JPH0573825B2 - - Google Patents

Info

Publication number
JPH0573825B2
JPH0573825B2 JP62336147A JP33614787A JPH0573825B2 JP H0573825 B2 JPH0573825 B2 JP H0573825B2 JP 62336147 A JP62336147 A JP 62336147A JP 33614787 A JP33614787 A JP 33614787A JP H0573825 B2 JPH0573825 B2 JP H0573825B2
Authority
JP
Japan
Prior art keywords
vapor
vapor deposition
deposited
measured
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62336147A
Other languages
Japanese (ja)
Other versions
JPH01176069A (en
Inventor
Atsushi Hirokawa
Kunihiko Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP33614787A priority Critical patent/JPH01176069A/en
Publication of JPH01176069A publication Critical patent/JPH01176069A/en
Publication of JPH0573825B2 publication Critical patent/JPH0573825B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 (産業上の利用分野) 本発明は、酸素ガス、二酸化炭素ガスなどのガ
スバリア性、水蒸気バリア性、可撓性、耐水性お
よび耐薬品性にすぐれ、種々の厳しい環境下にお
かれてもその性能が安定しており、飲食品、医薬
品などの包装材料分野、電気絶縁材料ないし導電
材料などの電子材料分野、あるいは医療材料分野
などの分野で有用な蒸着フイルムに関する。 (従来の技術) 従来からプラスチツクフイルムにアルミニウム
を蒸着したフイルムは食品包装などの材料として
広く用いられている。これらのアルミニウム蒸着
フイルムは可撓性、ガスバリア性、水蒸気バリア
性にすぐれるものの、耐酸性、耐アルカリ性など
の耐薬品性、耐水性とりわけ耐沸水性、透明性な
どに劣るため、レトルト殺菌処理や煮沸殺菌処理
を施したり、酸、アルカリなどに接触すると、蒸
着層の一部が剥離し、ガスバリア性や水蒸気バリ
ア性がかなり低下するという欠点があつた。 一方、特開昭49−41469号公報などにより提案
された。プラスチツクフイルムにSixOy(x=1、
2、y=0、1、2、3)なる組成の蒸着薄膜層
を設けた蒸着フイルムは、耐薬品性は高いもの
の、可撓性は低く、また、レトルト殺菌処理、例
えば125℃30分の条件でレトルト殺菌処理を行な
うと、プラスチツクフイルムと蒸着薄膜層の熱膨
張率の違いにより、亀裂を生じ、結果としてガス
バリア性や水蒸気バリア性が著しく低下するとい
う欠点があつた。 (発明が解決しようとする問題点) 本発明は、可撓性が高く、ガスバリア性、水蒸
気バリア性、耐薬品性、および耐水性にすぐれる
のみでなく、レトルト殺菌処理や煮沸殺菌処理を
施しても、剥離や亀裂を生じることもなく、ま
た、ガスバリア性や水蒸気バリア性も低下するこ
とがない蒸着フイルムを提供するものである。 〔発明の構成〕 (問題点を解決するための手段) 本発明は、プラスチツクフイルムの少なくとも
片面に、(A)アルミニウム、クロム、ニツケルおよ
び銀からなる群から選ばれる元素の単体またはけ
い酸ナトリウムの少なくとも1種、(B)けい素、お
よび(C)けい素酸化物を含み、かつ(A)の量が0.05〜
20モル%である蒸着原料を用いて形成した蒸着薄
膜層を設けてなる蒸着フイルムである。 本発明においてプラスチツクフイルムとしては
特に制限はなく、ポリエチレンテレフタレート、
ポリブチレンテレフタレートなどのポリエステ
ル、ポリアミド、ポリ塩化ビニル、ポリアクリロ
ニトリル、ポリカーボネート、ポリスチレン、ポ
リプロピレン、エチレン−酢酸ビニル共重合体け
ん化物、芳香族ポリアミド、ふつ素樹脂などを素
材とするフイルム、あるいはこれらの1種または
2種以上を含む積層フイルムがあり、その表面に
印刷やシランカツプリング剤、プライマーなどの
塗装、コロナ放電処理、低温プラズマ処理などの
表面処理が施されたもの、一軸延伸や二軸延伸を
されたものであつてもよい。また、一般包装用途
では、光沢、強度の面から二軸延伸ポリプロピレ
ンフイルム、ポリエステルフイルムなどが好んで
用いられ、電子材料分野では、ふつ素樹脂フイル
ムやポリエステルフイルムなどが用いられる。ま
た、巻取り方式で生産する場合には、プラスチツ
クフイルムの厚さは、伸び、しわ、亀裂などの発
生の防止の面から、5〜300μmであることが好
ましい。 これらプラスチツクフイルムの片面または両面
には、アルミニウム、クロム、ニツケルおよび銀
からなる群から選ばれる元素の単体またはけい酸
ナトリウムの少なくとも1種、けい素、およびけ
い素酸化物を蒸着原料として用いた蒸着薄膜層が
設けられる。飲食品などの用途には、衛生性の面
から、アルミニウムおよび銀からなる群から選ば
れる元素またはけい酸ナトリウムの少なくとも1
種、けい素、およびけい素酸化物を主成分とする
蒸着薄膜層とすることが好ましい。 本発明において、蒸着を安定に行なうために
は、蒸着原料中の元素またはその酸化物(A)の量は
0.05〜20モル%である。また、蒸着薄膜層中で元
素またはその酸化物(A)は均一に分布していても、
表面に近くなるほど元素またはその酸化物(A)の濃
度が高くなつていても、その逆に低くなつていて
もよい。 本発明において、蒸着薄膜層を得るための蒸着
原料であるけい素酸化物としては、SiO、Si2O3
Si3O4、およびSiO2の1種または2種以上であ
る。 上記蒸着原料は、必要に応じて、結合剤または
粘結剤、崩壊剤、滑沢剤などの成形助剤を加え、
湿式または乾式で、造粒、圧縮成形、押出成形な
どの方法により、ワイヤー状、ロツド状、タブレ
ツト状、ペレツト状あるいは円柱状、立方体状、
直方体状などの形状に成形して用いられる。ま
た、成形中あるいは成形後に大気中、不活性ガス
中、あるいは真空中で、乾燥または焼成して、成
形物の強度をあげるとともに、含有水分、内蔵ガ
ス、不純物を除去することが好ましい。 蒸着加熱の方法としては特に制限はなく、高周
波誘導加熱、抵抗加熱などの直接加熱、輻射加
熱、電子線加熱など従来公知の加熱方式を用いる
ことができる。 また、これらの蒸着原料では蒸着時に蒸着残渣
を生じるものが多いため、連続蒸着フイルムを安
定して得ようとする場合には、蒸着原料成形物を
加熱部に連続的に供給し、連続的に蒸着残渣を排
出させる手段を備えた蒸着装置を用いることが好
ましい。 本発明の蒸着フイルムには、必要に応じて、さ
らに印刷やコーテイングを施したり、ドライプレ
ーテイング層を設けたり、粘着剤やラミネート接
着剤を用いてまたは用いずにプラスチツクフイル
ムを積層したりしてもよい。そして、フイルムの
まま、あるいは袋やチユーブなどの形に加工し
て、飲食品、医薬品、医療、電子材料などの分野
で包装材料、ガス遮断材料、電気絶縁材料ないし
導電材料などとして広く用いることができる。 (実施例) 以下、実施例により本発明をさらに詳細に説明
する。なお、例中、酸素ガス透過率(OP)は、
同圧法(測定対象フイルムの両面での圧力差がな
い、つまり同圧で測定する方法)で測定した値で
あり、その単位はml/m2・24時間・1気圧・25
℃・100%RH、透湿度(WVT)は赤外線吸収法
で測定した値であり、その単位はml/m2・24時
