JPH0572736B2 - - Google Patents

Info

Publication number
JPH0572736B2
JPH0572736B2 JP60294361A JP29436185A JPH0572736B2 JP H0572736 B2 JPH0572736 B2 JP H0572736B2 JP 60294361 A JP60294361 A JP 60294361A JP 29436185 A JP29436185 A JP 29436185A JP H0572736 B2 JPH0572736 B2 JP H0572736B2
Authority
JP
Japan
Prior art keywords
conductive
conductive material
parts
solid electrolytic
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60294361A
Other languages
Japanese (ja)
Other versions
JPS62150815A (en
Inventor
Isao Irikura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29436185A priority Critical patent/JPS62150815A/en
Publication of JPS62150815A publication Critical patent/JPS62150815A/en
Publication of JPH0572736B2 publication Critical patent/JPH0572736B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Paints Or Removers (AREA)
  • Glass Compositions (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は民生用および産業用電子機器用に使用
される固体電解コンデンサに関するものである。 従来の技術 一般に、固体電解コンデンサは、タンタル、ア
ルミニウムなどの弁作用金属を電極体として、こ
れに誘導体性の酸化皮膜を形成させ、さらにこの
上面に二酸化マンガンなどの電解質層を形成さ
せ、順次カーボン層、Ag導電性塗料陰極層など
を形成してコンデンサ素子を用い、このコンデン
サ素子の突出導出線を金属陽極端子部に溶接など
の手段により接続し、一方、コンデンサ素子の陰
極部と金属陰極端子部の接続は、この金属陰極端
子部の面部に予め定量のAg導電性接着剤をのせ、
この上にコンデンサ素子の陰極部を重ね、または
逆にコンデンサ素子の陰極部に予めAg導電性接
着剤をのせて重ね合わすなどの方法にて行い、そ
の後樹脂外装、端子加工を行つて作られていた。 発明が解決しようとする問題点 上記導電性接着剤および塗料はAgを導電材料
として、これに各粒子の結合剤および塗膜形成剤
として有機高分子材料が混合されているのが一般
的であり、Ag粒子は非常に電気電導性がすぐれ
ていることから優れた導電性接着剤または塗料が
得られている。しかしながら、Agは銅などの他
の金属と比較して安定な金属であるが、高い温度
において酸化性物質に接触したり、H2S、SO2
NO2などのガスに晒されると侵されやすく、ま
た酸化なども進行して電導性が低下し、コンデン
サの抵抗を増大させる現象が起こる問題があつ
た。またコンデンサ素子の陰極部と金属陰極端子
の接続にこの接着剤を用いると、両者とも同じ金
属色をしているため、Ag接着剤の塗布面積や塗
布量を正確に認識することがむずかしく、安定な
接続強度が得られにくかつた。 本発明は上記問題点を解決するもので、高温度
においても安定な特性をもち、生産性よく、安価
に得ることができる固体電解コンデンサを提供す
ることを目的とするものである。 問題点を解決するための手段 上記問題点を解決するために本発明の固体電解
コンデンサは、高導電性材料としてのAg微粒子
90〜95(wt)部に、還元性導電性材料としての微
細なカーボン粉末5〜10(wt)部を混合して得ら
れる導電性材料に、この導電性材料粒子の結合お
よび塗膜形成に必要な高分子材料を加えて混練す
ることにより構成された黒色または黒灰色の導電
性塗料または導電性接着剤をコンデンサ素子の陰
極層形成材料としてまた前記陰極層と陰極引出端
子の接着剤料として用いたものである。 作 用 上記構成によれば、導電性塗料または導電性接
着剤を構成する導電性材料を、高導電性材料とし
てのAg微粒子90〜95(wt)部に、還元性導電性
材料としての微細なカーボン粉末5〜10(wt)部
を混合して得るようにしたもので、前記カーボン
は高い電気電導性を有するとともに、高温度にお
いて還元作用を有し、かつガスを吸着する作用も
有するため、このカーボン粉末をAg微粒子に混
合することにより、Agを酸化から防止すること
ができ、またカーボン粉末の混合比の割合を5〜
10(wt)部の範囲とすることにより、高温度にお
けるtanδも小さく、かつ熱をかける時間の変化に
対してもtanδも特性の変化の少ない非常に安定し
た特性を有するコンデンサを得ることができる。
そしてまたこの導電性塗料または導電性接着剤は
黒色または黒灰色となつているため、この導電性
接着剤を陰極層と陰極引出端子の接続に用いると
きは、陰極引出端子の金属色とは異なつた色とな
り、これにより、導電性接着剤の塗布面積および
量などの識別を容易に行うことができる。 実施例 以下本発明の一実施例を図面に基づいて説明す
る。第1図において、1はコンデンサ素子で、タ
ンタル、アルミニウムなどの金属を電極体2とし
てこれに誘導体性酸化皮膜3を形成させ、さらに
この上面に二酸化マンガンなどの電解質層4を形
成させ、次いでカーボン層5を形成させた後、5
〜10ミクロンのAg微粒子95(wt)部に対して微
細なカーボン粉末5(wt)部を混合して得られた
導電性材料100(wt)部に、キシレンに溶解させ
たPMM(ポリメチルメタアクリレート)9(wt)
部を加え混練して得られたカーボン含有導電性塗
料6を塗布して陰極層を形成したもので電極体2
から導出された陽極突出導出線8に溶接などの手
段で接続されている。9は陰極引出端子で、上記
カーボン含有導電性塗料6と同じ成分からなるカ
ーボン含有導電性接着剤10によりコンデンサ素
子1にその表面の前記塗料6上に接着されてい
る。11は絶縁樹脂外装である。 このようにして形成された固体電解コンデンサ
の高温度におけるtanδ特性の変化を従来法により
形成された固体電解コンデンサと比較すると、第
1表のようになる。 第1表は10V、4.6mFの固体電解コンデンサ
を300℃の雰囲気中に放置して1kHzで測定したと
きのtanδ特性を示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to solid electrolytic capacitors used for consumer and industrial electronic equipment. Conventional technology In general, solid electrolytic capacitors use a valve metal such as tantalum or aluminum as an electrode body, a dielectric oxide film is formed on this, an electrolyte layer such as manganese dioxide is formed on the top surface, and then a carbon A capacitor element is used by forming a layer, an Ag conductive paint cathode layer, etc., and the protruding lead wire of this capacitor element is connected to the metal anode terminal by means such as welding. To connect the parts, place a certain amount of Ag conductive adhesive on the surface of this metal cathode terminal in advance.
This is done by overlaying the cathode part of the capacitor element on top of this, or conversely by placing Ag conductive adhesive on the cathode part of the capacitor element in advance, and then applying the resin exterior and terminal processing. Ta. Problems to be Solved by the Invention Generally, the conductive adhesives and paints described above contain Ag as a conductive material, and an organic polymer material is mixed therein as a binder for each particle and as a coating film forming agent. , Ag particles have very good electrical conductivity, so excellent electrically conductive adhesives or paints can be obtained. However, although Ag is a stable metal compared to other metals such as copper, it does not come into contact with oxidizing substances at high temperatures, or is exposed to H 2 S, SO 2 ,
