JP2749928B2 - Sample measuring method and sample measuring device - Google Patents

Sample measuring method and sample measuring device

Info

Publication number
JP2749928B2
JP2749928B2 JP2016551A JP1655190A JP2749928B2 JP 2749928 B2 JP2749928 B2 JP 2749928B2 JP 2016551 A JP2016551 A JP 2016551A JP 1655190 A JP1655190 A JP 1655190A JP 2749928 B2 JP2749928 B2 JP 2749928B2
Authority
JP
Japan
Prior art keywords
light
fluorescence
sample
irradiation position
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016551A
Other languages
Japanese (ja)
Other versions
JPH03221837A (en
Inventor
勇二 伊藤
厚志 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016551A priority Critical patent/JP2749928B2/en
Priority to DE69118429T priority patent/DE69118429T2/en
Priority to EP91100755A priority patent/EP0448931B1/en
Publication of JPH03221837A publication Critical patent/JPH03221837A/en
Priority to US08/055,759 priority patent/US5480775A/en
Application granted granted Critical
Publication of JP2749928B2 publication Critical patent/JP2749928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はサンプル中の個々の検体に光を照射し、散乱
光や蛍光等の光学的測定を行なうことで検体の解析や抗
原抗体反応の測定等を行なう検体検査方法及び装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention irradiates an individual specimen in a sample with light and performs optical measurement such as scattered light or fluorescence to analyze the specimen or perform antigen-antibody reaction. The present invention relates to a sample test method and device for performing measurement and the like.

[従来の技術] 従来の検体検査装置の一例としてフローサイトメータ
が知られている。これはサンプル液中の血球細胞等の検
体を蛍光標識し、これら検体を光ビームが照射される被
検部に1個ずつ流して、その結果被検部から発生する散
乱光や蛍光等を波長選別することでこれらのパラメータ
を個々の検体毎に測光し、多数の検体に関する測定パラ
メータの統計的傾向から検体の解析を行なうものであ
る。これにより細胞のDNA解析や表面抗原の探索などが
可能となる。
[Prior Art] A flow cytometer is known as an example of a conventional sample testing apparatus. This involves fluorescently labeling specimens such as blood cells in a sample solution, and flowing these specimens one by one to a target to be irradiated with a light beam. By sorting, these parameters are measured for each individual sample, and the sample is analyzed based on the statistical tendency of the measurement parameters for a large number of samples. This makes it possible to perform cell DNA analysis and search for surface antigens.

[発明が解決しようとする課題] ところが一般に、蛍光標識検体に光照射を行なうと、
標識蛍光色素が励起されて発生する目的蛍光だけではな
く、検体細胞が自ら有する自家蛍光、更にはゴミ等の浮
遊物や流体そのものが有する自家蛍光も同時に発生して
しまう。この自家蛍光は広い波長領域に渡って発生する
ため、標識蛍光色素から発する目的蛍光と同一の波長領
域の自家蛍光は光学的に波長選別することができず、目
的蛍光に自家蛍光が雑光として混入した蛍光強度を測光
してしまうことになる。
[Problems to be solved by the invention] However, in general, when light is applied to a fluorescently labeled specimen,
Not only the target fluorescence generated by excitation of the labeled fluorescent dye, but also the autofluorescence of the specimen cells themselves, and the autofluorescence of the suspended matter such as dust and the fluid itself are generated at the same time. Since this auto-fluorescence is generated over a wide wavelength range, auto-fluorescence in the same wavelength region as the target fluorescence emitted from the labeled fluorescent dye cannot be optically wavelength-selected. The mixed fluorescence intensity will be measured.

又、光源に単波長のレーザ光源ではなく、マルチ発振
レーザ光源や白色光等を用いた場合、これらの照射光に
含まれる目的蛍光と同一の波長領域の散乱光が雑光とな
って目的蛍光の測光値に混入してしまう畏れもある。
When a multi-oscillation laser light source or white light is used instead of a single-wavelength laser light source, the scattered light in the same wavelength region as the target fluorescence contained in the irradiation light becomes miscellaneous light and becomes the target fluorescence. There is also a fear that it will be mixed into the photometric value of

すなわち従来の装置では蛍光測光強度に雑光が誤差と
なって含まれ、得られる蛍光測定値のS/N比が悪くなっ
てしまう問題点を有していた。
That is, in the conventional apparatus, there is a problem in that the intensity of the fluorescence photometric light includes miscellaneous light as an error, and the S / N ratio of the obtained fluorescence measurement value deteriorates.