間・40℃、90%RHであり、これらの単位の表示
はすべて省略した。なお、数値が小さいものほど
バリヤー性に優れていることを示している。 実施例 1 けい素/二酸化けい素/アルミニウム=1/
1/0.03(モル比)からなる蒸着原料を成形して
得られた直径40mm厚さ35mmのタブレツトを円筒状
のちつ化ほう素製のるつぼに入れ、1×10-4torr
の真空下、高周波誘導加熱装置により1250℃に加
熱することにより、厚さ12μmのポリエチレンテ
レフタレートフイルムに蒸着を施し、厚さ1000Å
の蒸着薄膜層を有する蒸着フイルムを得た。な
お、この際、約40重量%の蒸着残渣を生じた。 ラミネート用ポリウレタン系接着剤「アドコー
ト#900」(東洋モートン(株)製、商品名)を用い
て、常法により、得られた蒸着フイルムと厚さ
70μmの未延伸ポリプロピレンフイルムを接着
し、袋を作成し、4重量%酢酸水を封入し、125
℃30分間のレトルト殺菌処理を施した。 レトルト殺菌処理前およびレトルト殺菌処理後
のOPおよびWVTをそれぞれ10点測定し、測定
値の平均値(Av.)、および測定値の最大値と最
小値との差(R)を算出した。算出した結果を表1に
示す。 比較例 1−1 蒸着原料としてけい素/二酸化けい素=1/1
(モル比)からなる混合物を用いた以外は実施例
1と同様にして測定し算出した結果を表1に示
す。なお、蒸着の際、約30重量%の蒸着残渣を生
じるとともに、レトルト殺菌後の蒸着薄膜層には
きわめて微細な亀裂が認められた。 比較例 1−2 蒸着原料としてアルミニウムを用いた以外は実
施例1と同様にして測定し算出した結果を表1に
示す。なお、レトルト殺菌後の蒸着薄膜層の一部
には、剥離や溶失が認められた。
[Purpose of the Invention] (Field of Industrial Application) The present invention has excellent gas barrier properties against oxygen gas, carbon dioxide gas, water vapor barrier properties, flexibility, water resistance, and chemical resistance, and can be used in various harsh environments. The present invention relates to a vapor-deposited film that has stable performance even when exposed to water and is useful in the field of packaging materials for food and beverages, pharmaceuticals, etc., the field of electronic materials such as electrically insulating and conductive materials, and the field of medical materials. (Prior Art) Films made by vapor-depositing aluminum on plastic films have been widely used as materials for food packaging and the like. Although these aluminum vapor-deposited films have excellent flexibility, gas barrier properties, and water vapor barrier properties, they are inferior in chemical resistance such as acid resistance and alkali resistance, water resistance, especially boiling water resistance, and transparency, so they cannot be treated with retort sterilization or When subjected to boiling sterilization treatment or in contact with acids, alkalis, etc., part of the vapor deposited layer peels off, resulting in a disadvantage that gas barrier properties and water vapor barrier properties are considerably reduced. On the other hand, it was proposed in Japanese Unexamined Patent Publication No. 49-41469. SixOy on plastic film (x=1,
2, y = 0, 1, 2, 3) Although the vapor deposited film has high chemical resistance, it has low flexibility, and it is difficult to sterilize it by retort sterilization, for example, at 125°C for 30 minutes. When retort sterilization treatment is carried out under these conditions, cracks occur due to the difference in thermal expansion coefficient between the plastic film and the vapor-deposited thin film layer, resulting in a disadvantage that gas barrier properties and water vapor barrier properties are significantly reduced. (Problems to be Solved by the Invention) The present invention not only has high flexibility and excellent gas barrier properties, water vapor barrier properties, chemical resistance, and water resistance, but also can be sterilized by retort or boiling. To provide a vapor-deposited film that does not peel or crack, and does not deteriorate its gas barrier properties or water vapor barrier properties even when the film is heated. [Structure of the Invention] (Means for Solving the Problems) The present invention provides that (A) an element selected from the group consisting of aluminum, chromium, nickel, and silver or sodium silicate is applied to at least one side of a plastic film. Contains at least one of (B) silicon and (C) silicon oxide, and the amount of (A) is from 0.05 to