When exposed to gases such as NO 2 , it is easily attacked, and oxidation progresses, reducing conductivity and increasing the resistance of the capacitor. In addition, when this adhesive is used to connect the cathode part of a capacitor element and the metal cathode terminal, since both have the same metal color, it is difficult to accurately recognize the area and amount of Ag adhesive applied, making it difficult to maintain stability. It was difficult to obtain sufficient connection strength. The present invention solves the above-mentioned problems, and aims to provide a solid electrolytic capacitor that has stable characteristics even at high temperatures, can be produced with good productivity, and can be obtained at low cost. Means for Solving the Problems In order to solve the above problems, the solid electrolytic capacitor of the present invention uses Ag fine particles as a highly conductive material.
A conductive material obtained by mixing 90 to 95 (wt) parts of fine carbon powder as a reducing conductive material with 5 to 10 (wt) parts of fine carbon powder as a reducing conductive material is used to bond the conductive material particles and form a coating film. A black or black-gray conductive paint or conductive adhesive made by adding and kneading necessary polymeric materials is used as a material for forming a cathode layer of a capacitor element, and as an adhesive material for the cathode layer and cathode lead-out terminal. This is what was used. Effect According to the above configuration, the conductive material constituting the conductive paint or conductive adhesive is added to 90 to 95 (wt) parts of the Ag fine particles as the highly conductive material, and the fine particles as the reducing conductive material. It is obtained by mixing 5 to 10 (wt) parts of carbon powder, and the carbon has high electrical conductivity, has a reducing effect at high temperatures, and also has the effect of adsorbing gas. By mixing this carbon powder with Ag fine particles, Ag can be prevented from oxidation, and the mixing ratio of carbon powder can be adjusted from 5 to 5.
10 (wt) parts, it is possible to obtain a capacitor that has small tan δ at high temperatures and has very stable characteristics with little change in tan δ characteristics even with changes in heat application time. .
Furthermore, since this conductive paint or conductive adhesive is black or black-gray, when using this conductive adhesive to connect the cathode layer and the cathode lead terminal, it is necessary to The color becomes a yellowish color, which makes it easy to identify the applied area and amount of the conductive adhesive. Embodiment An embodiment of the present invention will be described below based on the drawings. In FIG. 1, reference numeral 1 designates a capacitor element, on which a dielectric oxide film 3 is formed using a metal such as tantalum or aluminum as an electrode body, and an electrolyte layer 4 such as manganese dioxide is formed on the upper surface of the electrode body 2. After forming layer 5, 5
PMM (polymethyl methane) dissolved in xylene was added to 100 (wt) parts of a conductive material obtained by mixing 95 (wt) parts of ~10 micron Ag fine particles with 5 (wt) parts of fine carbon powder. acrylate) 9 (wt)
The cathode layer is formed by coating the carbon-containing conductive paint 6 obtained by adding and kneading the electrode body 2.
The anode protruding wire 8 is connected to the anode protruding lead wire 8 by means of welding or the like. Reference numeral 9 denotes a cathode lead terminal, which is bonded to the capacitor element 1 on the surface of the paint 6 using a carbon-containing conductive adhesive 10 made of the same components as the carbon-containing conductive paint 6. 11 is an insulating resin exterior. Table 1 shows the changes in the tan δ characteristics of the solid electrolytic capacitor formed in this manner at high temperatures when compared with that of the solid electrolytic capacitor formed by the conventional method. Table 1 shows the tanδ characteristics of a 10V, 4.6mF solid electrolytic capacitor when it was left in an atmosphere at 300°C and measured at 1kHz.

