JPH0573397B2 - - Google Patents

Info

Publication number
JPH0573397B2
JPH0573397B2 JP7906785A JP7906785A JPH0573397B2 JP H0573397 B2 JPH0573397 B2 JP H0573397B2 JP 7906785 A JP7906785 A JP 7906785A JP 7906785 A JP7906785 A JP 7906785A JP H0573397 B2 JPH0573397 B2 JP H0573397B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
oxidase
enzyme
sample
fluorescent substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7906785A
Other languages
Japanese (ja)
Other versions
JPS61237060A (en
Inventor
Haruo Watanabe
Noboru Mitsuhida
Minoru Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP7906785A priority Critical patent/JPS61237060A/en
Publication of JPS61237060A publication Critical patent/JPS61237060A/en
Publication of JPH0573397B2 publication Critical patent/JPH0573397B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、臨床検査または生化学的研究におけ
る血液、尿等体液および組織切片等生体試料中の
成分の定量法に関する。 (従来の技術) 生体試料中の成分の分析法としては、従来、吸
光光度法、螢光光度法、電極法などが有効に広く
使用されてきている。しかしながら、いずれの分
析法でも検出感度に限界があつて、臨床検査また
は生化学的研究において、従来に増して試料中の
含量が低い成分の検出、定量が必要とされる状況
に対して、検出法としてその感度の要求に対応出
来ない場合がある。化学発光および生物発光の原
理を用いた検出、定量法は感度が高いという点で
注目されてきている。吸光光度法の感度限界が
μMであるのに対し、係る発光法はその1/1000以
下の限界を有す。従つて、このことは目的物の試
料中の含量が低い場合と共に貴重な試料の場合に
は分析に供する試料量を少くしようという要求に
も応え得る。また、従来の吸光法又は螢光法の場
合には光源及びその単色光化のための装置を要す
ると共にその取扱いは厳密でなければならない
が、発光法においてはこのような装置に基く取扱
いの繁雑さを要しない。 従来からルミノール法、ルシゲニン法などの化
学発光法による過酸化水素の定量法は周知である
が、これらの反応はアルカリ性下で行われないと
過酸化水素の定量として感度が十分に出ないとい
う欠点がある。この化学発光法を臨床検査分野に
おける生化学的検査に用いる場合は、血清、尿な
どの生体試料中の成分の影響を強くうけ、発光活
性が減弱するだけでなく測定値にバラツキが生じ
信頼がおかれていない。このため生体試料を希釈
して用いる工夫がなされたが、逆に試料量を減少
させるため測定感度を低下させるという矛盾に遭
遇する。 (発明の解決しようとする問題点) 本発明は、化学発光法による生体試料中の微量
成分、すなわち基質又は酵素活性を生体試料中の
存在物質の妨害を受けることなく、定量できる方
法を提供する。 (問題点を解決するための手段) 本発明は、生体試料中の基質又は生体試料中の
酵素による酵素反応により生成した物質に、酸化
酵素を作用させ、生成した過酸化水素に酸化触媒
下、被酸化性の非螢光性物質を反応させて該非螢
光性物質を螢光物質に転換させ、次いで酸化触媒
の阻害条件下、該螢光物質を修酸ジエステルおよ
び過酸化水素を加えて反応させ、生成する発光量
を測定することにより、生成試料中の基質又は酵
素活性を定量することを特徴とする化学発光法に
よる生体成分の定量法である。 本発明は、次のようなプロセスからなる。 プロセス;生体成分である基質に酵素を作用せ
しめるか、或は生体成分である酵素に基質を作
用せしめるかして、単一又は複数の酵素反応過
程を経て、最終的に酸化酵素を作用せしめるこ
とにより過酸化水素を生成せしめるプロセス。 プロセス;プロセスで得られた過酸化水素に
非螢光性物質及び酸化触媒を作用し、螢光物質
を生成せしめるプロセス。 プロセス;プロセスで得られた螢光物質に修
酸ジエステル及び過酸化水素を作用し、光を発
生し、この強度を測定するプロセス。 生体成分としては血液、尿、唾液、涙液、その
他の体液及び組織に含まれる基質又は酵素をい
う。 生体試料中の基質としては具体的には尿酸、コ
レステロールエステル、遊離コレステロール、ト
リグリセリド、プレトシン、カタベリン、スペル
ミン、スペルミジン等のポリアミン、ラクテー
ト、ピルベート、遊離脂肪酸、クレアチン、クレ
アチニンなどがある。 生成試料中の酵素としてはポリアミンオキシダ
ーゼ(例プレトシンオキシダーゼ)、コリンエス
テラーゼ、α−アミラーゼ、GPTなどがある。 酸化酵素としては、次のものが例示される。ウ
リカーゼ(尿酸)、コレステロールオキシダーゼ
(コレステロールステル、遊離コレステロール)、
グリセロリン酸オキシダーゼ(トリグリセリド)、
ポリアミンオキシダーゼ(ポリアミン)、ラクテ
ートオキシダーゼ(ラクテート)、ピルビン酸オ
キシダーゼ(ピルベート、GPT)、アシルCoAオ
キシダーゼ(遊離脂肪酸)、ザルコシンオキシダ
ーゼ(クレアチン、クレアチニン)、コリンオキ
シダーゼ(コリンエステラーゼ)、グルコースオ
キシダーゼ(α−アミラーゼ)、NAD〓Hオキシ
ダーゼ(デヒドロゲナーゼ反応を利用して測定す
ることが知られた基質類又は酵素類)など。 本発明において、公知の種々な過酸化水素生成
反応を適用し得る。次にその例を示すが、本発明
はこれに限定されない。 尿酸より過酸化水素の生成 尿酸+O2+2H2Oウリカーゼ −――――→ アラントイン+H2O2 コレステロールエステルより過酸化水素の生成 コレステロールエステル+H2Oコレステロールエ
ステラーゼ ―――――――――――――→ コレステロール+脂肪酸 コレステロール+O2コレステロールオキシダ
ーゼ ―――――――――――――→ △4−コレステノン+H2O2 プトレシンより過酸化水素の生成 プトレシン+O2+H2Oプトレシンオキシダーゼ ―――――――――――→ 4−アミノブチルアルデヒド+NH+ 4+H2O2 トリグリセリドより過酸化素の生成 トリグリセリド+3H2Oリパーゼ ――――→ グリセロール+3脂肪酸 グリセロール+ATPグリセロールキナーゼ ――――――――――→ Mg2+L−α−グリセロリン酸+ADP L−α−グリセロリン酸+O2グリセロリン酸オキシダ
ーゼ ―――――――――――――→ H2O2+ジヒドロキシアセトンリン酸 コリンエステラーゼの作用による過酸水素の生成 ベンゾイルコインコリンエステラー