This is a vapor deposited film provided with a vapor deposited thin film layer formed using a vapor deposition raw material of 20 mol%. In the present invention, there are no particular limitations on the plastic film, including polyethylene terephthalate,
Films made of polyester such as polybutylene terephthalate, polyamide, polyvinyl chloride, polyacrylonitrile, polycarbonate, polystyrene, polypropylene, saponified ethylene-vinyl acetate copolymer, aromatic polyamide, fluorine resin, or one of these materials. There are laminated films containing one or more species, the surface of which has been subjected to surface treatments such as printing, coating with a silane coupling agent, primer, etc., corona discharge treatment, low-temperature plasma treatment, etc., uniaxial stretching or biaxial stretching. It may be something that has been done. Furthermore, in general packaging applications, biaxially oriented polypropylene films, polyester films, etc. are preferably used in terms of gloss and strength, and in the field of electronic materials, fluororesin films, polyester films, etc. are used. Further, when producing by winding, the thickness of the plastic film is preferably 5 to 300 μm from the viewpoint of preventing elongation, wrinkles, cracks, etc. On one or both sides of these plastic films, a single element selected from the group consisting of aluminum, chromium, nickel, and silver or at least one of sodium silicate, silicon, and silicon oxide are vapor-deposited using vapor deposition raw materials. A thin film layer is provided. For food and drink applications, from the viewpoint of hygiene, at least one element selected from the group consisting of aluminum and silver or sodium silicate is used.
Preferably, the vapor-deposited thin film layer is mainly composed of seeds, silicon, and silicon oxide. In the present invention, in order to perform vapor deposition stably, the amount of the element or its oxide (A) in the vapor deposition raw material must be
It is 0.05-20 mol%. Furthermore, even if the element or its oxide (A) is uniformly distributed in the deposited thin film layer,
The concentration of the element or its oxide (A) may become higher as it approaches the surface, or vice versa. In the present invention, the silicon oxide which is the vapor deposition raw material for obtaining the vapor deposited thin film layer includes SiO, Si 2 O 3 ,
One or more of Si 3 O 4 and SiO 2 . The above-mentioned vapor deposition raw material is added with forming aids such as a binder or a caking agent, a disintegrant, a lubricant, etc., as necessary.
By wet or dry methods such as granulation, compression molding, and extrusion molding, it can be shaped into wires, rods, tablets, pellets, cylinders, cubes, etc.
It is used after being formed into a shape such as a rectangular parallelepiped. Further, it is preferable to dry or bake the molded product during or after molding in the air, in an inert gas, or in a vacuum to increase the strength of the molded product and to remove contained moisture, built-in gas, and impurities. There are no particular limitations on the method of vapor deposition heating, and conventionally known heating methods such as high frequency induction heating, direct heating such as resistance heating, radiation heating, and electron beam heating can be used. In addition, many of these vapor deposition raw materials produce vapor