【表】 次に、本発明によるカーボン含有導電性塗料お
よび接着剤を用いた固体電解コンデンサの、Ag
粉末とカーボン粉末の混合比による高温度特性の
検討結果を示すと第2表のようになる。第2表で
は16V、4.7mFの固体電解コンデンサを用いた。
[Table] Next, the Ag
Table 2 shows the results of examining high temperature characteristics depending on the mixing ratio of powder and carbon powder. In Table 2, a 16V, 4.7mF solid electrolytic capacitor was used.

【表】 第2表において、カーボンの混合比の割合が5
〜10(wt)部の範囲の固体電解コンデンサが、高
温度におけるtanδも小さく、かつ熱をかける時間
の変化に対してもtanδ特性の変化の少ないことが
確認できた。高分子材料にはエポキシ樹脂などを
用いてもその効果は同様である。 発明の効果 以上のように本発明の固体電解コンデンサによ
れば、導電性塗料または導電性接着剤を構成する
導電性材料を、高導電性材料としてのAg微粒子
90〜95(wt)部に、還元性導電性材料としての微
細なカーボン粉末5〜10(wt)部を混合して得る
ようにしたもので、前記カーボンは高い電気導電
性を有するとともに、高温度において還元作用を
有し、かつガスを吸着する作用も有するため、こ
のカーボン粉末をAg微粒子に混合することによ
り、Agを酸化から防止することができ、またカ
ーボン粉末の混合比の割合を5〜10(wt)部の範
囲とすることにより、高温度におけるtanδも小さ
く、かつ熱をかける時間の変化に対してもtanδ特
性の変化の少ない非常に安定した特性を有する固
体電解コンデンサを得ることができる。そしてま
たこの導電性塗料または導電性接着剤は黒色また
は黒灰色となつているため、この導電性接着剤を
陰極層と陰極引出端子の接続に用いるときは、陰
極引出端子の金属色とは異なつた色となり、これ
により、導電性接着剤の塗布面積および量などの
識別を容易に行うことができるものである。
[Table] In Table 2, the mixing ratio of carbon is 5.
It was confirmed that solid electrolytic capacitors in the range of ~10 (wt) parts have a small tan δ at high temperatures, and the tan δ characteristics do not change much even with changes in the heating time. The same effect can be obtained even if epoxy resin or the like is used as the polymer material. Effects of the Invention As described above, according to the solid electrolytic capacitor of the present invention, the conductive material constituting the conductive paint or conductive adhesive is replaced with Ag fine particles as the highly conductive material.
It is obtained by mixing 90 to 95 (wt) parts with 5 to 10 (wt) parts of fine carbon powder as a reducing conductive material, and the carbon has high electrical conductivity and high Since it has a reducing effect at high temperatures and also has a gas adsorbing effect, by mixing this carbon powder with Ag fine particles, it is possible to prevent Ag from oxidizing. By setting the range to ~10 (wt) parts, it is possible to obtain a solid electrolytic capacitor that has small tan δ at high temperatures and has very stable characteristics with little change in tan δ characteristics even with changes in heat application time. I can do it. Furthermore, since this conductive paint or conductive adhesive is black or black-gray, when using this conductive adhesive to connect the cathode layer and the cathode lead terminal, it is necessary to It becomes a yellowish color, which makes it easy to identify the applied area and amount of the conductive adhesive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の固体電解コンデンサの一実施
例を示す断面図である。 1……コンデンサ素子、2……電極体、6……
カーボン含有導電性塗料、7……陽極引出端子、
9……陰極引出端子、10……カーボン含有導電
性接着剤。
FIG. 1 is a sectional view showing an embodiment of the solid electrolytic capacitor of the present invention. 1... Capacitor element, 2... Electrode body, 6...
Carbon-containing conductive paint, 7... anode lead terminal,
9... Cathode lead terminal, 10... Carbon-containing conductive adhesive.