ゼ ―――――――――→ コリン+安息香酸 コリン+2O2+H2Oコリンオキシダー
ゼ ―――――――――→ ベタイン+2H2O2 α−アミラーゼ作用による過酸化素の生成 マルトペンタオース+H2Oα−アミラーゼ ―――――――→ マルトース+マルトトリオース マルトース+マルトトリオース+3H2Oα−グ
ルコシダーゼ ―――――――――→ グルコース+O2+H2Oグルコースオキシ
ダーゼ ―――――――――――→ H2O2+グルコン酸 プロセスにおいて用いる酸化触媒としては、
ペルオキシダーゼ、ミクロペルオキシダーゼ、ヘ
ミン、ヘマチンなどが挙げられる。 非螢光物質とは、前記プロセスで生成した過
酸化水素と前記酸化触媒によつて酸化され螢光物
質に変換されるものを指すが、フルオレセインの
ロイコ体、例えばロイコ−2′,7′−ジクロロフル
オレセインジアセテート等またはローダミンBの
ロイコ体などが好適に使用出来る。これらの化合
物の他にもロイコローダミン、ロイコエオシンな
どの還元型が酸化されることにより、発螢光する
群とホモバニリン酸、p−クレゾール、3−(p
−ヒドロキシフエニル)プロピオン酸、チラミン
などの過酸化水素の存在下に酸化縮合して発螢光
する群などがある。ロイコ体としては、特にロイ
コ−2′,7′−ジクロロフルオレセインジアセテー
ト(LDADCF)は安定性に優れ、アルカリ又は
エステラーゼによる加水分解によつて容易に本発
明で言う非螢光物質、ロイコ−2′,7′−ジクロロ
フルオレセイン(LDCF)となし得る点で取扱い
容易な好適な化合物である。 プロセスとプロセスとは、一般的には水系
で反応を行い、逐次操作によつても、同時操作に
よつても遂行し得る。試料中の基質から酵素反応
による過酸化水素の誘導、試料中の酵素の作用に
よる過酸化水素の誘導は前記例示の如く、公知な
反応系であり、これらは1−ステツプ或は複数−
ステツプの操作により行われるが、少くとも最終
の過酸化水素生成反応は、プロセスと共役下に
同時操作で実施されるのが簡便で良い。 プロセスにおいて用いる修酸ジエステルとし
ては、ビス(2,4,6−トリクロロフエニル)
オキザレート、ビス(2,4−ジニトロフエニ
ル)オキザレート等がある。 本発明のプロセスはプロセスで用いた酸化
触媒の阻害条件下で実施される。それはプロセス
においては過剰量の過酸化水素を反応系外から
添加するから、酸化触媒を阻害させないで反応を
行うと、プロセスで過剰の蛍光物質が生成し、
発光のバツクグラウンドを増加させることにな
る。従つてプロセスはそれ以前のプロセスとは
必然的に操作上分離され逐次的に実施される。酸
化触媒を阻害させるには、シアン化ナトリウム、
シアン化カリウム、アジ化ナトリウム等、公知の
阻害剤を使用することが出来るが、好適には有機
溶媒の使用によつてその目的(阻害)を達成する
ことが出来る。何故ならプロセスの反応は水を
含む有機溶媒中で行うことが発光量の増大即ち感
度の増加のために必要であるからである。従つ
て、酸化触媒の阻害と発光量の増加という観点か
ら有機溶媒が選定される。有機溶媒としては、例
えば酢酸エチル、アセトン、アセトニトリルなど
が挙げられる。有機溶媒は単独でも、あるいは2
種以上の混合物であつてもよい。 反応は温度20〜40℃、中性又はアルカリ性のPH
下で行う。 プロセスで添加する過酸化水素の量は0.1〜
50mMである。 発光量の測定は通常のフオトマルチプライヤ
ー、フオトカウンター等の検知器を装置した市販
の計測機を使用し得る。例えばピークの発光量を
ルミフオトメーターTD4000(ラボサイエンス社
製)を用いてカウントする。 本発明によつて生体試料中の極めて多種の基質
又は酵素を測定することが出来る。基質としては
例えばコレステロール・エステル、コレステロー
ル、グルコース、トリグリセライド、プトレシ
ン、カタベリン、スペルミン、スペルミジン等の
ポリアミン、尿酸、ラクテート、ピルベート、遊
離脂肪酸、クレアチン、クレアチニン等のオキシ
ダーゼ反応を利用して測定することが知られた基
質がある。酵素としてはアミラーゼ、コリンエス
テラーゼ、グルタメートピルベートトランスアミ
ナーゼ等のオキシダーゼ反応を組合せて測定する
ことが知られた酵素類がある。 また、デヒドロゲナーゼ反応を利用して測定す
ることが知られた基質類又は酵素類もNAD(D)H
オキシダーゼを使用するか又はNADHよりのメ
チレンブルーを増感剤として光照射下に過酸化水
素を生成して測定し得る。このような基質として
はトリグリセライド、胆汁酸、グルコース、コレ
ステロール等、酵素としてアミラーゼ、トランス
アミナーゼ、ラクテートデヒドロゲナーゼ等が挙
げられる。 また、生体試料中に存在する過酸化物、例えば
過酸化脂質は、プロセスを経ることなくプロセ
スによつて蛍光性物質に導かれ、プロセスに
おいて修酸ジエステル及び過酸化水素と反応して
光を発生し、この発光強度を測定する。 (発明の効果) 本発明では生体試料中の共存物質の妨害を受け
ることなく、生体試料中の微量成分を高感度に定
量することができる。即ち、吸光光度法では
10-6M、螢光光度法では10-7M、電極法では
10-6M迄の微量成分を測定できるのに対して、本
発明では10-9M迄の微量成分も測定できる。ま
た、本発明では測定セルの形状に依存することな
く、微量成分の絶対量に対応して測定することが
できる。さらに本発明では試料中の混濁に影響さ
れない。 (実施例) 次に本発明を実施例により説明する。 実施例 1 尿酸の定量 発螢光試薬の調製:5mgのロイコ−2′,7′−ジ
クロロフルオレセインジアセテートを10mlのエタ
ノールに溶解し、40mlの0.01NNaOHを加えてア
セチル基を加水分解した。これに75mlの2%β−
シクロデキストリンを含む25mMリン酸バツフア
ー(PH7)を加えて撹拌し、更に75mlの25mMリ
ン酸バツフアーPH7)を加えて全量を200mlとし
た。この発螢光物質(非螢光物質)は常温で2日
間安定である。 酵素試薬の調製:西洋ワサビ大根ペルオキシダ
ーゼをプルプロガリンユニツトで5U/ml、ウリ
カーゼを1.5U/mlになるように25mMリン酸バ
ツフアーPH7に加えた。 発光試薬の調製:酢酸エチルに溶解した0.5m
Mビス(2,4,6−トリクロロフエニル)オキ
ザレート(TCPO)と水に溶解した2mM
H2O2をアセトニトリルで全量を調製して用意し
た。更に測定前に、アセトニトリルで1/5に希釈
して発光試薬として用いた。 尿酸の調製:尿酸は尿酸を含まないコントロー
ルを含めて、5×10-6mg/dl〜5×10-2mg/dlの
範囲で25mMリン酸バツフアーに溶解させた。 測定操作としては、3mlの発螢光試薬をとり、
1mlの酵素液を加え、1mlの尿酸試料を加えて30
℃1時間インキユベートし、発螢光したサンプル
0.5mlをとり、これに0.5mlの発光試薬を注射器で
加えて、発光のピークを測定装置で読みとつた。
この結果を第1図に示す。測定感度は発螢光反応
(反応1、2)の段階で10-6mg/dl(5.95×
10-9M)であり、範囲は10-6mg/dl〜10-3mg/dl
で直線であつた。 なお、発光試薬にアセトニトリルが含有される
ことにより、酵素試薬中のペルオキシダーゼが阻
害を受ける。 次に生体試薬として血清を使用した場合の吸光
法との相関を示す。吸光法の測定は、市販の尿酸