deposition residue during vapor deposition, so if you want to stably obtain a continuously vapor deposited film, the vapor deposition raw material molded product is continuously supplied to the heating section, and It is preferable to use a vapor deposition apparatus equipped with a means for discharging vapor deposition residue. The vapor-deposited film of the present invention may be further printed or coated, provided with a dry plating layer, or laminated with a plastic film with or without an adhesive or laminating adhesive, if necessary. good. It can be used as a film or processed into bags, tubes, etc., and used widely as packaging materials, gas barrier materials, electrically insulating materials, or conductive materials in the fields of food and beverages, pharmaceuticals, medical care, electronic materials, etc. can. (Example) Hereinafter, the present invention will be explained in more detail with reference to Examples. In addition, in the example, the oxygen gas permeability (OP) is
This is a value measured using the same pressure method (a method in which there is no pressure difference on both sides of the film to be measured, in other words, the same pressure is used), and its units are ml/ m2 , 24 hours, 1 atm, 25
°C, 100%RH, and water vapor transmission rate (WVT) are values measured by infrared absorption method, and their units are ml/ m2 , 24 hours, 40℃, 90%RH, and all display of these units is omitted. did. Note that the smaller the value, the better the barrier properties. Example 1 Silicon/silicon dioxide/aluminum = 1/
A tablet with a diameter of 40 mm and a thickness of 35 mm obtained by molding a vapor deposition raw material with a molar ratio of 1/0.03 was placed in a cylindrical boron dinitride crucible and heated to 1 × 10 -4 torr.
A 12 μm thick polyethylene terephthalate film is vapor-deposited by heating it to 1250°C under a high-frequency induction heating device in a vacuum of 1000 Å.
A vapor-deposited film having a vapor-deposited thin film layer of . At this time, about 40% by weight of vapor deposition residue was produced. Using a polyurethane adhesive for lamination "Adcoat #900" (manufactured by Toyo Morton Co., Ltd., trade name), the vapor deposited film obtained by a conventional method and its thickness were
A 70 μm unstretched polypropylene film was glued to make a bag, and 4% by weight acetic acid water was sealed in it.
Retort sterilization treatment was performed at ℃ for 30 minutes. OP and WVT were measured at 10 points each before retort sterilization treatment and after retort sterilization treatment, and the average value (Av.) of the measured values and the difference (R) between the maximum and minimum measured values were calculated. The calculated results are shown in Table 1. Comparative example 1-1 Silicon/silicon dioxide = 1/1 as vapor deposition raw material
Table 1 shows the results measured and calculated in the same manner as in Example 1 except that a mixture consisting of (molar ratio) was used. During vapor deposition, about 30% by weight of vapor deposition residue was produced, and very fine cracks were observed in the vapor deposited thin film layer after retort sterilization. Comparative Example 1-2 Table 1 shows the results measured and calculated in the same manner as in Example 1 except that aluminum was used as the vapor deposition raw material. In addition, peeling and dissolution were observed in a part of the vapor-deposited thin film layer after retort sterilization.

