JPH0572448B2 - - Google Patents

Info

Publication number
JPH0572448B2
JPH0572448B2 JP22782886A JP22782886A JPH0572448B2 JP H0572448 B2 JPH0572448 B2 JP H0572448B2 JP 22782886 A JP22782886 A JP 22782886A JP 22782886 A JP22782886 A JP 22782886A JP H0572448 B2 JPH0572448 B2 JP H0572448B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
temperature range
rolling
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22782886A
Other languages
Japanese (ja)
Other versions
JPS6383224A (en
Inventor
Tooru Suzuki
Kuniteru Oota
Jiro Harase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22782886A priority Critical patent/JPS6383224A/en
Publication of JPS6383224A publication Critical patent/JPS6383224A/en
Publication of JPH0572448B2 publication Critical patent/JPH0572448B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、Cr系ステンレス鋼薄板の製造方
法に関する。 (従来の技術) ステンレス鋼薄板は、たとえば特開昭55−
97430号公報に開示されているように、連続鋳造
プロセスによつて得られた、厚さ200mm前後の鋳
片を、直接粗圧延するか或いは1200℃程度の温度
に加熱した後、熱間圧延して熱延板とし、これを
ベル型の焼鈍炉により熱延板焼鈍を施して、冷間
圧延、仕上焼鈍を施して製品とされている。 前述の如く、従来のプロセスにあつては、出発
材料としての鋳片の厚さが200mm前後と厚いこと
に起因して、所定厚さ、たとえば2.3mm厚さの熱
延板にするための加圧エネルギ、圧延動力等の諸
エネルギを必要とし、またかかるプロセスによつ
て得られた熱延板は、熱延ままの状態では、マル
テンサイト相が形成されているので、これを分解
して冷延性を向上せしめるべく、ベル型の焼鈍炉
による長時間の焼鈍を必要とする問題がある。 (発明が解決しようとする問題点) この発明は、Cr系ステンレス鋼薄板の製造に
際し、熱間圧延工程、ベル型焼鈍炉による熱延板
焼鈍工程を省略してなお、冷間圧延工程において
割れを生起せしめないCr系ステンレス鋼薄板の
製造方法を提供することを目的とするものであ
る。 (問題点を解決するための手段) この発明の要旨とする処は下記の通りである。 (1) 重量%でCr:8〜30%、C:0.001〜0.5%、
Si:0.1〜1.0%、Mn:0.1〜0.5%、Al:0.001〜
0.5%、N:0.001〜0.5%および残部が実質的に
Feからなる合金溶湯を厚さ10mm以下の帯に鋳
造した後、凝固温度からγ相析出終了温度ま
で、100℃/sec以上の冷却速度で冷却する過程
と、150℃以上1000℃以下の温度域で前記鋳造
された帯に少なくとも1パスの圧延加工を施す
過程を有することを特徴とするCr系ステンレ
ス鋼薄板の製造方法。 (2) 重量%で、Cr:8〜30%、C:0.001〜0.5
%、Si:0.1〜1.0%、Mn:0.1〜0.5%、Al:
0.001〜0.5%、N:0.001〜0.5%および残部が
実質的にFeからなる合金溶湯を厚さ10mm以下
の帯に鋳造した後、凝固温度からγ相析出終了
温度まで、100℃/sec以上の冷却速度で冷却す
る過程と、次いで700℃以上1000℃以下の温度
域で10秒間以上の析出処理する過程と、150℃
以上1000℃以下の温度域で前記鋳造された帯に
少なくとも1パスの圧延加工を施す過程を有す
ることを特徴とするCr系ステンレス鋼薄板の
製造方法。 以下に、この発明を詳細に説明する。 この発明の第1の目的は、従来のCr系ステン
レス鋼薄板の製造プロセスにあつて、熱延板を冷
間圧延するときの冷延性を向上させるために行な
つている熱延板焼鈍工程を省略することにある。 Cr系ステンレス鋼の中でも、SUS410に代表さ
れる鋼種においては、熱延ままの状態では、γ相
の変態によつて生成した硬い相が多量に存在する
ため、熱延ままの状態で冷間圧延すると、材料の
破断(冷延破断)を起こしたり、圧下率が一定に
ならず、材料(ストリツプ)長さ方向における厚
みの変動が大きくなる等の問題を生ずるため、従
来のプロセスにあつては、前述の硬い相をフエラ
イト+炭化物に分離するための熱延板焼鈍を行な
うことが必要である。 本発明の発明者等は、この熱延板焼鈍工程を省
略し得るCr系ステンレス鋼薄板製造プロセスの
構成について研究を重ねた結果、熱延板における
硬い相の生成原因となるγ相を生ぜしめないよう
に溶鋼を凝固せしめた後、γ相の析出終了温度ま
で、α相領域内にあるように冷却し、γ相のない
熱延板を作れば硬い相が形成されないので、従来
プロセスにおけるような、熱延板焼鈍工程を省略
し得ることを解明した。 即ち、厚さ200mm前後の鋳片の場合は、鋳造後、
通常の方法で鋳片を冷却しても、冷却速度は、鋳
片自身の熱伝導率によつて制約され、凝固過程で
γ相の析出を防止するに足るだけの高い冷却速度
とならない。 鋳片厚さを、10mm以下、好ましくは4mm以下と
熱延板の厚さ(ホツトゲージ)程度に薄くする
と、鋳造後、通常の冷却手段(たとえば水冷却)
で、鋳片の凝固後α相領域内にあるように冷却す
ることにより、γ相を析出させないでα相+炭化
物の存在する領域にもち来たすことが可能とな
る。 α相+炭化物の領域において、α相中に過飽和
に固溶したC、N、S等は、炭、窒化物や硫化物
の形になるような析出処理が必要である。 このような析出処理を施さないときは、材料
(ストリツプ)の冷間圧延中での加工硬化が甚だ
しく、また、最終製品における伸びが小さく降状
点が高い、という欠点を生じる。 従つて、材料の冷延性を向上させるため、γ相
から形成されたα′相を、α+炭化物に分解するた
めの熱延板焼鈍に代えて、過飽和αからC、N、
S等を析出させる析出処理のみの熱処理を行なえ
ば冷延性が向上し、また、この析出処理は、α′→
α+炭化物の反応に比し、短時間でできかつ、通
常の熱間圧延後のストリツプ巻取り過程で行なう
ことが可能であつて、従来プロセスにおけるよう
な専用の熱処理工程は、不必要である。 この発明の第2の目的は、加工性、特にリジン
グ特性の改善されたCr系ステンレス鋼薄板を、
薄肉鋳片を出発材として製造する技術を提供する
ことにある。 Cr系ステンレス鋼薄板のリジング特性の改善
のためには、コロニー(近似した方位を有する結
晶粒の集団)のサイズが小さくかつ、コロニーが
ランダムに分散し、結晶粒径も比較的小さいこと
が必要である。このためには、鋳片の結晶粒径を
小さくし、かつ凝固後の冷却過程での粒界移動に
基づくコロニーサイズの拡大を防止する必要があ
る。 従来のプロセスにおける鋳片は、100mm以上と
厚さが大きいので、鋳造時の凝固速度の制御が困
難であり、鋳造ままの状態で結晶粒径を小さくす
ることは、不可能である。また、鋳造後の鋳片の
冷却速度も、鋳片厚さが大きく困難であることに
起因して、冷却中の高温域での粒界移動に基づく
コロニーサイズの拡大等があり、熱間圧延工程で
再結晶させて、コロニーサイズを小さくする必要
がある。 これに比し、本発明における如き、薄肉鋳片で
は、鋳片の厚さを10mm以下、好ましくは、4mm以
下とすることにより、鋳造後の凝固を速くするこ
とができるから、鋳片の結晶粒を小さくすること
が可能であり、さらに、凝固後の冷却速度も格段
に大きく採れるからコロニーサイズを小さくする
ことができる。 一方、Cr系ステンレス鋼は、一般に、靭性が
低く、特に凝固ままでは、著しく低下する。従来
のプロセスで製造した熱延板は、熱間圧延工程お
よび熱延板焼鈍工程で再結晶が進行し、凝固組織
が破壊されているため、室温における靭性が、凝
固ままの鋳片に比べて高く、冷間圧延工程におい
ても割れは生じないが、凝固ままの鋳片に、冷間
加工を施すと、割れを生じる。 本発明者等は、熱間圧延工程、熱延板焼鈍工程
を省略するプロセスにおいて、凝固まま鋳片であ
つても、冷間圧延に先立つて、鋳片を遷移温度以
上に加熱してやれば、割れを防止し得ることを知
見した。 本発明において、薄鋳片を、150℃以上1000℃
以下の温度域で圧延加工するようにしたのは、主
として、靭性不足による冷延割れを防止するため
であり、さらには、凝固過程で生じたザクを圧着
するためである。この圧延加工における圧下量
は、パス当り少なくとも5%であり、1パス以上
の圧延加工を行なう。 ここで、圧延加工の温度域を150℃以上1000℃
以下としたのは、前述の理由によるが、下限を
150℃としたのは、これ未満の温度では、凝固ま
まの靭性が低く、圧延に際して割れを生じるから
である。 鋳片を、遷移温度以上に加熱すれば靭性は向上
するけれども、1000℃超では、リジング特性の劣
化を来たすので、上限を1000℃とした。この場合
の圧下量は、パス当り5%以上あればよく、好ま
しくは10%以上で、複数回の加工を施すことが望
ましい。 また、圧延加工は、鋳造後、鋳片の温度が200
