタイト相)からなる中間酸化層、4はFe23
(αヘマタイト相)からなる表面酸化層である。ここ
で、酸化被膜形成時の温度を570℃以上と規定したの
は、FeO(ウスタイト相)が生成し、膜厚が大で、緻
密な硬度の高い被膜を形成するためである。570℃以
下で被膜を生成すると、図4に示されるような構造の磁
気コアが形成される。
Embodiments Embodiments will be described below with reference to the drawings. In FIG. 1, 1 is a core made of a Fe—Ni magnetic alloy, 2 is a base made of NiO and FeO formed by heat-treating the core 1 at 570 ° C. or higher in oxygen, air or steam. Oxide layer, 3 is Fe 3 O 4
Intermediate oxide layer composed of (magnetite phase), 4 is Fe 2 O 3
A surface oxide layer composed of (α-hematite phase). Here, the temperature at the time of forming the oxide film is defined as 570 ° C. or higher because FeO (wustite phase) is generated and a film having a large film thickness and a high hardness is formed. When the coating is formed at 570 ° C. or lower, a magnetic core having a structure as shown in FIG. 4 is formed.

【0021】図4では、5はFe−Ni系の磁性合金か
らなるコア、6は前記コア5を酸素中もしくは大気中、
あるいは水蒸気中において、570℃以下で熱処理する
ことにより形成されたNiOからなる下地酸化層、7は
Fe34相(マグネタイト相)からなる中間酸化層、8
はFe23(ヘマタイト相)からなる表面酸化層であ
る。
In FIG. 4, 5 is a core made of a Fe--Ni magnetic alloy, 6 is the core 5 in oxygen or air,
Alternatively, a base oxide layer made of NiO formed by heat treatment at 570 ° C. or lower in steam, 7 an intermediate oxide layer made of a Fe 3 O 4 phase (magnetite phase), 8
Is a surface oxide layer made of Fe 2 O 3 (hematite phase).

【0022】一方、570℃以上では、図1に示す如
く、パーマロイのコア1の表面に最も近い部分にNiO
相とFeO相との下地酸化層2が形成され、その上にF
34相からなる中間酸化層3とFe23相からなる表
面酸化層4が形成され、膜厚も大となり緻密な硬度の高
い被膜が生成される。これは、図5に示すFe−O系相
状態図からも明らかである。
On the other hand, at 570 ° C. or higher, as shown in FIG. 1, NiO is formed at the portion closest to the surface of the core 1 of permalloy.
Phase and FeO phase underlying oxide layer 2 is formed, and F is formed on the underlying oxide layer 2.
The intermediate oxide layer 3 made of the e 3 O 4 phase and the surface oxide layer 4 made of the Fe 2 O 3 phase are formed, and the film thickness becomes large and a dense and highly hard coating film is produced. This is also apparent from the Fe-O phase diagram shown in FIG.

【0023】ところで、密着性を向上させるために、内
部応力、熱応力の除去が必要となる。酸化処理温度を5
70℃以下にするとFeOの生成がなく密着性に優れる
が、酸化処理温度を570℃以上でFeOを生成させた
場合、酸化処理前のコア表面状態をコントロールし、酸
化処理時の内部応力を除去する。この前処理としては、
コア表面の超音波洗浄、H2中で充分、アニールした場
合等が有効な手段となる。
By the way, in order to improve the adhesion, it is necessary to remove internal stress and thermal stress. Oxidation treatment temperature is 5
If the temperature is lower than 70 ° C, FeO is not generated and the adhesion is excellent. To do. As this pretreatment,
Ultrasonic cleaning of the core surface, sufficient annealing in H 2 , and the like are effective means.

【0024】また、特に重要なことは熱応力の除去であ
り、570℃以上の所定の温度で熱処理した後、急冷で
はなく除冷処理を行なう必要がある。少なくとも、59
0℃以下の、FeOが生成しない酸化膜と、同じ密着性
を得るためには、570℃以上の所定の温度から100
℃まで20分間以上の時間で冷却させることである。
Further, it is particularly important to remove the thermal stress, and it is necessary to carry out a heat treatment at a predetermined temperature of 570 ° C. or higher and then a cooling treatment instead of a rapid cooling. At least 59
In order to obtain the same adhesion as that of an oxide film that does not generate FeO at 0 ° C. or lower, a predetermined temperature of 570 ° C. or higher to 100
That is, the temperature is cooled to 0 ° C. in 20 minutes or more.