【表】 実施例 2 蒸着原料成形物を加熱部に連続供給し、加熱部
から蒸着残渣を連続的に排出させる手段を備えた
蒸着装置を用い、実施例1において用いた蒸着原
料タブレツト状成形物を6mm/分の速度で、凹字
型断面を有するちつ化ほう素製の加熱部に連続供
給し、1×10-4torr.の真空下、抵抗加熱装置によ
り1300℃で、厚さ12μmのポリエチレンテレフタ
レート連続フイルムに蒸着を施し、厚さ1000Åの
連続蒸着薄膜層を有する連続蒸着フイルムを得
た。得られた連続蒸着フイルムと厚さ70μmの未
延伸ポリプロピレンフイルムとを、「アドコート
#900」を用いて常法により接着し、袋を作成し、
水を封入し、125℃40分間のレトルト殺菌処理を
施した。 レトルト殺菌処理前およびレトルト殺菌処理後
のOPをそれぞれ10点測定し、測定値の平均値
(Av.)、および測定値の最大値と最小値との差(R)
を算出した。算出した結果を表2にて示す。 比較例 2−1 蒸着原料としてけい素/二酸化けい素=1/1
(モル比)からなる混合物を用いた以外は実施例
2と同様にして測定し算出した結果を表2に示
す。 なお、レトルト殺菌後の蒸着薄膜層には、きわ
めて微細な亀裂が認められた。 比較例 2−2 蒸着原料としてアルミニウムを用いた以外は実
施例2と同様にして測定し算出した結果を表2に
示す。なお、レトルト殺菌後の蒸着薄膜層の一部
には、剥離や溶失が認められた。
[Table] Example 2 The tablet-shaped molded product of the vapor deposition raw material used in Example 1 was prepared using a vapor deposition apparatus equipped with means for continuously supplying the vapor deposition raw material molded product to the heating section and continuously discharging the vapor deposition residue from the heating section. was continuously supplied at a rate of 6 mm/min to a heating section made of boron titanide with a concave cross section, and heated to 1300°C by a resistance heating device under a vacuum of 1 × 10 -4 torr. to a thickness of 12 μm. A continuous vapor-deposited film having a continuous vapor-deposited thin film layer of 1000 Å in thickness was obtained. The obtained continuous vapor deposited film and an unstretched polypropylene film with a thickness of 70 μm were adhered in a conventional manner using “Adcoat #900” to create a bag.
It was filled with water and subjected to retort sterilization at 125°C for 40 minutes. Measure the OP at 10 points each before retort sterilization and after retort sterilization, and calculate the average value (Av.) of the measured values and the difference between the maximum and minimum measured values (R)
was calculated. The calculated results are shown in Table 2. Comparative example 2-1 Silicon/silicon dioxide = 1/1 as vapor deposition raw material
Table 2 shows the results measured and calculated in the same manner as in Example 2 except that a mixture consisting of (molar ratio) was used. In addition, extremely fine cracks were observed in the vapor-deposited thin film layer after retort sterilization. Comparative Example 2-2 Table 2 shows the results measured and calculated in the same manner as in Example 2 except that aluminum was used as the vapor deposition raw material. In addition, peeling and dissolution were observed in a part of the vapor-deposited thin film layer after retort sterilization.