測定試薬、ウリカラーエース(東洋紡製)で行つ
た。本発明による測定はあらかじめ血清を100倍
希釈した上で、上記発蛍光試薬に上記酵素液を加
えた反応系に血清希釈液1ml加えて(尿酸試料の
替りに血清希釈液を加える)以下同じ操作で測定
した。結果は第2図に示すように、y=0.987x+
0.098r=0.9991とよい相関を得た。 実施例 2 コリンエステラーゼの活性測定 発螢光試薬及び発光試薬は実施例1と同様にし
て調製した。 基質試薬の調製:塩化ベンゾイルコリン2.4m
MをN/50の塩酸水溶液に溶解した。 酵素試薬の調製:コリンオキシダーゼ5U/ml、
ペルオキシダーゼ5U/mlを0.1Mトリス緩衝液
(PH7.55)に溶解した。 停止液の調製:メチル硫酸ネオスチグミン12m
Mを水に溶解した。 標準液の調製:塩化コリン5mMの水溶液を作
製した。更に下記血清と同様に希釈した。 サンプルの希釈:血清サンプルを0.1Mトリス
緩衝液(PH7.55)にて500倍に希釈した。 測定操作:希釈サンプル、希釈標準液または水
(ブランク)を各20μとり酵素試薬1mlを加え
37℃にて5分間予備加温を行つて後、基質試薬1
mlを添加し、37℃にて正確に5分間加温の後、停
止液2mlを添加し更に発蛍光試薬(ロイコ−2′,
7′−ジクロロフルオレセインジアセテートを溶解
したエタノール溶液にβ−シクロデキストリンを
含むリン酸緩衝液を添加した試薬)3mlを加えて
20分間加温した。この発蛍光したサンプル0.5ml
をとり、これに0.5mlの発光試薬(酢酸エチルに
溶解したビス(2,4,6−トリクロロフエニ
ル)オキザレート(TCPO)と水に溶解した過酸
化水素をアセトニトリルで調製した試薬)を注射
器を用いて添加し、発光のピークを測定装置で読
み取つた。なお、発光試薬にアセトニトリルが含
有されることにより、酵素試薬中のペルオキシダ
ーゼが阻害を受ける。 血清サンプル中のコリンオキシダーゼ活性を次
式により算出した。 ChE活性値(IU/)=血清サンプルでの発光カウ
ント数−ブランクカウント共/標準液での発光カウント
数−ブランクカウント共×1000 一方で、同じ血清サンプルを吸光光度法を用い
た試薬キツトダイヤカラー、CHE(東洋紡績(株)
製)のワンポイントアツセイ法を用いて測定し比
較した。結果は第1表の通りであり相関関係のあ
るデータが得られた。
(Industrial Application Field) The present invention relates to a method for quantifying components in biological samples such as blood, urine and other body fluids, and tissue sections in clinical tests or biochemical research. (Prior Art) As methods for analyzing components in biological samples, absorption photometry, fluorescence photometry, electrode methods, and the like have been effectively and widely used. However, each analytical method has a limit in detection sensitivity, and detection is difficult for situations in clinical tests or biochemical research where detection and quantification of components with lower concentrations than in the past are required. There are cases where the sensitivity requirement cannot be met as a law. Detection and quantification methods using the principles of chemiluminescence and bioluminescence have attracted attention because of their high sensitivity. While the sensitivity limit of spectrophotometry is μM, such luminescence methods have a limit of 1/1000 or less. Therefore, this can meet the demand for reducing the amount of sample to be analyzed when the content of the target substance in the sample is low and when the sample is valuable. Furthermore, in the case of the conventional absorption method or fluorescence method, a light source and a device for converting it into monochromatic light are required, and their handling must be strict, but in the case of the luminescence method, the handling is complicated due to the use of such devices. It doesn't require much time. Methods for quantifying hydrogen peroxide using chemiluminescent methods such as the luminol method and the lucigenin method are well known, but these reactions have the disadvantage that they are not sensitive enough to quantify hydrogen peroxide unless they are carried out under alkaline conditions. There is. When this chemiluminescence method is used for biochemical tests in the field of clinical testing, it is strongly influenced by components in biological samples such as serum and urine, which not only weakens the luminescent activity but also causes variations in measured values, making it unreliable. Not placed. For this reason, efforts