【0025】前述したように、コア1を570℃以上の
温度で熱処理することにより、コア1上面に、NiO+
FeO相からなる下地酸化層2が生成する。Niは酸化
する時に酸素に依存せずNi酸化物は金属イオンと混じ
り易いので、温度を570℃以上にするとFeO相とN
iO相を含む下地酸化層2ができ易く、この下地酸化層
2は緻密な硬い被膜を生成し、耐摩性の向上を図ること
ができる。しかし、図6に示すように、NiO相はコア
1との熱膨張係数の差が大きいことから、特に内部歪を
多く含み剥離しやすいものであるが、酸化処理後除冷を
することにより、コア1に対する密着性が向上し、安定
な酸化被膜が得られる。
As described above, by heat-treating the core 1 at a temperature of 570 ° C. or higher, NiO + is formed on the upper surface of the core 1.
The underlying oxide layer 2 composed of the FeO phase is generated. When Ni is oxidized, it does not depend on oxygen and Ni oxide easily mixes with metal ions.
The underlying oxide layer 2 containing the iO phase is easily formed, and this underlying oxide layer 2 forms a dense and hard coating, and the abrasion resistance can be improved. However, as shown in FIG. 6, since the NiO phase has a large difference in thermal expansion coefficient from the core 1, it is likely to be peeled due to a large amount of internal strain. Adhesion to the core 1 is improved and a stable oxide film is obtained.

【0026】また、磁気ヘッドのコア材にパーマロイを
用い、これを酸化処理し、その表面に酸化被膜を形成さ
せた時、この酸化処理温度と磁気ヘッドのコア摩耗量と
の関係を図3に示す。このことから明らかなように、5
70℃以上の温度でコア部消耗量が減少し、耐摩耗性の
効果が出てくることが明らかになった。
When permalloy is used as the core material of the magnetic head and is oxidized to form an oxide film on its surface, the relationship between the oxidation temperature and the amount of core wear of the magnetic head is shown in FIG. Show. As is clear from this, 5
It was clarified that the amount of wear of the core portion decreased at a temperature of 70 ° C. or higher, and the effect of abrasion resistance was brought out.

【0027】[0027]

【発明の効果】本発明の磁気コアによれば、従来のFe
−Ni系の磁性合金からなるコアに劣っていた、耐摩耗
性、酸化被膜の密着性に関する性質を良好なものとし、
磁気記録媒体の高保磁力化に対応する磁気ヘッドコアと
して、より優れた磁気コアを提供できる効果がある。
According to the magnetic core of the present invention, the conventional Fe
-Provided that the properties relating to wear resistance and oxide film adhesion, which were inferior to the core made of a Ni-based magnetic alloy, were good,
As a magnetic head core compatible with a high coercive force of a magnetic recording medium, there is an effect that a more excellent magnetic core can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の実施例で処理温度を570℃以
上とした時の磁気コアの断面図である。
FIG. 1 is a sectional view of a magnetic core when a processing temperature is set to 570 ° C. or higher in an embodiment of the present invention.

【図2】図2は従来のFe−Ni系合金パーマロイおよ
び酸化被膜の構成成分とその割合を重量パーセントで示
すグラフである。
FIG. 2 is a graph showing the components and their ratios of conventional Fe—Ni alloy permalloy and oxide film in weight percent.

【図3】図3はFe−Ni系磁性合金パーマロイコアを
酸化処理した時の酸化処理温度とコア部摩耗量との関係
を示したグラフである。
FIG. 3 is a graph showing the relationship between the oxidation treatment temperature and the wear amount of the core when the Fe—Ni magnetic alloy permalloy core is subjected to the oxidation treatment.

【図4】図4はFe−Ni系磁性合金をコア材として用
いた従来の磁気コアの断面図である。
FIG. 4 is a cross-sectional view of a conventional magnetic core using a Fe—Ni based magnetic alloy as a core material.

【図5】図5はFe−O系の相状態図である。FIG. 5 is a phase diagram of the Fe—O system.

【図6】図6は金属・パーマロイ合金とその表面に生成
する主な酸化物の平均熱膨張係を示す表である。
FIG. 6 is a table showing an average thermal expansion coefficient of a metal / permalloy alloy and main oxides formed on the surface thereof.

【符号の説明】[Explanation of symbols]

