JPH0572419B2 - - Google Patents

Info

Publication number
JPH0572419B2
JPH0572419B2 JP58203164A JP20316483A JPH0572419B2 JP H0572419 B2 JPH0572419 B2 JP H0572419B2 JP 58203164 A JP58203164 A JP 58203164A JP 20316483 A JP20316483 A JP 20316483A JP H0572419 B2 JPH0572419 B2 JP H0572419B2
Authority
JP
Japan
Prior art keywords
weight
parts
acrylic
resin
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58203164A
Other languages
Japanese (ja)
Other versions
JPS6094413A (en
Inventor
Juichi Nishimura
Yoichi Uchida
Shinichi Sakurai
Eiji Aoishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP20316483A priority Critical patent/JPS6094413A/en
Publication of JPS6094413A publication Critical patent/JPS6094413A/en
Publication of JPH0572419B2 publication Critical patent/JPH0572419B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐衝撃性、耐侯性及び耐吸水性に優
れ、且つ良好な艶消表面を有するフイルムに好適
な新規なアクリル系樹脂組成物及び該樹脂組成物
からなるフイルムに関する。 従来、プラスチツク材料の艶消方法としては
無機性充填剤の混練、架橋性高分子重合体粒子
の混練、表面処理剤の塗布、物理的又は化学
的表面処理、成形加工条件による艶消表面の付
与等が知られているが、アクリル系フイルム(通
常、厚さ200μ以下)の艶消については上記又
はによるものが大部分である。 しかるに、無機性充填剤として炭酸カルシウ
ム、ケイ酸カルシウム、シリカゲル等の微粒子を
混合した場合は耐衝撃性や引張強度等の物性低下
が著しく、更には吸水白化性が劣るという欠点が
ある。 一方、架橋性高分子重合体粒子の混練による場
合は加工条件による分散程度の調節が難かしく、
上品な艶消表面を得難いばかりでなく、ガラス転
移点(Tg)の高い架橋ポリマーであるがゆえに
低温での耐衝撃性に劣るという欠点を有する。 本発明者等はかかる実情に鑑み、上記欠点を克
服すべく鋭意研究した結果、本発明を完成させた
ものである。 即ち、本発明の第1は、アクリル系樹脂100重
量部に対し、アルキル基の炭素数1〜13のアクリ
ル酸アルキルエステル50〜100重量部、アルキル
基の炭素数1〜13のメタクリル酸アルキルエステ
ル0〜50重量部からなる非架橋性モノマー100重
量部と分子内に2個以上の二重結合を有する架橋
性モノマー0.25〜17重量部とからなる、ガラス転
移点が30℃以下で且つ平均粒径が0.3〜10μの艶消
用架橋アクリル系共重合体5〜50重量部が均一に
混合分散されていることを特徴とする艶消アクリ
ル系樹脂組成物を、 本発明の第2は、アクリル系樹脂100重量部に
対し、アルキル基の炭素数1〜13のアクリル酸ア
ルキルエステル50〜100重量部、アルキル基の炭
素数1〜13のメタクリル酸アルキルエステル0〜
50重量部からなる非架橋性モノマー100重量部と
分子内に2個以上の二重結合を有する架橋性モノ
マー0.25〜17重量部とからなる、ガラス転移点が
30℃以下で且つ平均粒径が0.3〜10μの艶消用アク
リル系共重合体5〜50重量部を均一に混合分散し
た樹脂組成物を押出成形して得られる厚さ10〜
200μの艶消アクリル系フイルムを、 それぞれ内容とするものである。 本発明で用いられるアクリル系共重合体のアル
キル基の炭素数1〜13のアクリル酸アルキルエス
テルとしては、アクリル酸エチル、アクリル酸n
−ブチル、アクリル酸2−エチルヘキシル等が含
まれ、50〜100重量部の範囲で用いられる。50重
量部未満ではガラス転移点が室温以上に高くな
り、低温での耐衝撃性の有利性が得られ難くな
る。 アルキル基の炭素数1〜13のメタクリル酸アル
キルエステルとしては、メタクリル酸メチル、メ
タクリル酸エチル、メタクリル酸n−ブチル等の
低級メタクリル酸エステルが含まれ、0〜50重量