本発明は以上の課題を解決すべくなされたもので、雑
光の影響を受けることなく純粋に目的とする蛍光の強度
を検出することのできる方法及び装置の提供を目的とす
る。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method and an apparatus capable of purely detecting the intensity of target fluorescence without being affected by light interference.

[課題を解決するための手段] 上述の課題を解決するための本発明は、照射位置に光
を照射する手段と、蛍光標識された個々の検体を前記照
射位置に順次通過させる手段と、前記照射位置の検体か
らの光を測光する第1手段と、前記照射位置よりも下流
の所定位置の検体からの蛍光を測光する第2手段と、を
有し、前記第1手段の測光結果を元に前記第2手段の測
光時点を制御することを特徴とする検体測定装置であ
る。
[Means for Solving the Problems] The present invention for solving the above-mentioned problems includes a means for irradiating light to an irradiation position, a means for sequentially passing individual fluorescently labeled specimens to the irradiation position, First means for measuring the light from the sample at the irradiation position; and second means for measuring the fluorescence from the sample at a predetermined position downstream of the irradiation position, based on the light measurement result of the first means. A sample measuring device for controlling a time point of photometry of the second means.

[実施例] 以下、本発明の実施例を図面を用いて詳細に説明す
る。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図及び第2図は本発明の実施例の光学配置を示
す。適切な反応時間及び濃度に調整され更に蛍光試薬で
標識処理された血液やラテツクス浮遊液等のサンプル液
と、生理食塩水や蒸留水等のシース液が用意され、不図
示の加圧機構によりこれら液体が加圧されてフローセル
3に導かれ、シースフロー原理によってフローセル3内
でサンプル液がシース液に包まれて細い流れに収斂され
てフローセル3内の流通部を通過する。この時、サンプ
ル液に含まれる検体である個々の細胞やラテツクス等の
被検粒子は分離されて1粒或いは1塊ずつ紙面上方から
下方に向けて手順次流れる。この被検粒子の流れに対し
て、レーザ光源1(本実施例においては波長300nmの紫
外レーザ)から出射されたレーザ光が、母線方向が各々
流通部方向、流通部方向と直交した2枚のシリンドリカ
ルレンズからなる結像光学系2によって任意の楕円形状
に収斂され照射される。被検粒子に照射される光ビーム
の形状は、一般には流れに対して直交する方向に長径を
有する楕円形状であることが好ましい。これは個々の被
検粒子の流れの位置が流体中で若干変動しても、被検粒
子に均一の強度で光ビームが照射されるようにするため
である。
1 and 2 show an optical arrangement according to an embodiment of the present invention. A sample solution such as blood or latex suspension, which is adjusted to an appropriate reaction time and concentration and further labeled with a fluorescent reagent, and a sheath solution such as physiological saline or distilled water are prepared. The liquid is pressurized and guided to the flow cell 3, and the sample liquid is wrapped in the sheath liquid in the flow cell 3, converged into a thin flow, and passes through the flow section in the flow cell 3 according to the sheath flow principle. At this time, test particles such as individual cells and latex, which are specimens contained in the sample liquid, are separated and flow one by one or one lump downward from the top of the paper. In response to the flow of the test particles, the laser light emitted from the laser light source 1 (in this embodiment, an ultraviolet laser having a wavelength of 300 nm) emits two light beams each having a generatrix direction orthogonal to the flow portion direction and the flow portion direction. The light is converged into an arbitrary elliptical shape by the imaging optical system 2 composed of a cylindrical lens and is irradiated. In general, the shape of the light beam applied to the test particles is preferably an elliptical shape having a major axis in a direction perpendicular to the flow. This is because even if the position of the flow of each test particle slightly fluctuates in the fluid, the test particle is irradiated with the light beam with uniform intensity.