℃以下に降下する前に行なつても、一旦室温まで
冷却してから再加熱して行なつてもよい。 かかる所定温度域での圧延加工を受けた薄肉鋳
片は引続き最終板厚まで圧延した後、焼鈍を行な
つてもよいし、一旦コイルに巻取り、冷間圧延
し、焼鈍して薄板としてもよいが、目標とする薄
板の品質に従つて冷間圧延、焼鈍条件を決定しな
ければならないのは言うまでもない。尚本発明が
対象とする鋼成分は、フエライト単相鋼でもよい
が、下式に基づいて算定されるγ量を含有してい
る成分組成の鋼であることが好ましく、この場合
γ量は100を超えないように成分系を調整する必
要がある。 γ%=420×〔C%〕+470×〔N%〕+7 ×〔Mn%〕−11.5×〔Cr%+Si%〕 −49×〔Ti%〕−52×〔Al%〕+189 本発明の実施に際しては、前記所定温度域での
圧延加工は、冷間圧延工程の前段で加熱するプロ
セスを採ることが実際的であるから、省エネルギ
という観点からは、150℃以上500℃以下の温度域
が好ましい。 次に本発明の出発材の成分限定理由について説
明する。 Crを8%以上としたのは、これ未満のCr量で
は耐食性が劣るためである。Crの添加量が増す
程耐食性は向上するが30%を超えると効果が少な
く、且つ冷延性も劣化し、経済性を考慮するとこ
れ以上のCr量は好ましくないので30%を上限と
した。 Cを0.001%以上としたのは、これ未満のC量
の出発材で溶製することは、通常を方法では困難
なので、0.001%以上とした。Cは添加量が多い
程リジング特性が良くなるが、0.5%を超えて添
加すると冷延性やr値が劣化するので上限を0.5
%とした。 Alは添加量が多い程r値が向上するが、0.5%
を超えて添加しても効果は飽和し、経済的でない
ので上限を0.5%としたもので、下限を0.001%と
したのは、これ未満のAl量ではO2が著しく増し、
好ましくないので下限を0.001%としたものであ
る。 Nは添加量が多い上リジング特性が向上する
が、0.5%を超えて添加するとブリスター等が発
生するので上限を0.5%としたものであり、Nは
0.004%以下低い程r値が向上して好ましいが、
0.001%未満は通常の方式では溶製出来ないので
0.001%を下限としたものである。 本発明における出発材としての鋳片厚みは、10
mm以下、好ましくは4mm以下である。即ち、凝固
ままの鋳片における結晶粒を小さくし、さらに凝
固後の冷却過程でのα相の粒成長やγ相の析出を
防止するために、高い冷却速度下の冷却が必要で
あり、かかる観点から鋳片厚みは、可及的に薄い
方がよい。 本発明において、鋳片厚みの上限を10mmとした
のは、これを超える鋳片厚みでは、鋳造ままの状
態での結晶粒が大きく、またかかる厚さの鋳片で
は、通常の方法で冷却しても、冷却速度が高くな
らず、冷却過程でγ相の析出を防止することや、
粒成長の防止が困難となるからである。 また本発明で、γ相析出完了温度(通常、約
1000℃)までの鋳片の冷却速度を100℃/sec以上
としたのは、γ相の析出防止および粒成長防止を
狙つたものであり、100℃/sec以上の冷却速度な
らば実質的に防止可能であることによる。 また1000℃〜700℃の温度域で10秒間以上の析
出処理を施すのは急速冷却によつて、α相中に過
飽和に固溶しているC、N、S等を、炭窒化物、
硫化物の形で出させ、冷延性および最終製品の伸
びを増し、降状点を下げるためであり、1000℃以
上では、溶解度が大きく効果的でなくかつ粒成長
が起こり、逆にリジング特性の劣化を来すので上
限を1000℃としたものであり、700℃以上とした
のは、これ未満の温度では、析出速度が遅く効果
的でないので下限を700℃とした。また、10秒間
以上としたのはこれより短い時間では保定効果が
ないことによる。 通常、上記析出処理は700℃以上、好ましくは
800℃以上の高温で鋳片を捲取ることによつて達
成できるものである。 本発明において冷却過程で析出するγ量は全く
ないことが好ましいが、このγ量を全γ量の10%
以下としても本発明の目的は達成できる。即ち、
この程度のγ量であれば熱延板焼鈍を省略しても
冷延性に支障がなく、また、リジング特性の改善
にも問題がないからである。 実施例 実施例 1 表1に示す成分のSUS430鋼を製造し、シヤル
ピー試験を行つた。A鋼は鉄製鋳型を用い、厚さ
4mmの薄肉鋳片に鋳造後、直ちに水冷して100
℃/sec程度の冷却速度で800℃まで冷却し、その
後放冷して供試材とした。B、C鋼は通常の製造
工程で厚さ250mmのCCスラブから厚さ3mmの熱延
板とした後、B鋼は熱延まま、C鋼は840℃、4
時間の焼鈍を施して供試材とした。 第1図に温度と衝撃値の関係を示す。A鋼では
遷移温度は150℃付近にあるが、B、C鋼では遷
移温度は室温以下にある。室温ではA鋼はB、C
鋼に比べ衝撃値が著しく低い。 第2図はA鋼のシヤルピー試験片の破面の金属
組織を示す走査型電子顕微鏡写真像でaは25℃、
bは200℃である。25℃では破面はへき開割れを
呈しており、ぜい化していることがわかる。しか
し200℃では破面は延性破面を呈しており、靭性
に富むことがわかる。 この結果をもとに、A鋼を室温及び200℃に加
熱して圧延を行つたところ、室温で圧延したもの
は2パス目で割れが発生したが、200℃に加熱し
たものは割れの発生もなく、所定の厚みまで圧延
できた。 実施例 2 表2に示す成分のSUS430鋼を、鉄製鋳型を用
い、厚さ4mmの薄肉鋳片に鋳造後、直ちに水冷し
て100℃/sec程度の冷却速度で800℃まで冷却し、
その後放冷して薄肉鋳片とした。比較のため鋳造
後室温まで放冷した薄肉鋳片も製造した。 このようにして製造した薄肉鋳片を酸洗後、
200℃に加熱した所定の板厚まで圧延し、更に焼
鈍を行つた。本発明に従つて鋳片としたものは、
冷却過程でγ相の析出がなく、冷間圧延中の耳割
れや厚みの変動も少く、良好な冷延性を示した
が、放冷したものは、マルテンサイトが形成さ
れ、冷延性が悪かつた。 実施例 3 表2に示す成分のSUS430鋼を鉄製鋳型を用
い、厚さ4mmの薄肉鋳片に鋳造後、直ちに水冷し
て100℃/sec程度の冷却速度で800℃まで冷却し、
その後20秒間の析出処理を施した後放冷して薄肉
鋳片とした。比較のため鋳造後室温まで放冷した
薄肉鋳片を製造した。このようにして製造した薄
肉鋳片を酸洗後、200℃に加熱して所定の板厚ま
で圧延し、更に焼鈍を行つた。本発明に従つて鋳
片としたものは、過飽和のC、Nは炭窒化物とし
て析出しているため、冷間圧延中の耳割れ等を少
く、良好な冷延性を示したが、放冷したものはマ
ルテンサイトが形成され冷延が悪かつた。
(Industrial Application Field) The present invention relates to a method for manufacturing a Cr-based stainless steel thin plate. (Prior art) Stainless steel thin plates are manufactured by, for example,
As disclosed in Publication No. 97430, slabs with a thickness of around 200 mm obtained by a continuous casting process are directly rough rolled or heated to a temperature of about 1200°C and then hot rolled. The hot-rolled sheet is then annealed in a bell-shaped annealing furnace, followed by cold rolling and final annealing to produce a product. As mentioned above, in the conventional process, because the thickness of the slab as a starting material is around 200 mm, it is difficult to process it to make a hot-rolled sheet of a predetermined thickness, for example, 2.3 mm. Various energies such as rolling energy and rolling power are required, and the hot-rolled sheet obtained by this process has a martensitic phase formed in the as-hot-rolled state, which is decomposed and cooled. In order to improve ductility, there is a problem in that long-time annealing is required in a bell-shaped annealing furnace. (Problems to be Solved by the Invention) The present invention provides a method for manufacturing Cr-based stainless steel thin plates, which eliminates the hot rolling process and the hot rolled plate annealing process using a bell-type annealing furnace, and yet prevents cracking in the cold rolling process. The object of the present invention is to provide a method for producing a thin Cr-based stainless steel plate that does not cause (Means for Solving the Problems) The gist of the present invention is as follows. (1) Cr: 8-30%, C: 0.001-0.5%, by weight%