部の範囲で用いられる。50重量部を越えるとガラ
ス転移点が室温以上に高くなり、低温での耐衝撃
性の有利性が得られ難くなる。 分子内に2個以上の二重結合を有する架橋性モ
ノマーとしては、エチレングリコールジメタクリ
レート等のアルキレングリコールの不飽和カルボ
ン酸エステル、プロピレングリコールジアリルエ
ーテル等のアルキレングリコールの不飽和アルコ
ールエーテル、ジビニルベンゼン等の多価ビニル
ベンゼン、アリルメタクリレート、トリアリルシ
アヌレート、トリアリルイソシアヌレート等のア
リル基含有架橋性モノマー等が挙げられ、前記非
架橋性モノマー100重量部当り0.25〜17重量部、
より好ましくは0.5〜10重量部の範囲で配合され
る。0.25重量部未満では充分な架橋重合体とはな
り得ず、艶消効果の発現が不充分となる。一方、
17重量部を越えて使用しても物性向上は期待でき
ない。 アクリル系共重合体の平均粒子径は0.3〜10μで
ある。0.3μ未満では艶消効果は充分でなく、一方
10μを越えると粗い艶消表面となり外観上好まし
くない。またTg(計算値)は30℃以下であり、30
℃を越えると、艶消用架橋アクリル系ポリマーは
室温でも固い成分として存在するので、フイルム
にしたときの引張強度や低温における耐衝撃性が
不足する。 本発明のアクリル系共重合体は界面活性剤の存
在下でモノマー類や重合開始剤を水に分散してな
る微細懸濁重合法によつて得ることができる。重
合開始剤としては通常の懸濁重合に使用されるも
のが用いられ、代表的なものとしてベンゾイルパ
ーオキサイド、ラウロイルパーオキサイド等の有
機過酸化物、アゾビスイソブチロニトリル等のア
ゾ化合物を挙げることができる。界面活性剤とし
てはオレイン酸ナトリウム、ステアリン酸ナトリ
ウムの如き高級脂肪酸塩類、ロジン酸カリウム、
ロジン酸ナトリウムの如きロジン酸塩類、オクチ
ル硫酸ナトリウム、ラウリル硫酸ナトリウムの如
き高級アルコール硫酸塩類、ドデシルベンゼンス
ルホン酸ナトリウムの如き高級アルキルアリール
ソルホン酸塩類、ジ−2−エチルヘキシルスルホ
コハク酸ナトリウムの如きジアルキルスルホコハ
ク酸塩類等の陰イオン界面活性剤と、ポリエチレ
ングリコール脂肪酸エステル等の非イオン界面活
性剤及びアルキル基の炭素数12〜18の高級アルコ
ール等の単独系又は併用系が挙げられる。 粒子径は前記の通り0.3〜10μに調整するが、該
粒子径はモノマー組成とのバランスにおいて界面
活性剤、重合開始剤の種類と量、水/モノマー比
率、撹拌条件等の組合せにより調整される。 尚、粒子径はコールター・エレクトロニクス社
(Coulter Electronics Inc.)製「コールカウンタ
ー」を使用し、累積曲線で50%になるところを平
均粒子径とする。 また、共重合体のTgが30℃以下にコントロー
ルされるが、該コントロールは主としてモノマー
組成によつて決定される。例えばメチルメタクリ
レートとブチルアクリレートの場合は前者を60部
以下、後者を40部以上にする必要がある。ターシ
ヤリ・ブチルメタクリレートと2−エチルヘキシ
ルアクリレートの場合は前者を50部以下、後者を
50部以上にする必要がある。しかして、上記範囲
内で且つ前記した本発明の各成分の割合となるよ
うに選択される。 前記の如くして得られた艶消用架橋アクリル系
重合体はアクリル系樹脂と均一混合される。 本発明で用いられるアクリル系樹脂としては、
平均粒子径0.2μ以下で、アクリル酸アルキルエス
テル50重量部以上を含む架橋構造を有する弾性体
成分20〜50重量%を核とし、メタクリル酸アルキ
ルエステルを50重量部以上含む非架橋構造を有す
る外殻樹脂層80〜50重量%からなるアクリル系樹
脂が好適である。 この場合の好ましい実施態様としては、艶消用
架橋アクリル系共重合体は溶液状態で保存され、
フイルムのベース樹脂となるアクリル系樹脂の重
合溶液と均一混合され、公知の凝固、乾燥を経て
粉体として取り出される。 本発明で使用されるアクリル系樹脂の重合溶液
としては、アクリル系フイルム原料として用いら
れるアクリル樹脂の乳化分散されたものを指し、
例えば平均粒径が0.2μ以下でアクリル酸アルキル
エステル50重量部以上を含む架橋構造を有する弾
性体成分20〜50重量%を核とし、メタクリル酸ア
ルキルエステルを50重量部以上含む非架橋構造
(外殻樹脂層)80〜50重量%より成る重合体粒子
が水系に乳化分散されているものである。アクリ
ル系樹脂の重合溶液(固形分B)と艶消用架橋ア
クリル系共重合体溶液(固形分A)の固形分比
率、即ち(固形分B)/(固形分A)が2〜20に
なる様に混合される。該固形分比率が2未満とな
ると組成物の軟化点が低くなり過ぎ、20を越える
と良好な艶消効果が発現されない。 アクリル系樹脂と艶消用架橋アクリル系共重合