被検粒子に光ビームが照射されると散乱光が生じる。
発生する散乱光の内、光路前方方向に発する前方散乱光
は集光レンズ6、アパーチヤ7、光検出部8によって測
光される。アパーチヤ7の開口部は光照射位置4と共役
に配置され、照射位置4からの光のみが光検出器8に導
かれるようになっている。照射された強力な光ビームが
直接光検出器8に入射するのを防ぐため、光路中集光レ
ンズ6の手前には光吸収性の微小なストツパ5が設けら
れ、照射光源からの直接光、及び被検粒子を光透過した
透過光を除去するようになっている。これにより光照射
位置4から散乱された光のみを測光することができる。
なお、この構成では前方散乱光と共に蛍光も合わせた光
強度を測光することになるが、一般に前方散乱光強度に
較べて蛍光強度は極めて微弱であるので問題はない。勿
論、光検出器8の手前に散乱光波長を選択的に透過する
バンドパスフイルタを配置するようにしても良い。
When the test particle is irradiated with a light beam, scattered light is generated.
Of the generated scattered light, the forward scattered light emitted in the forward direction of the optical path is measured by the condenser lens 6, the aperture 7, and the light detection unit 8. The opening of the aperture 7 is arranged conjugate with the light irradiation position 4 so that only light from the irradiation position 4 is guided to the photodetector 8. In order to prevent the irradiating strong light beam from directly entering the photodetector 8, a light-absorbing minute stopper 5 is provided in front of the converging lens 6 in the optical path. In addition, transmitted light that has passed through the test particles is removed. Thereby, only the light scattered from the light irradiation position 4 can be measured.
In this configuration, the light intensity is measured together with the forward scattered light and the fluorescent light. However, there is no problem since the fluorescent light intensity is generally extremely weak as compared with the forward scattered light intensity. Of course, a band-pass filter that selectively transmits the scattered light wavelength may be arranged in front of the photodetector 8.

また前記散乱光の内、レーザ光軸及び被検粒子の流れ
にそれぞれ直交する側方方向に発する光は集光レンズ9
で集光される。集光された光はダイクロイツクミラー10
で反射され、散乱光の波長即ちレーザ光の波長(300nm
付近)を選択的に透過させるバンドパスフイルタ11、集
光レンズ13、アパーチヤ15を経て光検出器17にて側方散
乱光が測光される。アパーチヤ15は図のように光軸中心
に開口部15aが設けられ、該開口部15aは光照射位置4と
共役関係になっており、光照射位置4から発する散乱光
のみが光検出器17にて検出されるようになっている。
Further, of the scattered light, the light emitted in the lateral direction orthogonal to the laser optical axis and the flow of the test particle, respectively, is a condensing lens 9.
The light is focused. The collected light is a dichroic mirror 10
Reflected by the wavelength of the scattered light, that is, the wavelength of the laser light (300 nm
(Nearby) through the band-pass filter 11, the condenser lens 13, and the aperture 15 to measure the side scattered light through the photodetector 17. The aperture 15 is provided with an opening 15a at the center of the optical axis as shown in the figure. The opening 15a has a conjugate relationship with the light irradiation position 4, and only the scattered light emitted from the light irradiation position 4 is transmitted to the photodetector 17. Is detected.

また被検粒子から散乱光と共に発生する蛍光寿命の長
い蛍光を測光するため、集光レンズ9によって集光さ
れ、ダイクロイツクミラー10を通過した蛍光は、蛍光波
長用(610nm付近)のバンドパスフイルタ12で波長選択
され、集光レンズ14、アパーチヤ16、光検出器18の組に
よって特定の波長の蛍光が検出される。アパーチヤ16は
図のように中心よりもやや上方に開口部16aが設けられ
ている。すなわち該開口部16aは光照射板4よりもやや
下流位置と共役になっており、光照射位置4よりも下流
の非照射位置からの特定波長の蛍光のみを光検出器18に
導くようになっている。すなわち散乱光を測光する光検
出器17と蛍光を測光する光検出器18には同時には光は入
射せず、時間をおいて時系列に各光検出器の出力パルス
が得られるような構成となっている。
Further, in order to measure the fluorescence having a long fluorescence lifetime generated from the test particles together with the scattered light, the fluorescence collected by the condenser lens 9 and passed through the dichroic mirror 10 is subjected to a band-pass filter for the fluorescence wavelength (around 610 nm). The wavelength is selected at 12, and fluorescence of a specific wavelength is detected by a set of the condenser lens 14, the aperture 16, and the photodetector 18. The aperture 16 has an opening 16a slightly above the center as shown in the figure. That is, the opening 16a is conjugated to a position slightly downstream of the light irradiation plate 4 and guides only the fluorescence of a specific wavelength from the non-irradiation position downstream of the light irradiation position 4 to the photodetector 18. ing. That is, light is not simultaneously incident on the photodetector 17 that measures the scattered light and the photodetector 18 that measures the fluorescence, and the output pulse of each photodetector is obtained in a time series with time. Has become.