Si: 0.1~1.0%, Mn: 0.1~0.5%, Al: 0.001~
0.5%, N: 0.001-0.5% and the remainder substantially
A process in which a molten Fe alloy is cast into a band with a thickness of 10 mm or less, and then cooled at a cooling rate of 100°C/sec or more from the solidification temperature to the end temperature of γ phase precipitation, and a temperature range of 150°C or more and 1000°C or less. A method for producing a Cr-based stainless steel thin plate, comprising the step of subjecting the cast strip to at least one pass of rolling. (2) In weight%, Cr: 8-30%, C: 0.001-0.5
%, Si: 0.1~1.0%, Mn: 0.1~0.5%, Al:
After casting a molten alloy consisting of 0.001 to 0.5% N, 0.001 to 0.5% N, and the balance substantially Fe into a strip with a thickness of 10 mm or less, it is heated at 100°C/sec or more from the solidification temperature to the γ phase precipitation termination temperature. A process of cooling at a cooling rate, followed by a process of precipitation treatment for 10 seconds or more in a temperature range of 700°C or more and 1000°C or less, and 150°C
A method for manufacturing a Cr-based stainless steel thin plate, comprising the step of subjecting the cast strip to at least one pass of rolling in a temperature range of 1000°C or less. This invention will be explained in detail below. The first object of the present invention is to improve the hot-rolled sheet annealing step, which is performed in the conventional manufacturing process of Cr-based stainless steel thin sheets, in order to improve the cold rollability when cold-rolling the hot-rolled sheet. It lies in omission. Among Cr-based stainless steels, steel types such as SUS410 contain a large amount of hard phase generated by γ-phase transformation in the as-hot-rolled state, so they cannot be cold-rolled in the as-hot-rolled state. This causes problems such as material breakage (cold rolling breakage), uneven rolling reduction, and large variations in thickness in the longitudinal direction of the material (strip). , it is necessary to perform hot-rolled sheet annealing to separate the above-mentioned hard phase into ferrite + carbide. The inventors of the present invention have repeatedly researched the configuration of a process for manufacturing Cr-based stainless steel thin sheets that can omit this hot-rolled sheet annealing process, and as a result, they have discovered that γ phase, which is the cause of the formation of hard phases in hot-rolled sheets, is produced. After solidifying the molten steel so that the molten steel is free from precipitation, the molten steel is cooled to the temperature at which the precipitation of the γ phase ends, within the α phase region, and a hot rolled sheet without the γ phase is produced. Furthermore, it has been found that the hot-rolled sheet annealing process can be omitted. In other words, in the case of slabs with a thickness of around 200 mm, after casting,
Even if the slab is cooled by a conventional method, the cooling rate is limited by the thermal conductivity of the slab itself, and the cooling rate is not high enough to prevent precipitation of the γ phase during the solidification process. When the thickness of the slab is reduced to 10 mm or less, preferably 4 mm or less, which is about the same as the thickness of a hot-rolled sheet (hot gauge), it is possible to use normal cooling means (for example, water cooling) after casting.
By cooling the slab so that it is in the α-phase region after solidification, it is possible to bring the γ-phase to the region where α-phase + carbides exist without precipitating the γ-phase. In the α phase+carbide region, C, N, S, etc. supersaturated as a solid solution in the α phase require precipitation treatment to form carbon, nitride, or sulfide. If such precipitation treatment is not performed, the material (strip) suffers from severe work hardening during cold rolling, and the final product has low elongation and a high drop point. Therefore, in order to improve the cold rollability of the material, instead of hot-rolled plate annealing to decompose the α' phase formed from the γ phase into α+ carbides, supersaturated α is used to process C, N,