体との組成物は必要に応じて配合剤、例えば安定
剤、滑剤、加工助剤、耐衝撃助剤、充填剤、着色
剤、紫外線吸収剤、赤外線吸収剤等を含有するこ
とができる。 上記組成物はTダイ加工、インフレーシヨン加
工、カレンダー加工等公知の方法により艶消フイ
ルムとすることができる。該艶消フイルムは厚さ
10〜200μで、艶消の程度は60度光沢度で50以下
のものである。得られた艶消フイルムは他の透明
プラスチツク材料へのラミネート、壁紙や帆布、
鉄板等へのラミネートにより美麗な外観を付与す
ることが出来ると同時に、油折に抗する性質や吸
水による外観低下に抗する性質を併せ持つ製品を
提供することができる。 以下、本発明を実施例及び比較例を挙げて説明
するが、本発明はこれらにより何ら制限されるも
のではない。 実施例1、比較例1〜3 (1) 艶消用架橋アクリル系共重合体の製造 撹拌機(H型ペラ)、還流冷却器、窒素ガス
導入口を備えたガラス製反応容器を水浴中にセ
ツトし、下記の反応物質を仕込んだ。 メチルメタクリレート 10重量部 ブチルアクリレート 90 アリルメタクリレート 2 2−2′−アゾビス−(2,4−ジメチルバレロ
ニトリル) 0.1 ラウリル硫酸ナトリウム 1 高級アルコール 1 水 400 反応容器内を充分に窒素ガスで置換した後、
室温で上記反応物質を撹拌数800rpmで1時間
撹拌した。次いで撹拌数を200rpmにして60℃
に加熱して重合を開始した。3時間後に更に80
℃に昇温し、1時間重合して重合を完了した。
架橋アクリル系共重合体のTgは−44℃で平均
粒径は1μであつた。 (2) アクリル系樹脂の製造 撹拌機(H型ペラ)、還流冷却器、窒素ガス
導入口を備えたガラス製反応容器を水浴中にセ
ツトし、下記の反応物質を仕込んだ。 水 200重量部 ジアルキルスルホサクシネートナトリウム
0.8 高級アルコール 0.3 ブチルアクリレート 27 メチルメタクリレート 3 トリアリルイソシアヌレート 0.3 キユメンハイドロパーオキサイド 0.1 40℃に昇温撹拌してから少量の水に溶かした
ソデイウムホルムアルデヒドスルフオキシレー
ト0.1重量部を添加し、重合を開始した。転化
率が95%以上になつたことを確認した。得られ
たラテツクスの粒子径は1450Åであつた。 次いで水浴温度を80℃に昇温し、下記の混合
物を連続的に4時間かけて追加した。 メチルメタクリレート 59重量部 ブチルアクリレート 11 キユメンハイドロパーオキサイド 0.4 重合発熱が終り、転化率95%以上にあること
を確認した。このラテツクスの粒子径は1610Å
であつた。 このラテツクスの一部をCaCl2水溶液で塩折
し、80℃以上に加熱、脱水、乾燥して得られる
白色粉末はそのままでも各種成形材料になり得
るが、各種の添加物を配合することも可能であ
る。得られた白色粉末、及びこれにシリカと市
販有機艶消剤をそれぞれ配合した例を比較例1
〜3とした。 (3) 艶消用架橋アクリル系共重合体とアクリル系
樹脂との配合及びフイルム成形 上記(2)で得られたアクリル系樹脂の重合溶液
(固形分B)100部に対して、上記(1)で得られた
艶消用架橋アクリル系共重合体(固形分A)10
部となるように均一混合し、塩化カルシウム水
溶液を添化して凝固し、洗滌、乾燥して粉体を
得た。 該粉体を40mm径のスクリユーを有する押出機
を使つて押出しペレツト化した。得られたペレ
ツトを乾燥状態で40mm径スクリユーを有するイ
ンフレ押出機に投入し、50μ厚のフイルムを得
た。 (4) フイルムの物性 上記フイルムの吸水白化性、及び塩ビ鋼板を
210℃、2分加熱して該フイルムをゴムロール
にてラミネートしたものの光沢度及び耐衝撃性
を観察した。結果を第1表に示した。
The present invention relates to a novel acrylic resin composition suitable for use as a film that has excellent impact resistance, weather resistance, and water absorption resistance and has a good matte surface, and a film made of the resin composition. Conventional methods for matting plastic materials include kneading inorganic fillers, kneading crosslinkable polymer particles, applying surface treatment agents, physical or chemical surface treatment, and