前記光検出器8、17、18の信号は、第3図に示すよう
な信号処理部において処理される。前記光検出器8の前
方散乱光出力はパルス状の電気信号としてトリガ回路21
とアナログ処理回路22に入力される。また光検出器17の
側方散乱光出力及び光検出器18の蛍光出力はそれぞれア
ナログ処理回路23及び24に入力される。各アナログ処理
回路においては信号パルスのピーク値や積分値が検出さ
れる。トリガ回路21に入力された前方散乱光信号がある
一定レベルを越えると、すなわち光照射位置に被検粒子
がさしかかると、それに伴ってトリガ信号がある一定の
期間発生し、その信号はアナログ処理回路22とアナログ
処理回路23に入力される。各アナログ処理回路にはサン
プルホールド機能があり、トリガ信号が発生している期
間だけ入力信号が処理されるようになっている。また前
記トリガ回路21からのトリガ信号は蛍光用トリガ発生回
路25に入力され、該蛍光用トリガ発生回路25はトリガ信
号を時間t1からt2の間だけ発生させ、その信号をアナロ
グ処理回路24に入力される。これにより粒子が光照射位
置4を通過した後t1からt2までの間、蛍光用光検出器18
の信号をサンプリングすることができる。各アナログ処
理回路22、23、24の出力はA/D変換回路26にてデジタル
値に変換され、それぞれ前方散乱信号、側方散乱信号、
蛍光信号としてメモリ27に格納される。
The signals from the photodetectors 8, 17, 18 are processed in a signal processing section as shown in FIG. The forward scattered light output of the photodetector 8 is converted into a pulsed electrical signal as a trigger circuit 21.
Is input to the analog processing circuit 22. The side scattered light output of the light detector 17 and the fluorescence output of the light detector 18 are input to analog processing circuits 23 and 24, respectively. Each analog processing circuit detects a peak value or an integrated value of a signal pulse. When the forward scattered light signal inputted to the trigger circuit 21 exceeds a certain level, that is, when the test particle comes to the light irradiation position, a trigger signal is generated for a certain period, and the signal is generated by an analog processing circuit. 22 and the analog processing circuit 23. Each analog processing circuit has a sample-and-hold function, and an input signal is processed only during a period in which a trigger signal is generated. The trigger signal from the trigger circuit 21 is input to the fluorescent trigger generating circuit 25, fluorescent for trigger generating circuit 25 will generate only between the trigger signal time t 1 of t 2, analog processing circuit the signal 24 Is input to Between t 1 to t 2 after which the particles are passed through the optical irradiation position 4, the fluorescence light detector 18
Can be sampled. The output of each analog processing circuit 22, 23, 24 is converted to a digital value by the A / D conversion circuit 26, and the forward scatter signal, side scatter signal,
It is stored in the memory 27 as a fluorescence signal.

以上のようにして多数の検体に関して得られメモリ27
に記憶される測定パラメータに基づいて、演算回路28に
おいて検体解析の演算がなされ、その結果はCRTやプリ
ンタ等の出力部29に出力される。
The memory 27 obtained for a large number of specimens as described above
The calculation of the sample analysis is performed in the arithmetic circuit 28 based on the measurement parameters stored in the storage unit, and the result is output to the output unit 29 such as a CRT or a printer.

次に第4図を用いて本発明の測定原理について説明す
る。本発明では使用する蛍光色素は蛍光寿命が通常の自
家蛍光等よりも長いものを採用する。第4図は光照射に
より励起された蛍光の寿命曲線を示すグラフである。横
軸は経過時間で、被検部において被検粒子が光照射され
た瞬間を時刻0とする。又、縦軸は発生する蛍光量であ
る。図中、曲線19は一般的に使用される蛍光色素、ある
いは細胞やゴミが自ら有する自家蛍光によるもので、励
起されてから蛍光発生強度が0になるまでの蛍光寿命
は、およそ100nsec程度である。これに対して曲線20は
本発明において使用する通常よりも寿命の長い蛍光色素
の寿命カーブであり、例としてEu3+キレート物質を蛍光
色素として使用したものである。この場合の蛍光寿命は
1000nsec以上である。なおこの蛍光寿命曲線は蛍光を励
起するレーザ光強度が一定であればほぼ同形状の曲線と
なる。
Next, the measurement principle of the present invention will be described with reference to FIG. In the present invention, the fluorescent dye used has a longer fluorescence lifetime than ordinary autofluorescence. FIG. 4 is a graph showing a lifetime curve of fluorescence excited by light irradiation. The abscissa represents the elapsed time, and the instant at which the test particles are irradiated with light at the test site is defined as time 0. The vertical axis is the amount of generated fluorescence. In the figure, a curve 19 is based on a commonly used fluorescent dye or autofluorescence possessed by a cell or dust, and the fluorescence lifetime from excitation to when the fluorescence intensity becomes 0 is about 100 nsec. . On the other hand, a curve 20 is a life curve of a fluorescent dye having a longer life than usual used in the present invention. For example, a curve using an Eu 3+ chelating substance as a fluorescent dye is used. The fluorescence lifetime in this case is
It is more than 1000nsec. Note that this fluorescence lifetime curve has substantially the same shape if the intensity of the laser light for exciting the fluorescence is constant.