If heat treatment is performed only for precipitation treatment to precipitate S etc., cold rollability will be improved.
Compared to the α+ carbide reaction, this reaction can be carried out in a shorter time and can be carried out during the normal strip winding process after hot rolling, and a dedicated heat treatment step as in conventional processes is unnecessary. The second object of this invention is to produce a Cr-based stainless steel thin plate with improved workability, especially ridging properties.
The object of the present invention is to provide a technology for manufacturing thin cast slabs as a starting material. In order to improve the ridging properties of Cr-based stainless steel sheets, it is necessary that the size of colonies (a group of crystal grains with similar orientations) be small and randomly distributed, and that the crystal grain size be relatively small. It is. For this purpose, it is necessary to reduce the crystal grain size of the slab and to prevent the colony size from expanding due to grain boundary movement during the cooling process after solidification. Since the slab in the conventional process has a large thickness of 100 mm or more, it is difficult to control the solidification rate during casting, and it is impossible to reduce the crystal grain size in the as-cast state. In addition, the cooling rate of the slab after casting is difficult due to the large thickness of the slab, which causes colony size expansion due to grain boundary movement in the high temperature range during cooling. It is necessary to recrystallize during the process to reduce the colony size. In contrast, in the case of thin-walled slabs as in the present invention, by setting the thickness of the slab to 10 mm or less, preferably 4 mm or less, solidification after casting can be speeded up. It is possible to make the particles smaller, and furthermore, the cooling rate after solidification can be significantly increased, so the colony size can be reduced. On the other hand, Cr-based stainless steels generally have low toughness, and particularly when left solidified, the toughness decreases significantly. Hot-rolled sheets manufactured using conventional processes undergo recrystallization during the hot-rolling process and hot-rolled plate annealing process, and the solidified structure is destroyed, so the toughness at room temperature is lower than that of as-solidified slabs. However, if a solidified slab is subjected to cold working, cracks will occur. The present inventors have discovered that in a process that omits the hot rolling process and hot-rolled sheet annealing process, even if the slab is solidified, heating it above the transition temperature prior to cold rolling will cause cracking. We have discovered that this can be prevented. In the present invention, the thin cast slab is heated at a temperature of 150°C or higher to 1000°C.
The reason why the rolling process is carried out in the following temperature range is mainly to prevent cold rolling cracks due to insufficient toughness, and also to compress the cracks produced during the solidification process. The amount of reduction in this rolling process is at least 5% per pass, and the rolling process is performed in one or more passes. Here, the temperature range for rolling processing is 150℃ or higher and 1000℃.
The following is the reason for the above-mentioned reason, but the lower limit is
The reason for setting the temperature to 150°C is that if the temperature is lower than this, the toughness as solidified is low and cracks occur during rolling. If the slab is heated above the transition temperature, the toughness will improve, but if the temperature exceeds 1000°C, the ridging properties will deteriorate, so the upper limit was set at 1000°C. In this case, the rolling reduction amount may be 5% or more per pass, preferably 10% or more, and it is desirable to perform the processing multiple times. In addition, during rolling, the temperature of the slab after casting is 200°C.