【表】 実施例 3 ニツケル80重量%およびクロム20重量%からな
るニツケルクロム合金を用い、けい素/二酸化け
い素/ニツケルクロム合金=1.0/1.0/0.1(モル
比)の混合物を蒸着原料として用いた以外は、実
施例2と同様にして連続蒸着フイルムを得た。 得られた連続蒸着フイルムを100℃の水蒸気に
3時間暴露させ、暴露前および暴露後のOPおよ
びWVTを測定した。測定した結果を表3に示
す。 比較例 3 比較例2−1において得られた連続蒸着フイル
ムについて、実施例3と同様にして、水蒸気暴露
を行ない、暴露前および暴露後のOPおよび
WVTを測定した。測定した結果を表3に示す。
[Table] Example 3 Using a nickel-chromium alloy consisting of 80% by weight of nickel and 20% by weight of chromium, a mixture of silicon/silicon dioxide/nickel-chromium alloy = 1.0/1.0/0.1 (molar ratio) was used as a vapor deposition raw material. A continuously deposited film was obtained in the same manner as in Example 2 except that The obtained continuously deposited film was exposed to water vapor at 100° C. for 3 hours, and the OP and WVT were measured before and after exposure. The measured results are shown in Table 3. Comparative Example 3 The continuously deposited film obtained in Comparative Example 2-1 was exposed to water vapor in the same manner as in Example 3, and the OP and
WVT was measured. The measured results are shown in Table 3.