Claims (1)

【特許請求の範囲】[Claims] 1 高導電性材料としてのAg微粒子90〜95(wt)
部に、還元性導電性材料としての微細なカーボン
粉末5〜10(wt)部を混合して得られる導電性材
料に、この導電性材料粒子の結合および塗膜形成
に必要な高分子材料を加えて混練することにより
構成された黒色または黒灰色の導電性塗料または
導電性接着剤をコンデンサ素子の陰極層形成材料
としてまたは前記陰極層と陰極引出端子の接着剤
料として用いた固体電解コンデンサ。
1 Ag fine particles 90-95 (wt) as a highly conductive material
A conductive material obtained by mixing 5 to 10 (wt) parts of fine carbon powder as a reducing conductive material with a polymeric material necessary for bonding the conductive material particles and forming a coating film. A solid electrolytic capacitor in which a black or black-gray conductive paint or a conductive adhesive formed by kneading is used as a material for forming a cathode layer of a capacitor element or as an adhesive for the cathode layer and a cathode lead terminal.
JP29436185A 1985-12-25 1985-12-25 Solid electrolytic capacitor Granted JPS62150815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29436185A JPS62150815A (en) 1985-12-25 1985-12-25 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29436185A JPS62150815A (en) 1985-12-25 1985-12-25 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS62150815A JPS62150815A (en) 1987-07-04
JPH0572736B2 true JPH0572736B2 (en) 1993-10-12

Family

ID=17806714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29436185A Granted JPS62150815A (en) 1985-12-25 1985-12-25 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS62150815A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4869515B2 (en) * 2001-08-10 2012-02-08 日本ペイント防食コーティングス株式会社 Conductive paste composition and solid electrolytic capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750842B2 (en) * 1978-12-28 1982-10-29
JPS6081706A (en) * 1983-10-12 1985-05-09 株式会社トーキン Conductive pasge for ceramic

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112669Y2 (en) * 1980-09-08 1986-04-19

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750842B2 (en) * 1978-12-28 1982-10-29
JPS6081706A (en) * 1983-10-12 1985-05-09 株式会社トーキン Conductive pasge for ceramic

Also Published As

Publication number Publication date
JPS62150815A (en) 1987-07-04

Similar Documents

Publication Publication Date Title
US5790368A (en) Capacitor and manufacturing method thereof
US7489498B2 (en) Capacitors and methods for manufacturing the same
JP2009505412A (en) Polymer-based solid capacitor and method of manufacturing the same
US4130854A (en) Borate treated nickel pigment for metallizing ceramics
CN102420052B (en) Solid electrolytic capacitor
JPH0572736B2 (en)
JP4715299B2 (en) Solid electrolytic capacitor
JPH10321460A (en) Capacitor element external electrode and its manufacture
KR100251762B1 (en) Method of manufacturing tantalum solid electrolysis condenser
JPH0213808B2 (en)
US7808773B2 (en) Electronic part and process for producing the same
JP2001035752A (en) Solid electrolytic capacitor
JPS6142406B2 (en)
JPH0763045B2 (en) Capacitor
JPS60192319A (en) Solid electrolytic condenser
JPH02265233A (en) Solid-state electrolytic capacitor
JPS6129135B2 (en)
JPH02264416A (en) Solid electrolytic capacitor
JPH02264417A (en) Solid electrolytic capacitor
JPH01232714A (en) Solid electrolytic capacitor
JPS6116681Y2 (en)
JPH1187167A (en) Paste for terminal electrode and ceramic electronic component using the same and its manufacture
JP2001338847A (en) Solid electrolytic capacitor
JPS62259421A (en) Solid electrolytic capacitor
JPS6112367B2 (en)