時刻0の瞬間に粒子が光照射されたとして、散乱光の
発生は瞬時に終了し、蛍光寿命の短い通常の蛍光や、細
胞やゴミが自ら発する自家蛍光も時間t1までには蛍光発
生量が0になる。第5図に示すアパーチヤ16の開口部16
aは、光スポツトが当たる光照射位置4よりも若干下流
の非照射位置と共役に配置されており、この部分からの
光のみを光検出器に導くようになっている。換言すれば
粒子の流れ速度が一定と考えると第4図の時間t1からt2
までの間の斜線部分の光だけを測光するようになってい
る。第4図から明らかなように、t1からt2の間は蛍光寿
命の長いEu3+キレート物質の蛍光のみが発生するので、
目的蛍光以外の雑光である自家蛍光や他の蛍光色素から
の光、あるいは散乱光の混入の影響を受けずに純粋に目
的蛍光強度を測定することができる。
Assuming that the particles are irradiated at the moment of time 0, the generation of scattered light ends instantaneously, and the amount of fluorescent light generated by time t 1 is normal fluorescent light with a short fluorescence lifetime and auto-fluorescent light emitted by cells and dust. Becomes 0. The opening 16 of the aperture 16 shown in FIG.
a is arranged conjugate with a non-irradiation position slightly downstream of the light irradiation position 4 where the light spot hits, and guides only light from this portion to the photodetector. In other words, assuming that the particle flow velocity is constant, the time t 1 to t 2 in FIG.
It measures only the light in the shaded area between the two. As is apparent from FIG. 4, only fluorescence of the Eu 3+ chelate substance having a long fluorescence lifetime is generated between t 1 and t 2 .
The intensity of the target fluorescence can be measured purely without being affected by the mixed light other than the target fluorescence, such as autofluorescence, light from other fluorescent dyes, or scattered light.

なおt1からt2の間で測光する蛍光強度はピーク値では
無いが、蛍光寿命曲線は蛍光を励起するレーザ光強度が
一定であればほぼ同形状の曲線であり、ピーク出力に比
例した値が得られるため特に問題とならない。必要であ
ればこの曲線の形状と時間t1,t2に基づいて測光出力に
補正係数を与えることでピーク出力を予測することもで
きる。この補正は光検出器18で測光する際に検出レベル
変更器を設けても行なうようにしても良いし、一旦メモ
リ27に記憶された測定値を基に演算処理を行なって補正
するようにしても良い。
Value Although fluorescence intensity for metering in between t 1 of t 2 is not a peak value, fluorescence lifetime curves are curves of substantially the same shape as long as the laser beam intensity to excite fluorescence is constant, proportional to the peak output Is not a particular problem because If necessary, a peak output can be predicted by giving a correction coefficient to the photometric output based on the shape of this curve and the times t 1 and t 2 . This correction may be performed even if a detection level changer is provided when photometry is performed by the photodetector 18, or may be corrected by performing an arithmetic process based on the measurement value once stored in the memory 27. Is also good.

上記装置による測定の一例として、所定期間以上の長
い蛍光寿命を有する蛍光色素としてEu3+キレート物質を
用いて血球細胞の表面抗原を検査するための試薬の調整
法、及びこの試薬を用いた測定の手順を以下に示す。
As an example of the measurement by the above-described apparatus, a method for preparing a reagent for testing a surface antigen of blood cells using a Eu 3+ chelating substance as a fluorescent dye having a long fluorescence life of a predetermined period or longer, and measurement using this reagent The procedure of is described below.