【表】 実施例 4 蒸着原料としてけい素/二酸化けい素/けい酸
ナトリウム=1.5/1.0/0.5(モル比)からなる混
合物を用いた以外は実施例3と同様にして、水蒸
気暴露を行ない、暴露前および暴露後のOPを測
定した。測定結果を表4に示す。 実施例 5 蒸着原料としてけい素/二酸化けい素/銀=
1.5/1.0/0.07(モル比)からなる混合物を用いた
以外は実施例4と同様にして水蒸気暴露前および
暴露後のOPを測定した。測定した結果を表4に
示す。
[Table] Example 4 Water vapor exposure was carried out in the same manner as in Example 3 except that a mixture of silicon/silicon dioxide/sodium silicate = 1.5/1.0/0.5 (molar ratio) was used as the vapor deposition raw material. OP was measured before and after exposure. The measurement results are shown in Table 4. Example 5 Silicon/silicon dioxide/silver = as vapor deposition raw material
The OP before and after exposure to water vapor was measured in the same manner as in Example 4, except that a mixture consisting of 1.5/1.0/0.07 (molar ratio) was used. The measured results are shown in Table 4.

【表】 実施例 6〜8 厚さ12μmのポリエチレンテレフタレート連続
フイルムの代りに、それぞれ厚さ25μmの二軸延
伸ポリアミド連続フイルム(実施例6)、厚さ
20μmの二軸延伸ポリプロピレン連続フイルム
(実施例7)、および厚さ25μmのふつ素樹脂連続
フイルム(実施例8)を用いた以外は実施例2と
同様にて連続蒸着フイルムを得た。 得られた連続蒸着フイルムを100℃の水蒸気に
30分間暴露させ、暴露前および暴露後OPおよび
WVTを測定した。測定した結果を表5に示す。
[Table] Examples 6 to 8 Instead of the polyethylene terephthalate continuous film with a thickness of 12 μm, biaxially stretched polyamide continuous films with a thickness of 25 μm (Example 6), thickness
A continuous vapor deposited film was obtained in the same manner as in Example 2, except that a 20 μm thick biaxially stretched polypropylene continuous film (Example 7) and a 25 μm thick fluororesin continuous film (Example 8) were used. The obtained continuously deposited film is exposed to steam at 100℃.
Exposure for 30 minutes, pre-exposure and post-exposure OP and
WVT was measured. The measured results are shown in Table 5.

〔発明の効果〕〔Effect of the invention〕

本発明により、可撓性が高く、ガスバリア性、
水蒸気バリア性、耐薬品性および耐水性にすぐれ
るのみでなく、レトルト殺菌処理や煮沸殺菌処理
を施しても、剥離や亀裂を生じることもなく、ま
た、ガスバリア性や水蒸気バリア性も低下するこ
とがない蒸着フイルムが得られるようになつた。
The present invention provides high flexibility, gas barrier properties,
Not only does it have excellent water vapor barrier properties, chemical resistance, and water resistance, but even after retort sterilization treatment or boiling sterilization treatment, it does not peel or crack, and its gas barrier properties and water vapor barrier properties do not deteriorate. It is now possible to obtain a vapor-deposited film free of oxidation.

Claims (1)

【特許請求の範囲】[Claims] 1 プラスチツクフイルムの少なくとも片面に、
(A)アルミニウム、クロム、ニツケルおよび銀から
なる群から選ばれる元素の単体またはけい酸ナト
リウムの少なくとも1種、(B)けい素、および(C)け
い素酸化物を含み、かつ(A)の量が0.05〜20モル%
である蒸着原料を用いて形成した蒸着薄膜層を設
けてなる蒸着フイルム。
1. On at least one side of the plastic film,
(A) contains at least one element selected from the group consisting of aluminum, chromium, nickel, and silver or sodium silicate; (B) silicon; and (C) silicon oxide; The amount is 0.05-20 mol%
A vapor deposited film provided with a vapor deposited thin film layer formed using a vapor deposition raw material.
JP33614787A 1987-12-29 1987-12-29 Vapor deposited film Granted JPH01176069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33614787A JPH01176069A (en) 1987-12-29 1987-12-29 Vapor deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33614787A JPH01176069A (en) 1987-12-29 1987-12-29 Vapor deposited film

Publications (2)

Publication Number Publication Date
JPH01176069A JPH01176069A (en) 1989-07-12
JPH0573825B2 true JPH0573825B2 (en) 1993-10-15

Family

ID=18296176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33614787A Granted JPH01176069A (en) 1987-12-29 1987-12-29 Vapor deposited film

Country Status (1)