It may be carried out before the temperature drops to below .degree. C., or it may be carried out after cooling to room temperature and then reheating. The thin slab that has been rolled in such a predetermined temperature range may be subsequently rolled to the final thickness and then annealed, or it may be wound into a coil, cold rolled, and annealed to form a thin plate. However, it goes without saying that cold rolling and annealing conditions must be determined according to the target quality of the thin plate. The steel composition targeted by the present invention may be a ferrite single-phase steel, but it is preferably a steel with a composition containing a γ amount calculated based on the following formula, in which case the γ amount is 100 It is necessary to adjust the component system so that it does not exceed. γ%=420×[C%]+470×[N%]+7×[Mn%]−11.5×[Cr%+Si%] −49×[Ti%]−52×[Al%]+189 In implementing the present invention Since it is practical to perform the rolling process in the predetermined temperature range using a heating process before the cold rolling process, a temperature range of 150°C or higher and 500°C or lower is preferable from the perspective of energy saving. . Next, the reasons for limiting the components of the starting materials of the present invention will be explained. The reason why Cr is set to 8% or more is because corrosion resistance is poor if the Cr content is less than this. Corrosion resistance improves as the amount of Cr added increases, but if it exceeds 30%, the effect is small and cold rollability deteriorates. Considering economic efficiency, a higher amount of Cr is not preferable, so 30% is set as the upper limit. The reason for setting the C content to be 0.001% or more is that it is difficult to melt with a starting material having a C content lower than this using conventional methods. The greater the amount of C added, the better the ridging properties will be, but if added in excess of 0.5%, cold rollability and r-value will deteriorate, so the upper limit should be set at 0.5%.
%. The r value improves as the amount of Al added increases, but 0.5%
The upper limit was set at 0.5% because the effect would be saturated and it would be uneconomical to add more than this amount.The lower limit was set at 0.001% because if the amount of Al is less than this, O 2 will increase significantly.
Since this is not preferable, the lower limit is set at 0.001%. Adding a large amount of N improves ridging properties, but adding more than 0.5% causes blistering, etc., so the upper limit is set at 0.5%.
The lower the value is 0.004% or less, the better the r value improves, but
Less than 0.001% cannot be melted using normal methods.
The lower limit is 0.001%. The thickness of the slab as a starting material in the present invention is 10
mm or less, preferably 4 mm or less. In other words, cooling at a high cooling rate is necessary in order to reduce the crystal grain size in the as-solidified slab and to prevent grain growth of the α phase and precipitation of the γ phase during the cooling process after solidification. From this point of view, it is better for the slab thickness to be as thin as possible. In the present invention, the upper limit of slab thickness is set to 10 mm because slabs with a thickness exceeding this thickness have large crystal grains in the as-cast state, and slabs with such thickness cannot be cooled by normal methods. However, the cooling rate is not high, and the precipitation of γ phase is prevented during the cooling process.
This is because it becomes difficult to prevent grain growth. In addition, in the present invention, the γ phase precipitation completion temperature (usually about
The cooling rate of slabs up to 1000°C (1000°C) is set at 100°C/sec or higher to prevent the precipitation of the γ phase and grain growth.If the cooling rate is 100°C/sec or higher, By being preventable. In addition, the precipitation treatment for 10 seconds or more in the temperature range of 1000°C to 700°C uses rapid cooling to remove C, N, S, etc., which are supersaturated solid solutions in the α phase, into carbonitrides,