Eu3+キレートは300nm付近の波長の光で励起され、610
nm付近の波長の赤色蛍光を長時間発生する性質を有す
る。まず細胞表面の目的とする表面抗原と特異的に結合
するモノクローナル抗体を用意してこれをビオチン化
し、またストレプトアビジンにEu3+キレートをラベル
し、これらビオチンとストレプトアビジンを結合させる
ことにより、Eu3+キレートを標識化したモノクローナル
抗体試薬を得ることができる。そしてこの試薬を適度濃
度に希釈された血液サンプルと混合して一定時間反応さ
せて細胞染色を行ない、この反応サンプル液を上記装置
で測定することで、得られるEu3+キレートの蛍光強度か
ら細胞の表面抗原の定性的あるいは定量的測定を行なう
ことができる。
Eu 3+ chelate is excited by light of wavelength around 300 nm, 610
It has the property of generating red fluorescence of a wavelength near nm for a long time. First, a monoclonal antibody that specifically binds to the desired surface antigen on the cell surface is prepared and biotinylated, and streptavidin is labeled with Eu3 + chelate, and by binding these biotin and streptavidin, Eu is obtained. A monoclonal antibody reagent labeled with a 3+ chelate can be obtained. The reagent is mixed with a blood sample diluted to an appropriate concentration and reacted for a certain period of time to perform cell staining, and the reaction sample solution is measured by the above-described device, and the cell intensity is determined from the fluorescence intensity of the obtained Eu 3+ chelate. Qualitative or quantitative measurement of the surface antigen can be performed.

次に、少ない光検出器でより多くのパラメータを得る
ことのできる本発明の別の実施例を説明する。構成は先
の第2図のものと類似するため第2図を流用して説明す
る。
Next, another embodiment of the present invention in which more parameters can be obtained with a smaller number of photodetectors will be described. Since the structure is similar to that of FIG. 2, the description will be made with reference to FIG.

本実施例では第2図のバンドパスフイルタ12を省略
し、又、アパーチヤ16の代わりに、第6図のような複数
の開口部を有するアパーチヤ30を配置した構成とする。
第6図において遮光性のアパーチヤ30の中心部及びその
近傍には2つの開口部30a,30bが設けられている。各開
口部30a,30bにはそれぞれバンドパスフイルタ31、32が
取付けられている。なお、複数種の蛍光色素を同時に励
起させるために、必要であればマルチ発振レーザ光源を
用いても良い。
In this embodiment, the bandpass filter 12 shown in FIG. 2 is omitted, and an aperture 30 having a plurality of openings as shown in FIG. 6 is arranged instead of the aperture 16.
In FIG. 6, two openings 30a and 30b are provided in the center of the light-shielding aperture 30 and in the vicinity thereof. Bandpass filters 31, 32 are attached to the openings 30a, 30b, respectively. In order to simultaneously excite a plurality of types of fluorescent dyes, a multi-oscillation laser light source may be used if necessary.

仮に被検粒子が蛍光寿命の長い例えばEu3+キレート等
の赤色蛍光色素、及び通常の蛍光寿命の緑色蛍光色素の
2種類の蛍光で標識されるものとすると、アパーチヤ30
の各バンドパスフイルタ31、32の特性は、それぞれ緑色
蛍光、赤色蛍光を選択的に透過させる特性を有するもの
を選択する。このような構成において、被検粒子が光照
射位置を通過する毎に光検出器18には赤色蛍光、緑色蛍
光がそれぞれ選択的に時系列に入射することになり、1
個の光検出器で2つの異なる蛍光が測定できる。この
時、発光寿命の長いEu3+キレートによる赤色蛍光は通常
の蛍光が発生しない時間範囲t1〜t2で測定されるため、
雑光の混入を全く受けることなく正確な測定値が得られ
る。
If it is assumed that the test particles are labeled with two types of fluorescence, that is, a red fluorescent dye having a long fluorescence lifetime, such as Eu 3+ chelate, and a green fluorescent dye having a normal fluorescence lifetime, the aperture 30
As the characteristics of the bandpass filters 31 and 32, those having characteristics of selectively transmitting green fluorescence and red fluorescence, respectively, are selected. In such a configuration, each time the test particle passes through the light irradiation position, red fluorescence and green fluorescence are selectively incident on the photodetector 18 in time series, respectively.
Two different fluorescences can be measured with one photodetector. At this time, red fluorescence due to Eu 3+ chelate having a long emission lifetime is measured in the time range t 1 to t 2 where normal fluorescence does not occur,
Accurate measured values can be obtained without any contamination of light.