Country Link
JP (1) JPH01176069A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2040638A1 (en) * 1990-04-20 1991-10-21 Gedeon I. Deak Barrier materials useful for packaging
EP0812779B1 (en) * 1991-12-26 2000-08-09 Toyo Boseki Kabushiki Kaisha A gas barrier film
DE4305856C2 (en) * 1993-02-25 1997-11-13 Fraunhofer Ges Forschung Process for the production of vacuum-deposited barrier layers for the packaging industry and vapor-deposition material for their production
JP3266978B2 (en) * 1993-04-30 2002-03-18 凸版印刷株式会社 Package for oxygen scavenger
JP4952707B2 (en) * 2008-12-19 2012-06-13 大日本印刷株式会社 Gas barrier sheet, gas barrier sheet manufacturing method, and product
JP5866900B2 (en) * 2011-09-09 2016-02-24 凸版印刷株式会社 Vapor deposition material, gas barrier vapor deposition film, and method for producing the vapor deposition film
JP5966821B2 (en) * 2012-09-28 2016-08-10 凸版印刷株式会社 Gas barrier laminated film
JP6212899B2 (en) * 2013-03-27 2017-10-18 凸版印刷株式会社 Gas barrier laminated film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152089A (en) * 1978-05-20 1979-11-29 Toyobo Co Ltd Metallized polyester film
JPS5523904A (en) * 1978-08-07 1980-02-20 Mizushima Shokuhin Kk Prearation of bean curd and devilsigma tongue (tofu and konjak)
JPS60219042A (en) * 1984-04-13 1985-11-01 積水化学工業株式会社 Permeability-resistant transparent synthetic resin body
JPS6151333A (en) * 1984-08-20 1986-03-13 積水化学工業株式会社 Transparent synrhetic resin body having permeability resistance
JPS6151332A (en) * 1984-08-20 1986-03-13 積水化学工業株式会社 Transparent synthetic resin body having permeability resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152089A (en) * 1978-05-20 1979-11-29 Toyobo Co Ltd Metallized polyester film
JPS5523904A (en) * 1978-08-07 1980-02-20 Mizushima Shokuhin Kk Prearation of bean curd and devilsigma tongue (tofu and konjak)
JPS60219042A (en) * 1984-04-13 1985-11-01 積水化学工業株式会社 Permeability-resistant transparent synthetic resin body
JPS6151333A (en) * 1984-08-20 1986-03-13 積水化学工業株式会社 Transparent synrhetic resin body having permeability resistance
JPS6151332A (en) * 1984-08-20 1986-03-13 積水化学工業株式会社 Transparent synthetic resin body having permeability resistance

Also Published As

Publication number Publication date
JPH01176069A (en) 1989-07-12

Similar Documents

Publication Publication Date Title
JPH07304127A (en) Gas barrier packaging material and production thereof
JPH03183759A (en) Laminated plastic film and its production
JPH0573825B2 (en)
JPS6178463A (en) Formation of synthetic resin film
JP2900691B2 (en) Evaporated film and method for making it transparent
JPS62103139A (en) Packaging material for retort pouch
JPS61261322A (en) Formation of synthetic resin film
JPS6282030A (en) Transparent plastic laminate having excellent gas barrier property
JP4720037B2 (en) Gas barrier transparent laminate with strong adhesion
JPS61297134A (en) Permeability-resistant transparent synthetic resin body
JP2004276294A (en) Pressure-sensitive adhesive film having high gas barrier properties
JPS6049936A (en) Manufacture of composite film
JPS6049934A (en) Transparent plastic having dampproofing
JP2874222B2 (en) Method for producing transparent barrier film
JPS6050164A (en) Formation of moistureproof transparent thin film
JPH0562065B2 (en)
JP3094702B2 (en) Silicon oxide-based deposited film and method for producing the same
JPH0432148B2 (en)
JPS6151332A (en) Transparent synthetic resin body having permeability resistance
JP3235677B2 (en) Microwave packaging material
JP4032607B2 (en) Gas barrier vapor deposition film having flexibility
JP2002234104A (en) High-degree vapor barrier film
JPS6027532A (en) Moisture vapor permeability-resistant synthetic resin body
JPH04369A (en) Vapor-deposited film
JPS6029465A (en) Plastic body having moisture permeation resistance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 15