The purpose is to release it in the form of sulfides, increase cold rollability and elongation of the final product, and lower the precipitation point. At temperatures above 1000°C, the solubility is large and it is not effective, and grain growth occurs, conversely impairing the ridging properties. The upper limit was set at 1000°C because this would cause deterioration, and the lower limit was set at 700°C because at temperatures lower than this, the precipitation rate is slow and ineffective. Furthermore, the reason why the duration was set at 10 seconds or more is that shorter durations have no retention effect. Usually, the above precipitation treatment is carried out at temperatures above 700℃, preferably
This can be achieved by rolling the slab at a high temperature of 800°C or higher. In the present invention, it is preferable that no amount of γ precipitates during the cooling process, but this amount should be reduced to 10% of the total amount of γ.
The object of the present invention can also be achieved as follows. That is,
This is because if the amount of γ is at this level, there will be no problem in cold rollability even if hot-rolled sheet annealing is omitted, and there will be no problem in improving ridging properties. Examples Example 1 SUS430 steel having the components shown in Table 1 was manufactured and subjected to a Charpy test. A steel is cast into a 4mm thick slab using an iron mold, then immediately cooled in water and heated to 100mm.
The sample was cooled to 800°C at a cooling rate of approximately °C/sec, and then left to cool. Steels B and C are made into hot-rolled sheets with a thickness of 3mm from CC slabs with a thickness of 250mm using the normal manufacturing process, and then steel B is heated as hot-rolled and steel C is heated to 840℃, 4
The sample material was annealed for several hours. Figure 1 shows the relationship between temperature and impact value. In steel A, the transition temperature is around 150°C, but in steel B and C, the transition temperature is below room temperature. At room temperature, A steel becomes B, C
Impact value is significantly lower than steel. Figure 2 is a scanning electron micrograph showing the metallographic structure of the fracture surface of a Charpy specimen of A steel, where a is 25°C;
b is 200°C. At 25°C, the fracture surface exhibits cleavage cracks, indicating that it is brittle. However, at 200℃, the fracture surface exhibits a ductile fracture surface, indicating that it is highly tough. Based on this result, when steel A was heated to room temperature and 200℃ and rolled, cracks occurred on the second pass in the one rolled at room temperature, but cracks occurred in the one heated to 200℃. It was possible to roll it to the specified thickness without any problems. Example 2 SUS430 steel having the composition shown in Table 2 was cast into a thin slab with a thickness of 4 mm using an iron mold, and then immediately cooled with water to 800 °C at a cooling rate of about 100 °C/sec.
Thereafter, it was left to cool to form a thin slab. For comparison, we also produced thin slabs that were left to cool to room temperature after casting. After pickling the thin slab produced in this way,
The material was heated to 200°C, rolled to a predetermined thickness, and further annealed. The cast slab according to the present invention is
There was no precipitation of the γ phase during the cooling process, and there was little edge cracking or thickness variation during cold rolling, showing good cold rollability. Ta. Example 3 SUS430 steel having the composition shown in Table 2 was cast into a thin slab with a thickness of 4 mm using an iron mold, and then immediately cooled with water to 800 °C at a cooling rate of about 100 °C/sec.
After that, it was subjected to a precipitation treatment for 20 seconds and then allowed to cool to form a thin slab. For comparison, a thin slab was produced which was left to cool to room temperature after casting. The thus produced thin slab was pickled, heated to 200°C, rolled to a predetermined thickness, and further annealed. In the slab made according to the present invention, supersaturated C and N were precipitated as carbonitrides, so there were few edge cracks during cold rolling, and good cold rollability was exhibited. In the case of rolled steel, martensite was formed and cold rolling was poor.