imparting a matte surface through molding conditions. However, most of the matting methods for acrylic films (usually less than 200 μm in thickness) are those described above. However, when fine particles such as calcium carbonate, calcium silicate, silica gel, etc. are mixed as an inorganic filler, physical properties such as impact resistance and tensile strength are significantly reduced, and furthermore, water absorption and whitening properties are poor. On the other hand, when kneading crosslinkable polymer particles, it is difficult to adjust the degree of dispersion by changing processing conditions.
Not only is it difficult to obtain an elegant matte surface, but since it is a crosslinked polymer with a high glass transition temperature (Tg), it has the disadvantage of poor impact resistance at low temperatures. In view of these circumstances, the present inventors have completed the present invention as a result of intensive research to overcome the above-mentioned drawbacks. That is, the first aspect of the present invention is based on 100 parts by weight of an acrylic resin, 50 to 100 parts by weight of an acrylic acid alkyl ester having an alkyl group having 1 to 13 carbon atoms, and a methacrylic acid alkyl ester having an alkyl group having 1 to 13 carbon atoms. 100 parts by weight of a non-crosslinking monomer consisting of 0 to 50 parts by weight and 0.25 to 17 parts by weight of a crosslinking monomer having two or more double bonds in the molecule, having a glass transition point of 30°C or less and having an average particle size. The second aspect of the present invention is to provide a matting acrylic resin composition characterized in that 5 to 50 parts by weight of a matting crosslinked acrylic copolymer having a diameter of 0.3 to 10μ is uniformly mixed and dispersed. Based on 100 parts by weight of the system resin, 50 to 100 parts by weight of an acrylic acid alkyl ester having an alkyl group having 1 to 13 carbon atoms, and 0 to 100 parts by weight of a methacrylic acid alkyl ester having an alkyl group having 1 to 13 carbon atoms.