1 コア 2 下地酸化層 3 中間酸化層 4 表面酸化層 5 コア 6 下地酸化層 7 中間酸化層 8 表面酸化層 1 core 2 underlying oxide layer 3 intermediate oxide layer 4 surface oxide layer 5 core 6 underlying oxide layer 7 intermediate oxide layer 8 surface oxide layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Fe−Ni系の磁性合金からなるコアの
表面に、NiOとFeOからなる下地酸化層と、Fe3
4からなる中間酸化層と、Fe23からなる表面酸化層
とが形成されてなることを特徴とする磁気コア。
1. An underlying oxide layer made of NiO and FeO and Fe 3 O on the surface of a core made of a Fe—Ni magnetic alloy.
A magnetic core comprising an intermediate oxide layer of 4 and a surface oxide layer of Fe 2 O 3 .
【請求項2】 Fe−Ni系の磁性合金からなるコアを
酸素中または、大気中、さらには水蒸気中においてにお
いて570℃以上の温度で熱処理し、コアに最も近い部
分から順にNiOとFeOからなる下地酸化層と、Fe
34からなる中間酸化層と、Fe23からなる表面酸化
層とを形成することを特徴とする磁気コアの製造方法。
2. A core made of a Fe—Ni magnetic alloy is heat-treated at a temperature of 570 ° C. or higher in oxygen, air, or steam to form NiO and FeO in order from the portion closest to the core. Underlayer oxide layer and Fe
A method of manufacturing a magnetic core, comprising forming an intermediate oxide layer made of 3 O 4 and a surface oxide layer made of Fe 2 O 3 .
JP3120469A 1991-05-24 1991-05-24 Magnetic core and method of manufacturing the same Expired - Fee Related JP2901373B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3120469A JP2901373B2 (en) 1991-05-24 1991-05-24 Magnetic core and method of manufacturing the same
MYPI92000880A MY108324A (en) 1991-05-24 1992-05-21 Magnetic core device and method for producing the same.
DE4217098A DE4217098C2 (en) 1991-05-24 1992-05-22 Magnetic core device and method for its manufacture
CN92103779A CN1060284C (en) 1991-05-24 1992-05-23 Magnetic core device and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3120469A JP2901373B2 (en) 1991-05-24 1991-05-24 Magnetic core and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0573826A true JPH0573826A (en) 1993-03-26
JP2901373B2 JP2901373B2 (en) 1999-06-07

Family

ID=14786947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3120469A Expired - Fee Related JP2901373B2 (en) 1991-05-24 1991-05-24 Magnetic core and method of manufacturing the same

Country Status (4)

Country Link
JP (1) JP2901373B2 (en)
CN (1) CN1060284C (en)
DE (1) DE4217098C2 (en)
MY (1) MY108324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104979094A (en) * 2014-04-02 2015-10-14 西北工业大学 Preparation method of porous film iron core

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309476B1 (en) * 1999-05-24 2001-10-30 Birchwood Laboratories, Inc. Composition and method for metal coloring process
US7964044B1 (en) 2003-10-29 2011-06-21 Birchwood Laboratories, Inc. Ferrous metal magnetite coating processes and reagents
US7144599B2 (en) 2004-07-15 2006-12-05 Birchwood Laboratories, Inc. Hybrid metal oxide/organometallic conversion coating for ferrous metals
CN104376952A (en) * 2013-08-12 2015-02-25 苏州宏久航空防热材料科技有限公司 Platinum-alloy-plated high-temperature alloy iron core

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689425B2 (en) * 1988-11-01 1994-11-09 住友特殊金属株式会社 Multilayer clad Fe-Ni system high magnetic permeability material and magnetic head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104979094A (en) * 2014-04-02 2015-10-14 西北工业大学 Preparation method of porous film iron core
CN104979094B (en) * 2014-04-02 2017-03-29 西北工业大学 A kind of preparation method of porous membrane iron core

Also Published As

Publication number Publication date
CN1060284C (en) 2001-01-03
DE4217098C2 (en) 1994-02-10
CN1067327A (en) 1992-12-23
DE4217098A1 (en) 1992-11-26
MY108324A (en) 1996-09-30
JP2901373B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
JPS585968B2 (en) Manufacturing method of ultra-low iron loss unidirectional electrical steel sheet
JPS60131976A (en) Manufacture of grain-oriented silicon steel sheet having superior iron loss characteristic
JPS6132388B2 (en)
JP2901373B2 (en) Magnetic core and method of manufacturing the same
JPS5951505A (en) Method of producing laminated magnetic material for magneticrecording head
JPS5633810A (en) Preparation of magnetic recording medium
KR910006018B1 (en) Coating alloy
JP2001015339A (en) Soft magnetic laminate film and thin-film magnetic head
JP3435177B2 (en) Manufacturing method of MIG type magnetic head
JP2646901B2 (en) Substrates for magnetic recording media
JPS6035335A (en) Manufacture of flexible magnetic recording body
JPH097117A (en) Thin-film magnetic head and its production
JPS62243115A (en) Magnetic recording medium
JPH0525947B2 (en)
JPS62224914A (en) Manufacture of magnetic core
JP2720363B2 (en) Manufacturing method of magnetic recording medium
JPS63109114A (en) Manufacture of fe-sn soft-magnetic sheet metal
JPS60219638A (en) Production of magnetic disk
JPH04311815A (en) Production of magnetic disk substrate made of titanium
JPH05267031A (en) Magnetic core material
JPH06231424A (en) Thin film magnetic head and its production
JPH06204683A (en) Electromagnetic shielding material with insulating coating and manufacture thereof
JPS59104481A (en) Formation of insulating coating film on rapidly-cooled thin strip of silicon steel
JPS63104214A (en) Magnetic memory body and its production
JPH0699822B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990223

LAPS Cancellation because of no payment of annual fees