【表】【table】

【表】 (発明の効果) 以上詳述したとおり、本発明によれば、冷延
性、リジング特性の良好なCr系ステンレス鋼薄
板を、熱間圧延工程、熱延板焼鈍工程を省略し、
かつ薄肉鋳片で最も問題となる冷延割れを防止し
て製造することができ、Cr系ステンレス鋼薄板
を、普通鋼の製造プロセスで生産できる等、工業
的に大きな効果を奏する。
[Table] (Effects of the Invention) As detailed above, according to the present invention, a Cr-based stainless steel thin plate with good cold rollability and ridging properties can be produced by omitting the hot rolling process and the hot rolled plate annealing process.
In addition, it can be manufactured without cold rolling cracking, which is the most problematic problem with thin slabs, and Cr-based stainless steel thin plates can be produced in the manufacturing process of ordinary steel, which has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Cr系ステンレス鋼ホツトゲージ材
(鋳造まま材を含む)における温度と衝撃値の関
係を示す図、第2図a,bは、本発明の実施例1
におけるA鋼のシヤルピー試験片の破面の金属組
織を示す走査型電子顕微鏡写真(倍率200)であ
る。
Fig. 1 is a diagram showing the relationship between temperature and impact value in Cr-based stainless steel hot gauge materials (including as-cast materials), and Fig. 2 a and b show Example 1 of the present invention.
1 is a scanning electron micrograph (magnification: 200) showing the metallographic structure of the fracture surface of a Charpy specimen of Steel A.

Claims (1)

【特許請求の範囲】 1 重量%で、Cr:8〜30%、C:0.001〜0.5
%、Si:0.1〜1.0%、Mn:0.1〜0.5%、Al:0.001
〜0.5%、N:0.001〜0.5%および残部が実質的に
Feからなる合金溶湯を厚さ10mm以下の帯に鋳造
した後、凝固温度からγ相析出終了温度まで、
100℃/sec以上の冷却速度で冷却する過程と、
150℃以上1000℃以下の温度域で前記鋳造された
帯に少なくとも1パスの圧延加工を施す過程を有
することを特徴とするCr系ステンレス鋼薄板の
製造方法。 2 150℃以上1000℃以下の温度域で帯に施され
る少なくとも1パスの圧延加工が、鋳造後の冷却
過程に引続いてなされるものである特許請求の範
囲第1項記載のCr系ステンレス鋼薄板の製造方
法。 3 150℃以上1000℃以下の温度域で帯に施され
る少なくとも1パスの圧延加工が、鋳造後、凝固
温度からγ相析出終了温度まで、100℃/sec以上
の冷却速度で冷却し、次いで室温まで冷却した
後、150℃以上1000℃以下の温度域に加熱してな
されるものである特許請求の範囲第1項記載の
Cr系ステンレス鋼薄板の製造方法。 4 重量%で、Cr:8〜30%、C:0.001〜0.5
%、Si:0.1〜1.0%、Mn:0.1〜0.5%、Al:0.001
〜0.5%、N:0.001〜0.5%および残部が実質的に
Feからなる合金溶湯を厚さ10mm以下の帯に鋳造
した後、凝固温度からγ相析出終了温度まで、
100℃/sec以上の冷却速度で冷却する過程と、次
いで700℃以上1000℃以下の温度域で10秒間以上
の析出処理する過程と、150℃以上1000℃以下の
温度域に前記鋳造された帯に少なくとも1パスの
圧延加工を施す過程を有することを特徴とする
Cr系ステンレス鋼薄板の製造方法。 5 150℃以上1000℃以下の温度域で帯に施され
る少なくとも1パスの圧延加工が、700℃以上
1000℃以下の温度域でなされる10秒間以上の析出
処理過程に引続いてなされるものである特許請求
の範囲第4項記載のCr系ステンレス鋼薄板の製
造方法。 6 150℃以上1000℃以下の温度域で帯に施され
る少なくとも1パスの圧延加工が、700℃以上
1000℃以下の温度域でなされる10秒間以上の析出
処理後、室温まで冷却した後、150℃以上1000℃
以下の温度域に加熱してなされるものである特許
請求の範囲第4項記載のCr系ステンレス鋼薄板
の製造方法。
[Claims] 1% by weight, Cr: 8-30%, C: 0.001-0.5
%, Si: 0.1~1.0%, Mn: 0.1~0.5%, Al: 0.001
~0.5%, N: 0.001~0.5% and the remainder substantially
After casting the molten alloy consisting of Fe into a strip with a thickness of 10 mm or less, from the solidification temperature to the temperature at which γ phase precipitation ends,
A process of cooling at a cooling rate of 100℃/sec or more,
A method for manufacturing a Cr-based stainless steel thin plate, comprising the step of subjecting the cast strip to at least one pass of rolling in a temperature range of 150°C or higher and 1000°C or lower. 2. The Cr-based stainless steel according to claim 1, wherein at least one pass of rolling is performed on the band in a temperature range of 150°C or higher and 1000°C or lower, following a cooling process after casting. Method for manufacturing thin steel sheets. 3 At least one pass of rolling is performed on the strip in a temperature range of 150°C or higher and 1000°C or lower, followed by cooling from the solidification temperature to the γ phase precipitation termination temperature at a cooling rate of 100°C/sec or higher, and then Claim 1, which is made by cooling to room temperature and then heating to a temperature range of 150°C to 1000°C.
Method for manufacturing Cr-based stainless steel thin plate. 4 In weight%, Cr: 8-30%, C: 0.001-0.5
%, Si: 0.1~1.0%, Mn: 0.1~0.5%, Al: 0.001
~0.5%, N: 0.001~0.5% and the remainder substantially
After casting the molten alloy consisting of Fe into a strip with a thickness of 10 mm or less, from the solidification temperature to the temperature at which γ phase precipitation ends,
A process of cooling at a cooling rate of 100°C/sec or more, followed by a process of precipitation treatment for 10 seconds or more in a temperature range of 700°C or more and 1000°C or less, and a step of cooling the cast band in a temperature range of 150°C or more and 1000°C or less. characterized by having a process of applying at least one rolling pass to the
Method for manufacturing Cr-based stainless steel thin plate. 5 At least one pass of rolling applied to the strip at a temperature range of 150°C or higher and 1000°C or lower is performed at a temperature of 700°C or higher.
5. The method for producing a Cr-based stainless steel thin plate according to claim 4, which is performed following a precipitation treatment process for 10 seconds or more in a temperature range of 1000° C. or lower. 6 At least one pass of rolling applied to the strip at a temperature range of 150°C or higher and 1000°C or lower is performed at a temperature of 700°C or higher.
After precipitation treatment for 10 seconds or more in a temperature range of 1000℃ or less, after cooling to room temperature, 150℃ or more and 1000℃
The method for manufacturing a Cr-based stainless steel thin plate according to claim 4, which is performed by heating to the following temperature range.
JP22782886A 1986-09-26 1986-09-26 Production of thin cr stainless steel sheet Granted JPS6383224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22782886A JPS6383224A (en) 1986-09-26 1986-09-26 Production of thin cr stainless steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22782886A JPS6383224A (en) 1986-09-26 1986-09-26 Production of thin cr stainless steel sheet