A glass transition point consisting of 100 parts by weight of a non-crosslinking monomer consisting of 50 parts by weight and 0.25 to 17 parts by weight of a crosslinking monomer having two or more double bonds in the molecule.
A resin composition with a thickness of 10 to 10% obtained by extrusion molding a resin composition in which 5 to 50 parts by weight of a matting acrylic copolymer with an average particle size of 0.3 to 10μ is uniformly mixed and dispersed at 30°C or less
Each contains a 200μ matte acrylic film. Examples of the acrylic acid alkyl ester having 1 to 13 carbon atoms in the alkyl group of the acrylic copolymer used in the present invention include ethyl acrylate, acrylic acid n
-butyl, 2-ethylhexyl acrylate, etc., and are used in an amount of 50 to 100 parts by weight. If it is less than 50 parts by weight, the glass transition point will be higher than room temperature, making it difficult to obtain the advantage of impact resistance at low temperatures. The methacrylic acid alkyl ester having an alkyl group having 1 to 13 carbon atoms includes lower methacrylic esters such as methyl methacrylate, ethyl methacrylate, and n-butyl methacrylate, and is used in an amount of 0 to 50 parts by weight. If it exceeds 50 parts by weight, the glass transition point will be higher than room temperature, making it difficult to obtain the advantage of impact resistance at low temperatures. Examples of crosslinkable monomers having two or more double bonds in the molecule include unsaturated carboxylic acid esters of alkylene glycol such as ethylene glycol dimethacrylate, unsaturated alcohol ethers of alkylene glycol such as propylene glycol diallyl ether, divinylbenzene, etc. Allyl group-containing crosslinkable monomers such as polyvalent vinylbenzene, allyl methacrylate, triallyl cyanurate, triallyl isocyanurate, etc. are mentioned, and 0.25 to 17 parts by weight per 100 parts by weight of the non-crosslinkable monomer,
More preferably, it is blended in an amount of 0.5 to 10 parts by weight. If the amount is less than 0.25 parts by weight, a sufficient crosslinked polymer will not be obtained, and the matting effect will not be sufficiently developed. on the other hand,
Even if more than 17 parts by weight is used, no improvement in physical properties can be expected. The average particle diameter of the acrylic copolymer is 0.3 to 10μ. If it is less than 0.3μ, the matting effect is not sufficient;
If it exceeds 10μ, the surface becomes rough and matte, which is unfavorable in terms of appearance. In addition, Tg (calculated value) is below 30℃, 30
If the temperature exceeds .degree. C., the crosslinked acrylic polymer for matting will exist as a hard component even at room temperature, resulting in insufficient tensile strength and impact resistance at low temperatures when made into a film. The acrylic copolymer of the present invention can be obtained by a fine suspension polymerization method in which monomers and a polymerization initiator are dispersed in water in the presence of a surfactant. As the polymerization initiator, those used in normal suspension polymerization are used, and typical examples include organic peroxides such as benzoyl peroxide and lauroyl peroxide, and azo compounds such as azobisisobutyronitrile. be able to. As surfactants, higher fatty acid salts such as sodium oleate and sodium stearate, potassium rosinate,
Rosinate salts such as sodium rosinate, higher alcohol sulfates such as sodium octyl sulfate and sodium lauryl sulfate, higher alkylaryl sulfonates such as sodium dodecylbenzenesulfonate, and dialkyl sulfosuccinates such as sodium di-2-ethylhexyl sulfosuccinate. Examples include anionic surfactants such as acid salts, nonionic surfactants such as polyethylene glycol fatty acid esters, and higher alcohols having an alkyl group of 12 to 18 carbon atoms, either alone or in combination. The particle size is adjusted to 0.3 to 10μ as described above, but the particle size is adjusted by combining the type and amount of surfactant, polymerization initiator, water/monomer ratio, stirring conditions, etc. in balance with the monomer composition. . The particle size is measured using "Coal Counter" manufactured by Coulter Electronics Inc., and the point at which it reaches 50% on the cumulative curve is defined as the average particle size. Further, the Tg of the copolymer is controlled to be 30°C or less, but this control is mainly determined by the monomer composition. For example, in the case of methyl methacrylate and butyl acrylate, the former should be 60 parts or less, and the latter should be 40 parts or more. In the case of tertiary butyl methacrylate and 2-ethylhexyl acrylate, 50 parts or less of the former and 50 parts or less of the latter.