なおバンドパスフイルタ31の特性を散乱光波長を選択
的に透過させるものにすれば、同一の光検出器18で側方
散乱光強度と蛍光強度の2つの異なるパラメータが得ら
れるため、光検出器17の光学系は不要となる。この場
合、散乱光と蛍光は強度差が大きいため、光検出器18に
はダイナミツクレンズの広いものを使用するか、あるい
はパンドパスフイルタ31に光減衰度の高いものを使用す
ることが好ましい。
If the characteristics of the bandpass filter 31 are such that the scattered light wavelength is selectively transmitted, two different parameters of the side scattered light intensity and the fluorescence intensity can be obtained by the same photodetector 18. The 17 optical systems become unnecessary. In this case, since the intensity difference between the scattered light and the fluorescent light is large, it is preferable to use a wide dynamic lens for the photodetector 18 or a high optical attenuation for the bandpass filter 31.

このように本実施例においては先の実施例と同様、時
間の遅れを利用して測定された蛍光強度は雑光の影響が
全く無い精度の高いものであり、更には光検出器以上の
種類の測定パラメータを得ることができるため、装置の
小型化・低コスト化に貢献する。
As described above, in the present embodiment, similarly to the previous embodiment, the fluorescence intensity measured by using the time delay is highly accurate without any influence of the light interference, and furthermore, the fluorescence intensity is higher than that of the photodetector. Can be obtained, which contributes to miniaturization and cost reduction of the apparatus.

なお、以上の実施例においては光検出器の数やアパー
チヤの開口の数は2つには限らず、更に数を増やすこと
で更に多くのパラメータを得るようにしても良い。この
場合、蛍光寿命の長い蛍光を複数種用意し、これらを同
時に被検粒子に標識して、雑光の発生の後にこれらの蛍
光を波長選択して個別に検出することで、雑光の影響を
受けない複数パラメータの蛍光強度を一度の測定で得る
ことができる。
In the above embodiment, the number of photodetectors and the number of apertures are not limited to two, and more parameters may be obtained by further increasing the number. In this case, prepare multiple types of fluorescent light with a long fluorescence lifetime, label them at the same time on the test particles, select the wavelength of these fluorescent light after the occurrence of the light, and detect them individually to reduce the influence of the light. The fluorescence intensity of a plurality of parameters that are not affected can be obtained by a single measurement.

[発明の効果] 以上本発明によれば、雑光の影響を受けることなく、
より正確に蛍光強度の測定を行なうことができる。これ
により精度の高い検体測定を行なうことができる。
[Effects of the Invention] According to the present invention as described above,
The fluorescence intensity can be measured more accurately. As a result, highly accurate sample measurement can be performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図は本発明の実施例の装置の構成図、 第3図は実施例の装置の信号処理部のブロツク図、 第4図は蛍光の寿命曲線のグラフを示す図、 第5図はアパーチヤの形状と測定時間との関係を示す
図、 第6図は別の実施例のアパーチヤの構成図、 であり、図中の主な符号は、 1……レーザ光源、 2……結像光学系、 3……フローセル、 4……光照射位置、 8、17、18……光検出器、 10……ダイクロイツクミラー、 11、12……バンドパスフイルタ、 7、15、16、30……アパーチヤ、 15a,16a,30a,30b……アパーチヤ開口部、 31、32……バンドパスフイルタ、
1 and 2 are block diagrams of a device according to an embodiment of the present invention, FIG. 3 is a block diagram of a signal processing unit of the device of the embodiment, FIG. 4 is a graph showing a fluorescence lifetime curve, FIG. 5 is a diagram showing the relationship between the shape of the aperture and the measurement time, and FIG. 6 is a diagram showing the configuration of the aperture according to another embodiment, where the main symbols in the figure are: 1... Laser light source, 2. Imaging optical system, 3 ... flow cell, 4 ... light irradiation position, 8, 17, 18 ... photodetector, 10 ... dichroic mirror, 11, 12 ... band pass filter, 7, 15, 16, 30… Aperture, 15a, 16a, 30a, 30b …… Aperture opening, 31, 32 …… Band pass filter,