Publications (2)

Publication Number Publication Date
JPS6383224A JPS6383224A (en) 1988-04-13
JPH0572448B2 true JPH0572448B2 (en) 1993-10-12

Family

ID=16867006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22782886A Granted JPS6383224A (en) 1986-09-26 1986-09-26 Production of thin cr stainless steel sheet

Country Status (1)

Country Link
JP (1) JPS6383224A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2030538C (en) * 1989-03-30 1996-04-23 Kenzo Iwayama Process for preparing rollable metal sheet from quench solidified thin cast sheet as starting material
US5286315A (en) * 1989-03-30 1994-02-15 Nippon Steel Corporation Process for preparing rollable metal sheet from quenched solidified thin cast sheet as starting material

Also Published As

Publication number Publication date
JPS6383224A (en) 1988-04-13

Similar Documents

Publication Publication Date Title
KR101476866B1 (en) Low density steel with good stamping capability
TW200540284A (en) Steel sheet for can and method for manufacturing the same
KR19980087462A (en) Method for manufacturing thin strip of ferritic stainless steel and thin strip obtained by the above method
JPH1036911A (en) Production of ferritic stainless steel excellent in surface characteristic
JP4545335B2 (en) Fe-Cr steel sheet having excellent ridging resistance and method for producing the same
JPH0572448B2 (en)
US4709742A (en) Method for producing a thin casting of Cr-series stainless steel
JP2000256749A (en) Manufacture of high purity ferritic stainless steel sheet excellent in ridging resistance
JP2763141B2 (en) Manufacturing method of ferritic stainless steel sheet with excellent heat and corrosion resistance
JP2863541B2 (en) Method for producing Cr-based stainless steel sheet using thin casting method
JP4003821B2 (en) Method for producing ferritic stainless steel sheet with excellent ridging resistance
JPH02166233A (en) Manufacture of cr-series stainless steel thin sheet using thin casting method
JP2512650B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in material and surface quality
JP2612452B2 (en) Manufacturing method of high ductility and high strength cold rolled steel sheet
JP3917320B2 (en) Method for producing ferritic stainless steel sheet with excellent ridging resistance
JPS6261646B2 (en)
JP3222057B2 (en) Method for producing Cr-Ni stainless steel hot-rolled steel sheet and cold-rolled steel sheet excellent in surface quality and workability
JPH058256B2 (en)
JP3026232B2 (en) Manufacturing method of thin stainless steel slab with excellent corrosion resistance and workability
JPH0159330B2 (en)
JP2526122B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing by strip casting
JP2825864B2 (en) Manufacturing method of cold rolled steel sheet with excellent ductility
JP2815603B2 (en) Method for producing Cr-based stainless steel sheet using thin casting method
JPH0353025A (en) Manufacture of high heat-resistant and high-corrosion resistant ferritic stainless steel sheet
JPH08295943A (en) Production of ferritic stainless steel thin sheet excellent in cold rolled surface property

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term