Must be 50 copies or more. Therefore, the proportions of each component of the present invention are selected within the above ranges. The crosslinked acrylic polymer for matting obtained as described above is uniformly mixed with an acrylic resin. The acrylic resin used in the present invention includes:
Elastic material with an average particle size of 0.2μ or less, a core of 20 to 50% by weight of an elastic component with a crosslinked structure containing 50 parts by weight or more of an acrylic acid alkyl ester, and a non-crosslinked structure containing 50 parts by weight or more of a methacrylic acid alkyl ester. Acrylic resin consisting of 80 to 50% by weight of the shell resin layer is suitable. In this case, in a preferred embodiment, the crosslinked acrylic copolymer for matting is stored in a solution state,
It is uniformly mixed with a polymerization solution of an acrylic resin that will become the base resin of the film, and is taken out as a powder through known coagulation and drying. The polymerization solution of acrylic resin used in the present invention refers to an emulsified dispersion of acrylic resin used as a raw material for acrylic film.
For example, 20 to 50% by weight of an elastomer component with an average particle size of 0.2 μ or less and a crosslinked structure containing 50 parts by weight or more of an acrylic acid alkyl ester is used as the core, and a non-crosslinked structure (external) containing 50 parts by weight or more of a methacrylic acid alkyl ester. Shell resin layer) Polymer particles consisting of 80 to 50% by weight are emulsified and dispersed in an aqueous system. The solid content ratio of the acrylic resin polymerization solution (solid content B) and the crosslinked acrylic copolymer solution for matting (solid content A), that is, (solid content B)/(solid content A) is 2 to 20. mixed in the same way. If the solid content ratio is less than 2, the softening point of the composition will be too low, and if it exceeds 20, a good matting effect will not be achieved. The composition of the acrylic resin and the crosslinked acrylic copolymer for matte use may contain additives such as stabilizers, lubricants, processing aids, impact resistance aids, fillers, colorants, ultraviolet absorbers, It can contain an infrared absorber and the like. The above composition can be made into a matte film by known methods such as T-die processing, inflation processing, and calendar processing. The matte film has a thickness
10 to 200μ, and the degree of matteness is 50 or less on a 60 degree gloss level. The resulting matte film can be laminated to other transparent plastic materials, wallpaper or canvas,
By laminating the product to an iron plate or the like, it is possible to provide a product with a beautiful appearance, and at the same time, it is possible to provide a product that has the property of resisting oil breakage and the property of resisting deterioration in appearance due to water absorption. The present invention will be described below with reference to Examples and Comparative Examples, but the present invention is not limited by these in any way. Example 1, Comparative Examples 1 to 3 (1) Production of crosslinked acrylic copolymer for matte use A glass reaction vessel equipped with a stirrer (H type propeller), reflux condenser, and nitrogen gas inlet was placed in a water bath. and charged with the following reactants. Methyl methacrylate 10 parts by weight Butyl acrylate 90 Allyl methacrylate 2 2-2'-Azobis-(2,4-dimethylvaleronitrile) 0.1 Sodium lauryl sulfate 1 Higher alcohol 1 Water 400 After sufficiently replacing the inside of the reaction vessel with nitrogen gas,
The reaction material was stirred at room temperature for 1 hour at a stirring speed of 800 rpm. Then, the stirring speed was increased to 200 rpm and the temperature was increased to 60°C.