have been made to dilute the biological sample, but this results in a contradiction in that the sample amount is reduced, which in turn lowers the measurement sensitivity. (Problems to be Solved by the Invention) The present invention provides a method for quantifying trace components, ie, substrates or enzyme activities, in a biological sample using a chemiluminescent method without being interfered with by substances present in the biological sample. . (Means for Solving the Problems) The present invention allows an oxidizing enzyme to act on a substrate in a biological sample or a substance generated by an enzymatic reaction with an enzyme in the biological sample, and then oxidizes the generated hydrogen peroxide under an oxidation catalyst. An oxidizable non-fluorescent substance is reacted to convert the non-fluorescent substance into a fluorescent substance, and then the fluorescent substance is reacted with oxalic acid diester and hydrogen peroxide under conditions of inhibition of the oxidation catalyst. This is a method for quantifying biological components using a chemiluminescent method, which is characterized by quantifying substrate or enzyme activity in a produced sample by measuring the amount of luminescence produced. The present invention consists of the following process. Process: Allowing an enzyme to act on a substrate, which is a biological component, or allowing a substrate to act on an enzyme, which is a biological component, through a single or multiple enzymatic reaction process, and finally causing an oxidizing enzyme to act. A process that produces hydrogen peroxide. Process: A process in which hydrogen peroxide obtained in the process is treated with a non-fluorescent substance and an oxidation catalyst to produce a fluorescent substance. Process: A process in which oxalic acid diester and hydrogen peroxide are applied to the fluorescent substance obtained in the process to generate light and measure the intensity of this light. Biological components include substrates or enzymes contained in blood, urine, saliva, lacrimal fluid, and other body fluids and tissues. Specific examples of substrates in biological samples include uric acid, cholesterol esters, free cholesterol, triglycerides, pretocin, polyamines such as cataverine, spermine, and spermidine, lactate, pyruvate, free fatty acids, creatine, and creatinine. Enzymes in the produced sample include polyamine oxidase (eg pretosine oxidase), cholinesterase, α-amylase, and GPT. Examples of oxidases include the following. Uricase (uric acid), cholesterol oxidase (cholesterol ster, free cholesterol),
glycerophosphate oxidase (triglyceride),
Polyamine oxidase (polyamine), lactate oxidase (lactate), pyruvate oxidase (pyruvate, GPT), acyl-CoA oxidase (free fatty acids), sarcosine oxidase (creatine, creatinine), choline oxidase (cholinesterase), glucose oxidase (α-amylase) ), NAD〓H oxidase (substrates or enzymes known to be measured using a dehydrogenase reaction), etc. In the present invention, various known hydrogen peroxide production reactions can be applied. An example will be shown next, but the present invention is not limited thereto. Production of hydrogen peroxide from uric acid Uric acid + O 2 + 2H 2 O uricase ----→ Allantoin + H 2 O Production of hydrogen peroxide from 2 cholesterol ester Cholesterol ester + H 2 O cholesterol esterase -------------------- ―――→ Cholesterol + fatty acid Cholesterol + O 2 cholesterol oxidase ――――――――――――→ △ 4 -Cholestenone + H 2 O 2 Production of hydrogen peroxide from putrescine Putrescine + O 2 + H 2 O putrescine oxidase ――――――――――――→ 4-aminobutyraldehyde + NH + 4 + H 2 O 2 Generates peroxide from triglyceride Triglyceride + 3H 2 O lipase ――――→ Glycerol + 3 fatty acids Glycerol + ATP glycerol kinase - ――――――――――→ Mg 2 + L-α-glycerophosphate + ADP L-α-glycerophosphate + O 2 glycerophosphate oxidase ――――――――――――→ H 2 O 2 + dihydroxy Generation of hydrogen peroxide by the action of acetone phosphate cholinesterase Benzoyl coin cholinesterase――――――――――→ Choline + Benzoic acid Choline + 2O 2 +H 2 Ocholine oxidase――――――――――→ Betaine + 2H 2 Generation of peroxide by O 2 α-amylase action Maltopentaose + H 2 Oα-amylase――――――――→ Maltose + Maltotriose Maltose + Maltotriose + 3H 2 Oα-glucosidase―――――――― ――→ Glucose + O 2 + H 2 O glucose oxidase ――――――――――→ H 2 O 2 + Gluconic acid The oxidation catalyst used in the process is:
Examples include peroxidase, microperoxidase, hemin, hematin, and the like. Non-fluorescent substances refer to those that are oxidized and converted into fluorescent substances by the hydrogen peroxide produced in the above process and the oxidation catalyst, but include the leuco form of fluorescein, such as leuco-2', 7'- Dichlorofluorescein diacetate or the like or the leuco form of rhodamine B can be suitably used. In addition to these compounds, the reduced forms of leucolhodamine, leucoeosin, etc. are oxidized to produce fluorescent groups, homovanillic acid, p-cresol, 3-(p
-Hydroxyphenyl)propionic acid, tyramine, etc., which undergo oxidative condensation and emit fluorescence in the presence of hydrogen peroxide. Among the leuco substances, leuco-2',7'-dichlorofluorescein diacetate (LDADCF) has particularly excellent stability and can be easily converted into leuco-2, the non-fluorescent substance referred to in the present invention, by hydrolysis with alkali or esterase. It is a suitable compound that can be easily handled as it can be converted into ',7'-dichlorofluorescein (LDCF). Processes and processes generally involve reactions in aqueous systems and can be carried out sequentially or simultaneously. The induction of hydrogen peroxide from a substrate in a sample by an enzymatic reaction, and the induction of hydrogen peroxide by the action of an enzyme in a sample, are known reaction systems as exemplified above, and these can be carried out in one step or in multiple steps.
Although it is carried out by step operations, it is convenient and convenient to carry out at least the final hydrogen peroxide production reaction in a simultaneous operation in conjunction with the process. The oxalic acid diester used in the process is bis(2,4,6-trichlorophenyl)
These include oxalate, bis(2,4-dinitrophenyl) oxalate, and the like. The process of the invention is carried out under conditions of inhibition of the oxidation catalyst used in the process. This is because an excessive amount of hydrogen peroxide is added from outside the reaction system during the process, so if the reaction is carried out without inhibiting the oxidation catalyst, an excessive amount of fluorescent material will be generated in the process.
This will increase the luminescence background. A process is therefore necessarily operationally separate from previous processes and performed sequentially. To inhibit the oxidation catalyst, sodium cyanide,
Known inhibitors such as potassium cyanide, sodium azide, etc. can be used, but the purpose (inhibition) can preferably be achieved by using an organic solvent. This is because it is necessary to carry out the process reaction in an organic solvent containing water in order to increase the amount of light emission, that is, increase the sensitivity. Therefore, organic solvents are selected from the viewpoints of inhibiting the oxidation catalyst and increasing the amount of light emitted. Examples of the organic solvent include ethyl acetate, acetone, and acetonitrile. The organic solvent can be used alone or in combination
It may be a mixture of more than one species. The reaction takes place at a temperature of 20-40℃ and a neutral or alkaline pH.
Do it below. The amount of hydrogen peroxide added in the process is 0.1~
It is 50mM. The amount of luminescence can be measured using a commercially available measuring device equipped with a detector such as a conventional photomultiplier or photocounter. For example, the peak luminescence amount is counted using a Lumiphotometer TD4000 (manufactured by Lab Science). According to the present invention, it is possible to measure a wide variety of substrates or enzymes in biological samples. Examples of substrates include cholesterol esters, cholesterol, glucose, triglycerides, putrescine, cataverine, spermine, polyamines such as spermidine, uric acid, lactate, pyruvate, free fatty acids, creatine, and creatinine, which are known to be measured using an oxidase reaction. There is a substrate that has been treated. Examples of enzymes include enzymes known to be measured by combining oxidase reactions, such as amylase, cholinesterase, and glutamatepyruvate transaminase. In addition, substrates or enzymes known to be measured using dehydrogenase reactions are also NAD(D)H.
It can be measured by using oxidase or by generating hydrogen peroxide under light irradiation using methylene blue from NADH as a sensitizer. Examples of such substrates include triglycerides, bile acids, glucose, and cholesterol, and examples of enzymes include amylase, transaminase, and lactate dehydrogenase. In addition, peroxides present in biological samples, such as lipid peroxides, are led to fluorescent substances by the process without going through any process, and react with oxalate diester and hydrogen peroxide in the process to generate light. Then, measure the luminescence intensity. (Effects of the Invention) According to the present invention, trace components in a biological sample can be quantified with high sensitivity without interference from coexisting substances in the biological sample. That is, in the spectrophotometric method,
10 -6 M, 10 -7 M for fluorophotometry, and 10 -7 M for electrode method.
While trace components up to 10 -6 M can be measured, the present invention can also measure trace components up to 10 -9 M. Further, in the present invention, it is possible to measure the absolute amount of trace components without depending on the shape of the measurement cell. Furthermore, the present invention is not affected by turbidity in the sample. (Example) Next, the present invention will be explained with reference to an example. Example 1 Quantification of uric acid Preparation of fluorescent reagent: 5 mg of leuco-2',7'-dichlorofluorescein diacetate was dissolved in 10 ml of ethanol, and 40 ml of 0.01 N NaOH was added to hydrolyze the acetyl group. Add to this 75 ml of 2% β-
25mM phosphate buffer (PH7) containing cyclodextrin was added and stirred, and further 75ml of 25mM phosphate buffer (PH7) was added to bring the total volume to 200ml. This fluorescent substance (non-fluorescent substance) is stable for two days at room temperature. Preparation of enzyme reagents: Horseradish radish peroxidase and uricase were added to 25 mM phosphate buffer PH7 at a concentration of 5 U/ml and 1.5 U/ml in purpurogalin units, respectively. Preparation of luminescence reagent: 0.5m dissolved in ethyl acetate
M bis(2,4,6-trichlorophenyl)oxalate (TCPO) and 2mM dissolved in water
The total amount of H 2 O 2 was prepared using acetonitrile. Furthermore, before measurement, it was diluted to 1/5 with acetonitrile and used as a luminescent reagent. Preparation of uric acid: Uric acid was dissolved in 25 mM phosphate buffer in the range of 5 x 10 -6 mg/dl to 5 x 10 -2 mg/dl, including a control without uric acid. For the measurement procedure, take 3 ml of fluorescent reagent,
Add 1 ml of enzyme solution, add 1 ml of uric acid sample, and add 30
Samples that fluoresced after incubating for 1 hour at ℃
0.5 ml of the sample was taken, 0.5 ml of luminescent reagent was added to it using a syringe, and the peak of luminescence was read using a measuring device.
The results are shown in FIG. The measurement sensitivity is 10 -6 mg/dl (5.95×
10 -9 M) and ranges from 10 -6 mg/dl to 10 -3 mg/dl
It was a straight line. Note that by containing acetonitrile in the luminescent reagent, peroxidase in the enzyme reagent is inhibited. Next, we will show the correlation with the absorption method when serum is used as a biological reagent. The spectrophotometric measurement was performed using a commercially available uric acid measuring reagent, Uricolor Ace (manufactured by Toyobo Co., Ltd.). In the measurement according to the present invention, the serum is diluted 100 times in advance, and then 1 ml of the diluted serum solution is added to the reaction system in which the enzyme solution is added to the fluorescence reagent described above (the diluted serum solution is added instead of the uric acid sample), and the following steps are repeated in the same manner. It was measured with As shown in Figure 2, the result is y=0.987x+
A good correlation of 0.098r=0.9991 was obtained. Example 2 Cholinesterase Activity Measurement A fluorescent reagent and a luminescent reagent were prepared in the same manner as in Example 1. Preparation of substrate reagent: benzoylcholine chloride 2.4m
M was dissolved in a N/50 aqueous hydrochloric acid solution. Preparation of enzyme reagent: choline oxidase 5U/ml,
5U/ml of peroxidase was dissolved in 0.1M Tris buffer (PH7.55). Preparation of stop solution: Neostigmine methyl sulfate 12m
M was dissolved in water. Preparation of standard solution: A 5 mM aqueous solution of choline chloride was prepared. It was further diluted in the same manner as the serum below. Sample dilution: Serum samples were diluted 500 times with 0.1M Tris buffer (PH7.55). Measurement procedure: Take 20μ of each diluted sample, diluted standard solution or water (blank) and add 1ml of enzyme reagent.
After prewarming at 37℃ for 5 minutes, add substrate reagent 1.
After heating at 37°C for exactly 5 minutes, 2 ml of stop solution was added, and fluorescent reagents (leuco-2',
Add 3 ml of a reagent containing phosphate buffer containing β-cyclodextrin to an ethanol solution containing 7'-dichlorofluorescein diacetate.
Warmed for 20 minutes. 0.5ml of this fluorescent sample
Add 0.5 ml of luminescent reagent (a reagent prepared by mixing bis(2,4,6-trichlorophenyl)oxalate (TCPO) dissolved in ethyl acetate and hydrogen peroxide dissolved in water with acetonitrile) into it using a syringe. The peak of luminescence was read using a measuring device. Note that by containing acetonitrile in the luminescent reagent, peroxidase in the enzyme reagent is inhibited. Choline oxidase activity in the serum sample was calculated using the following formula. ChE activity value (IU/) = Number of luminescence counts in serum sample - Blank count / Number of luminescence counts in standard solution - Blank count x 1000 On the other hand, the same serum sample was measured using the reagent kit Diacolor using absorptiometric method. , CHE (Toyobo Co., Ltd.)