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】照射位置に光を照射する手段と、 蛍光標識された個々の検体を前記照射位置に順次通過さ
せる手段と、 前記照射位置の検体からの光を測光する第1手段と、 前記照射位置よりも下流の所定位置の検体からの蛍光を
測光する第2手段と、 を有し、前記第1手段の測光結果を元に前記第2手段の
測光時点を制御することを特徴とする検体測定装置。
A means for irradiating the irradiation position with light; a means for sequentially passing individual fluorescently labeled specimens to the irradiation position; a first means for measuring light from the specimen at the irradiation position; And a second means for measuring the fluorescence from the specimen at a predetermined position downstream of the irradiation position, wherein the time of light measurement by the second means is controlled based on the result of light measurement by the first means. Sample measurement device.
【請求項2】前記標識する蛍光色素は、検体自らが有す
る自家蛍光以上の蛍光寿命を有する請求項1記載の検体
測定装置。
2. The sample measuring apparatus according to claim 1, wherein the fluorescent dye to be labeled has a fluorescence lifetime longer than the autofluorescence of the sample itself.
【請求項3】前記蛍光の測光強度を蛍光の寿命曲線に基
づいて補正する手段を有する請求項1記載の検体測定装
置。
3. The sample measuring apparatus according to claim 1, further comprising means for correcting the photometric intensity of the fluorescence based on a fluorescence lifetime curve.
JP2016551A 1990-01-26 1990-01-26 Sample measuring method and sample measuring device Expired - Fee Related JP2749928B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016551A JP2749928B2 (en) 1990-01-26 1990-01-26 Sample measuring method and sample measuring device
DE69118429T DE69118429T2 (en) 1990-01-26 1991-01-22 Method of measuring a species using fluorescent light
EP91100755A EP0448931B1 (en) 1990-01-26 1991-01-22 Method for measuring a specimen by the use of fluorescence light
US08/055,759 US5480775A (en) 1990-01-26 1993-05-03 Method for measuring a specimen by the use of fluorescent light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016551A JP2749928B2 (en) 1990-01-26 1990-01-26 Sample measuring method and sample measuring device

Publications (2)

Publication Number Publication Date
JPH03221837A JPH03221837A (en) 1991-09-30
JP2749928B2 true JP2749928B2 (en) 1998-05-13

Family

ID=11919416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016551A Expired - Fee Related JP2749928B2 (en) 1990-01-26 1990-01-26 Sample measuring method and sample measuring device

Country Status (1)

Country Link
JP (1) JP2749928B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659252B2 (en) * 2001-03-29 2011-03-30 シスメックス株式会社 Flow cytometer
US8634072B2 (en) 2004-03-06 2014-01-21 Michael Trainer Methods and apparatus for determining characteristics of particles
US7471393B2 (en) * 2004-03-06 2008-12-30 Michael Trainer Methods and apparatus for determining the size and shape of particles
JP4321716B2 (en) * 2004-09-29 2009-08-26 富士フイルム株式会社 Fluorescence image correction method, apparatus, and program
JP4489146B2 (en) * 2008-02-07 2010-06-23 三井造船株式会社 Fluorescence detection apparatus and fluorescence detection method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174742A (en) * 1983-03-25 1984-10-03 Agency Of Ind Science & Technol Method and apparatus for dividing and sorting fine particle
JPS60252245A (en) * 1984-05-30 1985-12-12 Hitachi Ltd Cell analyzer and cell separator using said analyzer
JPH0726912B2 (en) * 1986-10-08 1995-03-29 株式会社日立製作所 Fluorescence analysis method and device

Also Published As

Publication number Publication date
JPH03221837A (en) 1991-09-30

Similar Documents

Publication Publication Date Title
US5480775A (en) Method for measuring a specimen by the use of fluorescent light
US5760900A (en) Method and apparatus for optically measuring specimen
US5308990A (en) Method for measuring microparticles, quantitative measuring method therefor and instrument for measuring microparticles
US5815262A (en) Apparatus for parallelized two-photon fluorescence correlation spectroscopy (TPA-FCS), and the use thereof for screening active compounds
EP0099266B1 (en) Limited volume method and apparatus for particle counting
CN101939633B (en) Fluorescence detector and fluorescence detection method
JPS61153546A (en) Particle analyzer
JP2749928B2 (en) Sample measuring method and sample measuring device
EP0435111B1 (en) Apparatus for optically measuring specimen
JPH07294414A (en) Grain image analyzing method and device therefor
JPH0486546A (en) Specimen inspection device
JPH0465654A (en) Cell analysis apparatus
JP2675895B2 (en) Sample processing method, sample measuring method, and sample measuring device
JPH03221838A (en) Method and device for measuring body to be tested
JPH03154850A (en) Specimen inspecting device
JP2756298B2 (en) Sample test equipment
JPH0792076A (en) Grain analyzing device
JPH04188043A (en) Specimen measuring apparatus
JPH04188045A (en) Specimen measuring apparatus
JPS63201554A (en) Particle analyzing device
JPH08178849A (en) Fluorometry and fluorometer
JP2749912B2 (en) Sample measuring device and sample measuring method
JPH0296638A (en) Optical device and particle measuring apparatus using the same
JPH03194451A (en) Cell analyzing apparatus
JPH0320642A (en) Apparatus and method for inspecting specimen

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees