JPH0572480A - Method for observing energy transfer and microscope device for the same - Google Patents

Method for observing energy transfer and microscope device for the same

Info

Publication number
JPH0572480A
JPH0572480A JP3234673A JP23467391A JPH0572480A JP H0572480 A JPH0572480 A JP H0572480A JP 3234673 A JP3234673 A JP 3234673A JP 23467391 A JP23467391 A JP 23467391A JP H0572480 A JPH0572480 A JP H0572480A
Authority
JP
Japan
Prior art keywords
inspected
fluorescence
energy transfer
laser light
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3234673A
Other languages
Japanese (ja)
Inventor
Takayuki Suga
隆之 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3234673A priority Critical patent/JPH0572480A/en
Publication of JPH0572480A publication Critical patent/JPH0572480A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To observe the inter-molecular distance of a body to be inspected and the distribution state of molecules. CONSTITUTION:Pulsating laser light is converged on the body 5 to be inspected, fluorescent light from an extremely small point nearby the convergence point of the laser light on the body 5 to be inspected is received to detect the time base variation of the fluorescent light, and the energy transfer is observed according to the time base variation characteristic of the fluorescent light. The device for the observation has a scanning means 11 for moving the laser irradiation point and a probe relatively and an arithmetic means which finds the time base variation characteristic of the output signal of a detecting means 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は顕微鏡、特に物質の分布
を分子レベルで観察するエネルギー移動観察の方法、及
びそのための顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microscope, and more particularly to a method of energy transfer observation for observing the distribution of substances at a molecular level, and a microscope therefor.

【0002】[0002]

【従来の技術】従来の蛍光顕微鏡では、励起光を被検物
体に照射して被検物体にて生ずる蛍光を検出することに
よって、被検物体内に含まれた蛍光物質の分布を知るこ
とが可能である。
2. Description of the Related Art In a conventional fluorescence microscope, the distribution of a fluorescent substance contained in an object to be inspected can be known by irradiating the object to be inspected with excitation light and detecting fluorescence generated in the object to be inspected. It is possible.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
蛍光顕微鏡によって得られる情報は、被検物体内におけ
るある物質の単なる分布状況のみであり、その物質の形
状を把握することや、蛍光強度によりその物質の濃度を
検出することがせいぜいであった。本発明の目的は、励
起エネルギーの分子間移動を観察することにより、分子
間距離や分子の分布状態を観察することのできる方法
と、そのための好適なレーザ蛍光顕微鏡を提供すること
にある。
However, the information obtained by the conventional fluorescence microscope is only the distribution state of a certain substance in the object to be inspected. It was at best to detect the concentration of the substance. An object of the present invention is to provide a method capable of observing an intermolecular distance and a distribution state of molecules by observing intermolecular transfer of excitation energy, and a laser fluorescence microscope suitable therefor.

【0004】[0004]

【問題点を解決する為の手段】本発明によるエネルギー
移動観察方法は、被検物体上にパルス状のレーザ光を集
光し、該被検物体上の前記レーザ光の集光位置近傍の微
小点からの蛍光を受容し、該蛍光の時間変化を検出する
ことによって、該蛍光の時間変化特性を求め、これに基
づいてエネルギー移動を計測するものである。
According to the energy transfer observation method of the present invention, a pulsed laser beam is focused on an object to be inspected, and a minute amount near the converging position of the laser beam on the object to be inspected. The fluorescence from a point is received, and the time change characteristic of the fluorescence is detected to obtain the time change characteristic of the fluorescence, and the energy transfer is measured based on this.

【0005】また、本発明による顕微鏡装置は、パルス
状のレーザ光を供給するためのレーザ光源手段と、該レ
ーザ光源手段からのレーザ光を被検物体上に集光するた
めの集光光学系と、該被検物体上のレーザ照射点近傍の
微小点からの蛍光を受容するためのプローブを含む検出
手段と、レーザ照射点と該プローブとを相対的に移動さ
せるための走査手段と、前記検出手段からの出力信号の
時間変化特性を求める演算手段とを有するものである。
Further, the microscope apparatus according to the present invention comprises a laser light source means for supplying pulsed laser light, and a condensing optical system for condensing the laser light from the laser light source means onto an object to be inspected. A detection means including a probe for receiving fluorescence from a minute point near the laser irradiation point on the object to be inspected, a scanning means for relatively moving the laser irradiation point and the probe, And a calculation means for obtaining the time change characteristic of the output signal from the detection means.

【0006】[0006]

【作用】一般に、分子を励起した場合、その励起された
分子は他の分子と相互作用し、励起エネルギーを他の分
子へ伝播する。そのエネルギー移動の効率は分子によっ
て決まる定数の他に、分子間の距離によって大きく影響
を受ける。また、エネルギー移動は1組の分子だけで起
こるのではなく、複数の分子の間を伝播するため、これ
らの分子間でのエネルギー移動の様子は、蛍光強度の時
間減衰曲線のパラメータに現れてくる。例えば、蛍光強
度I(t)は、 I(t)=exp{−t/τ−γ(t/τ)d/6 } と表され、ここで、tは時間、τは蛍光寿命、γはエネ
ルギー移動の効率、dは次元を表す。
In general, when a molecule is excited, the excited molecule interacts with another molecule and propagates the excitation energy to the other molecule. The efficiency of the energy transfer is greatly affected by the distance between molecules in addition to the constant determined by the molecule. Moreover, since energy transfer does not occur only in one set of molecules but propagates among a plurality of molecules, the state of energy transfer between these molecules appears in the parameters of the time decay curve of fluorescence intensity. .. For example, the fluorescence intensity I (t) is expressed as I (t) = exp {-t / τ-γ (t / τ) d / 6 }, where t is time, τ is fluorescence lifetime, and γ is Energy transfer efficiency, d represents dimension.

【0007】よって、微小な点における蛍光強度の時間
減衰特性を求め、この特性を解析することにより、分子
間の距離や分子の分布状態などを観察することが可能と
なる。
Therefore, by obtaining the time decay characteristic of the fluorescence intensity at a minute point and analyzing this characteristic, it becomes possible to observe the distance between molecules and the distribution state of molecules.

【0008】[0008]

【実施例】以下、本発明を実施例に基づいて説明する。
図1は本発明によるエネルギー移動を観察するのに適し
たレーザ蛍光顕微鏡の具体例を示す概略構成図である。
モード同期アルゴンイオンレーザ励起色素レーザ等のパ
ルスレーザからなる光源手段1からの光は、半透過鏡2
で反射されてリレーレンズ3、走査手段としてのスキャ
ナー11を介して対物レンズ4により被検物体5上の微小
点に集光される。被検物体5の微小点上の分子は照射さ
れたレーザ光により励起される。この励起エネルギーに
よりその分子から蛍光が発し、また隣接する分子へ励起
エネルギーが伝播してここからも蛍光が発せられる。被
検物体5から発する蛍光は、プローブ6により受容さ
れ、蛍光検出手段7により検出される。このプローブ6
は、所謂近接場顕微鏡(NFM)用のオプティカルファ
イバーであり、微小点からの光を検出するのに適してい
る。蛍光受光手段7は、プローブ6からの光を光電変換
して信号を発する。一方、半透過鏡2を透過するパルス
レーザ光は、レーザ光検出手段9に入射して、励起光パ
ルスが照射されたことを示す信号が単一光子計数手段8
へ送られる。そして、単一光子計数手段8によって、蛍
光検出手段7からの信号を計数して蛍光光子数の時間変
化が計測され、解析装置10によって蛍光の時間変化特
性が求められる。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is a schematic configuration diagram showing a specific example of a laser fluorescence microscope suitable for observing energy transfer according to the present invention.
The light from the light source means 1 composed of a pulse laser such as a mode-locked argon ion laser-excited dye laser is transmitted through the semitransparent mirror 2.
Is reflected by the objective lens 4 through the relay lens 3 and the scanner 11 as the scanning means to be focused on a minute point on the object 5. Molecules on minute points of the object to be inspected 5 are excited by the irradiated laser light. This excitation energy causes the molecule to emit fluorescence, and the excitation energy propagates to the adjacent molecule to emit fluorescence from this molecule. The fluorescence emitted from the test object 5 is received by the probe 6 and detected by the fluorescence detecting means 7. This probe 6
Is an optical fiber for a so-called near field microscope (NFM), and is suitable for detecting light from a minute point. The fluorescent light receiving means 7 photoelectrically converts the light from the probe 6 to emit a signal. On the other hand, the pulsed laser light transmitted through the semi-transmissive mirror 2 is incident on the laser light detection means 9 and a signal indicating that the excitation light pulse has been emitted is given as the single photon counting means 8
Sent to. Then, the single photon counting means 8 counts the signal from the fluorescence detecting means 7 to measure the time change of the number of fluorescence photons, and the analyzer 10 obtains the time change characteristic of the fluorescence.

【0009】この実施例においては、レーザ照射点とプ
ローブ6とを相対的に移動させるための走査手段とし
て、対物レンズ4による集光光を被検物体5上で移動す
るためのスキャナー11を用いている。このような走査
手段に代えて、対物レンズ4を含む集光光学系に対して
プローブ6を相対的に移動することも可能である。ま
た、プローブ6としては、微小点からの光を受容し得る
ものであれば良く、微小なレンズを用いることも可能で
ある。
In this embodiment, as the scanning means for moving the laser irradiation point and the probe 6 relative to each other, the scanner 11 for moving the condensed light by the objective lens 4 on the object 5 to be inspected is used. ing. Instead of such a scanning means, it is possible to move the probe 6 relative to the condensing optical system including the objective lens 4. Further, as the probe 6, any probe capable of receiving light from a minute point may be used, and a minute lens may be used.

【0010】このような構成のレーザ蛍光顕微鏡を用い
て、被検物質としてオキサジンをポリメチルメタクリル
酸に分散させたものについて、プローブ6によって、各
微小点における蛍光強度の時間変化を計測して時間減衰
曲線を求める。この場合、走査手段によって、励起光が
集光される点すなわち励起された点からプローブ7によ
って蛍光検出を行う微小点までの距離を変えて計測する
ことができ、任意の点における蛍光光子数の時間減衰を
求めることが可能である。
Using a laser fluorescence microscope having such a configuration, with respect to a substance in which oxazine was dispersed in polymethylmethacrylic acid as a test substance, the probe 6 measured the time change of the fluorescence intensity at each minute point and measured the time. Find the decay curve. In this case, the scanning means can perform measurement by changing the distance from the point where the excitation light is collected, that is, the point where the excitation light is excited to the minute point where fluorescence detection is performed by the probe 7, and the number of fluorescent photons at any point can be measured. It is possible to determine the time decay.

【0011】図2は、励起した点(エネルギーのドナ
ー)での蛍光の時間変化を記録した出力例である。この
ようにして得られる出力を時間変化特性曲線として求め
た例が図3である。図3に示す曲線a及びbが蛍光強度
の時間減衰曲線の例であり、この曲線を解析することに
より、分子間距離や分子濃度等によるエネルギー移動の
効率が分かる。このような減衰曲線の比較からすれば、
曲線aの減衰特性の場合は曲線bの減衰特性の場合に比
べて分子間の距離がより近いことが明らかとなる。
FIG. 2 is an output example in which the time change of fluorescence at an excited point (energy donor) is recorded. FIG. 3 shows an example in which the output thus obtained is obtained as a time-varying characteristic curve. Curves a and b shown in FIG. 3 are examples of time decay curves of fluorescence intensity, and by analyzing this curve, the efficiency of energy transfer due to the intermolecular distance, the molecular concentration, etc. can be known. From the comparison of such attenuation curves,
It becomes clear that the intermolecular distance is smaller in the case of the attenuation characteristic of the curve a than in the case of the attenuation characteristic of the curve b.

【0012】また、図4は励起点の近傍の微小点(エネ
ルギーのアクセプター)での蛍光の時間減衰曲線の例を
示している。この曲線を解析することにより、例えば図
5に示す曲線cや曲線dのような蛍光強度の時間減衰曲
線が求められる。これらの比較から、曲線cの場合の方
が曲線dの場合に比べて減衰の程度が小さくなってお
り、このことからすると、曲線cの場合には、曲線dの
場合に比較して、ドナーから観測した微小点(アクセプ
ター)までのエネルギー移動が多い状態であること、す
なわち多くの分子を介してエネルギー移動がなされたこ
とが推定される。
Further, FIG. 4 shows an example of a time decay curve of fluorescence at a minute point (energy acceptor) near the excitation point. By analyzing this curve, for example, a time decay curve of the fluorescence intensity such as the curves c and d shown in FIG. 5 can be obtained. From these comparisons, the degree of attenuation is smaller in the case of the curve c than in the case of the curve d. From this, it can be seen that the case of the curve c is smaller than that of the curve d. It is presumed that there is a large amount of energy transfer from the observed to the minute point (acceptor), that is, the energy transfer was performed through many molecules.

【0013】このように、励起エネルギーのドナーでの
蛍光強度の時間減衰曲線と、その周辺の励起エネルギー
のアクセプターでの蛍光強度の時間減衰曲線を解析する
ことにより、分子間の距離や密度などの物質の分子レベ
ルでの分布状態に関する知見を得ることができた。
As described above, by analyzing the time decay curve of the fluorescence intensity at the donor of the excitation energy and the time decay curve of the fluorescence intensity at the acceptor of the excitation energy around the donor, it is possible to determine the distance between molecules and the density. We were able to obtain information on the distribution of substances at the molecular level.

【0014】[0014]

【発明の効果】以上のように本発明によれば、被検物体
における分子レベルでの分子の距離や分布状態などを測
定することができ、従来の一般的顕微鏡では得られなか
った情報を得ることが可能となる。
As described above, according to the present invention, it is possible to measure the distance and distribution state of molecules at the molecular level in the object to be inspected, and obtain information that cannot be obtained by the conventional general microscope. It becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるレーザ蛍光顕微鏡の概略構成図。FIG. 1 is a schematic configuration diagram of a laser fluorescence microscope according to the present invention.

【図2】ドナーについての蛍光強度の時間変化の出力
例。
FIG. 2 is an output example of changes in fluorescence intensity over time for a donor.

【図3】ドナーについての蛍光強度の時間減衰曲線の
例。
FIG. 3 is an example of a fluorescence intensity time decay curve for a donor.

【図4】アクセプターについての蛍光強度の時間変化の
出力例。
FIG. 4 is an output example of a change in fluorescence intensity with time for an acceptor.

【図5】アクセプターについての蛍光強度の時間減衰曲
線の例。
FIG. 5: Example of fluorescence intensity time decay curve for acceptor.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1…パルス光源手段 3…リレーレンズ 4…対物レンズ 5…被検物体 6…プローブ 7…蛍光検出手段 8…単一光子計数手段 11…スキャナー(走査手段) DESCRIPTION OF SYMBOLS 1 ... Pulse light source means 3 ... Relay lens 4 ... Objective lens 5 ... Test object 6 ... Probe 7 ... Fluorescence detection means 8 ... Single photon counting means 11 ... Scanner (scanning means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被検物体上にパルス状のレーザ光を集光
し、該被検物体上の前記レーザ光の集光位置近傍の微小
点からの蛍光を受容し、該蛍光の時間変化を検出し、該
蛍光の時間変化特性に基づいてエネルギー移動を計測す
ることを特徴とするエネルギー移動観察方法。
1. A pulsed laser beam is condensed on an object to be inspected, fluorescence from a minute point in the vicinity of the condensing position of the laser beam on the object to be inspected is received, and time change of the fluorescence is detected. An energy transfer observation method, which comprises detecting and measuring energy transfer based on a time-varying characteristic of the fluorescence.
【請求項2】パルス状のレーザ光を供給するためのレー
ザ光源手段と、該レーザ光源手段からのレーザ光を被検
物体上に集光するための集光光学系と、該被検物体上の
レーザ照射点近傍の微小点からの蛍光を受容するための
プローブを含む検出手段と、前記レーザ照射点と該プロ
ーブとを相対的に移動させるための走査手段と、前記検
出手段からの出力信号の時間変化特性を求める演算手段
とを有することを特徴とする顕微鏡装置。
2. A laser light source means for supplying pulsed laser light, a condensing optical system for condensing the laser light from the laser light source means onto an object to be inspected, and an object to be inspected. Detection means including a probe for receiving fluorescence from a minute point near the laser irradiation point, scanning means for relatively moving the laser irradiation point and the probe, and an output signal from the detection means. And a calculation means for obtaining the time change characteristic of the microscope apparatus.
JP3234673A 1991-09-13 1991-09-13 Method for observing energy transfer and microscope device for the same Pending JPH0572480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3234673A JPH0572480A (en) 1991-09-13 1991-09-13 Method for observing energy transfer and microscope device for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3234673A JPH0572480A (en) 1991-09-13 1991-09-13 Method for observing energy transfer and microscope device for the same

Publications (1)

Publication Number Publication Date
JPH0572480A true JPH0572480A (en) 1993-03-26

Family

ID=16974679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3234673A Pending JPH0572480A (en) 1991-09-13 1991-09-13 Method for observing energy transfer and microscope device for the same

Country Status (1)

Country Link
JP (1) JPH0572480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7385693B2 (en) 2004-06-21 2008-06-10 Olympus Corporation Microscope apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7385693B2 (en) 2004-06-21 2008-06-10 Olympus Corporation Microscope apparatus

Similar Documents

Publication Publication Date Title
JP5802653B2 (en) Optical analysis apparatus, optical analysis method, and computer program for optical analysis
US4979824A (en) High sensitivity fluorescent single particle and single molecule detection apparatus and method
JP3577317B2 (en) Calibration method and apparatus for optical scanner
JP3145487B2 (en) Particle analyzer
US5061075A (en) Optical method and apparatus for diagnosing human spermatozoa
EP0836090A1 (en) Method of analysis of samples by determination of the distribution of specific brightnesses of particles
JP2001509255A (en) Method and apparatus for determining predetermined properties of target particles in a sample medium
JPH09113448A (en) Device for performing laser-induced two-photon flurescence-correlation spectrochemical analysis
CN105021627B (en) The highly sensitive quick on-line water flushing method of optical thin film and element surface damage from laser
CN104508462A (en) Spectral analysis device using confocal microscope or multiphoton microscope optical system, spectral analysis method, and spectral analysis computer program
JP2003344284A (en) Device and method for measuring fluorescent life distribution image
JP2803443B2 (en) Surface inspection method and device
US6466040B1 (en) Three dimensional optical beam induced current (3-D-OBIC)
JPH0572480A (en) Method for observing energy transfer and microscope device for the same
JP2520665B2 (en) Fluorescence microspectrometer
US7545498B2 (en) System and method for removing auto-fluorescence through the use of multiple detection channels
JP2756298B2 (en) Sample test equipment
JPH01270644A (en) Particle analyser
JPH0792076A (en) Grain analyzing device
JPH06177218A (en) Measuring device for free-carrier life and the like of semiconductor
JPH03154850A (en) Specimen inspecting device
JP2749928B2 (en) Sample measuring method and sample measuring device
JP2518533B2 (en) Inspection device for internal interconnection of semiconductor integrated circuits
JP4002818B2 (en) measuring device
JPH09218155A (en) Two-dimensional fluorescence lifetime measuring method and device