The results were measured and compared using the one-point assay method of The results are shown in Table 1, and correlated data was obtained.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法による尿酸濃度と発光強度
(相対値)を示す。第2図は本発明法と従来の吸
光法による血清中の尿酸測定の相関性を示してい
る。
FIG. 1 shows the uric acid concentration and luminescence intensity (relative values) obtained by the method of the present invention. FIG. 2 shows the correlation between the measurement of uric acid in serum by the method of the present invention and the conventional absorption method.

Claims (1)

【特許請求の範囲】[Claims] 1 生体試料中の基質又は生体試料中の酵素によ
る酵素反応により生成した物質に、酸化酵素を作
用させ、生成した過酸化水素に、酸化触媒存在
下、被酸化性の非蛍光物質を反応させて該非蛍光
物質を蛍光物質に転換させ、次いで酸化触媒の阻
害条件下、該蛍光物質に修酸ジエステルおよび過
酸化水素を加えて反応させ、生成する発光量を測
定することにより、生体試料中の基質又は酵素活
性を定量することを特徴とする化学発光法による
生体成分の定量法。
1. An oxidizing enzyme is applied to a substrate in a biological sample or a substance generated by an enzymatic reaction by an enzyme in a biological sample, and the generated hydrogen peroxide is reacted with an oxidizable non-fluorescent substance in the presence of an oxidation catalyst. The non-fluorescent substance is converted into a fluorescent substance, and then oxalic acid diester and hydrogen peroxide are added to the fluorescent substance to cause a reaction under conditions of inhibiting an oxidation catalyst, and the amount of luminescence produced is measured. Or a method for quantifying biological components using chemiluminescence, which is characterized by quantifying enzyme activity.
JP7906785A 1985-04-12 1985-04-12 Assay for components of living organism by chemical luminescence method Granted JPS61237060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7906785A JPS61237060A (en) 1985-04-12 1985-04-12 Assay for components of living organism by chemical luminescence method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7906785A JPS61237060A (en) 1985-04-12 1985-04-12 Assay for components of living organism by chemical luminescence method

Publications (2)

Publication Number Publication Date
JPS61237060A JPS61237060A (en) 1986-10-22
JPH0573397B2 true JPH0573397B2 (en) 1993-10-14

Family

ID=13679539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7906785A Granted JPS61237060A (en) 1985-04-12 1985-04-12 Assay for components of living organism by chemical luminescence method

Country Status (1)

Country Link
JP (1) JPS61237060A (en)

Also Published As

Publication number Publication date
JPS61237060A (en) 1986-10-22

Similar Documents

Publication Publication Date Title
US4743561A (en) Luminescent assay with a reagent to alter transmitive properties of assay solution
EP0496793B1 (en) Enhanced chemiluminescent assay
JPH02174695A (en) Method and reagent for colorimetry of analite by means of enzymic oxidation and direct or coloring electron acceptor therefor
JPH0354304B2 (en)
EP0124909B1 (en) Process for determining reduced form coenzymes
US10125385B2 (en) Electrochemiluminescence (ECL) detection reagents and related methods for measuring enzyme activity
JP2528457B2 (en) Hydrogen peroxide determination method
US6099760A (en) Hydrogen peroxide based ECL
EP0100217A2 (en) Process for quantitative determination of substrate treated with oxidase
JPH0220239B2 (en)
JPH0573397B2 (en)
JP2804079B2 (en) Quantitative method of NAD (P) H
JP2001078797A (en) Reagent for eliminating glucose and/or glucono-1,5- lactone
JP2003502671A (en) Chemiluminescent redox assay for quantifying analytes in biological samples
JP3005238B2 (en) Chemiluminescence assay
JP2658113B2 (en) Determination of hydrogen peroxide by luciferase from luminescent bacteria
JP3402487B2 (en) Determination of 1,5-anhydroglucitol
JPS61173799A (en) Method of determining activity of substrate or enzyme
JPH066070B2 (en) Method for quantifying NADH or NADPH by chemiluminescence method
JP3034984B2 (en) Highly sensitive method and composition for quantification of D-galactose
JPS63248397A (en) Method for determining d-mannose
GB2237383A (en) Enhanced chemiluminescent assay
JPH0698030B2 (en) Determination method of NADPH by chemiluminescence method
JPH01320998A (en) Determination of 1,5-anhydroglucitol in sample containing glucose
JPH1118798A (en) Determination of cholesterol and reagent therefor