The mixture was heated to start polymerization. 80 more in 3 hours
The temperature was raised to .degree. C., and polymerization was completed for 1 hour.
The crosslinked acrylic copolymer had a Tg of -44°C and an average particle size of 1μ. (2) Production of acrylic resin A glass reaction vessel equipped with a stirrer (H-type propeller), a reflux condenser, and a nitrogen gas inlet was set in a water bath, and the following reactants were charged. Water 200 parts by weight Sodium dialkyl sulfosuccinate
0.8 Higher alcohol 0.3 Butyl acrylate 27 Methyl methacrylate 3 Triallyl isocyanurate 0.3 Qyumene hydroperoxide 0.1 After raising the temperature to 40℃ and stirring, add 0.1 part by weight of sodium formaldehyde sulfoxylate dissolved in a small amount of water. , started polymerization. It was confirmed that the conversion rate was over 95%. The particle size of the obtained latex was 1450 Å. The water bath temperature was then raised to 80° C. and the following mixture was added continuously over 4 hours. Methyl methacrylate 59 parts by weight Butyl acrylate 11 Kyumene hydroperoxide 0.4 It was confirmed that the polymerization heat generation had ended and the conversion rate was 95% or higher. The particle size of this latex is 1610Å
It was hot. A portion of this latex is salted with a CaCl 2 aqueous solution, heated to 80°C or higher, dehydrated, and dried. The white powder obtained can be used as it is as a variety of molding materials, but it is also possible to mix it with various additives. It is. Comparative Example 1 shows the obtained white powder and an example in which silica and a commercially available organic matting agent were respectively blended.
~3. (3) Compounding of crosslinked acrylic copolymer for matting and acrylic resin and film molding For 100 parts of the polymer solution (solid content B) of acrylic resin obtained in (2) above, add 1 ) Crosslinked acrylic copolymer for matte use (solid content A) 10
The mixture was mixed uniformly so as to give a uniform volume of 50%, solidified by adding an aqueous calcium chloride solution, washed and dried to obtain a powder. The powder was extruded into pellets using an extruder with a 40 mm diameter screw. The obtained pellets were put in a dry state into an inflation extruder having a screw diameter of 40 mm to obtain a film with a thickness of 50 μm. (4) Physical properties of the film The water absorption and whitening properties of the above film and the PVC steel plate
The film was heated at 210° C. for 2 minutes and laminated with a rubber roll, and its gloss and impact resistance were observed. The results are shown in Table 1.

【表】【table】

【表】 第1表から明らかな様に、本発明の架橋アク
リル系共重合体を配合したものは無機物を配合
した比較例2と同等の艶消効果を有し、ラミネ
ート品の物性は何も配合していない比較例1と
略同等であり、全体として極めて優れた艶消フ
イルムであつた。 実施例2〜5、比較例4〜5 (1) 艶消用架橋アクリル系共重合体の製造 架橋アクリル系共重合体を構成する単量体成
分を第2表に示す割合とした他は実施例1(1)と
同様の方法で、架橋アクリル系共重合体ラテツ
クスを得た。得られた架橋アクリル系共重合体
のTg及び平均粒径を第2表に示した。
[Table] As is clear from Table 1, the product containing the crosslinked acrylic copolymer of the present invention has the same matting effect as Comparative Example 2, which contains an inorganic substance, and the physical properties of the laminate product are The result was approximately the same as Comparative Example 1 in which the film was not blended, and the matte film as a whole was extremely excellent. Examples 2 to 5, Comparative Examples 4 to 5 (1) Production of crosslinked acrylic copolymer for matte use The monomer components constituting the crosslinked acrylic copolymer were carried out in the proportions shown in Table 2. A crosslinked acrylic copolymer latex was obtained in the same manner as in Example 1 (1). Table 2 shows the Tg and average particle size of the crosslinked acrylic copolymer obtained.

【表】 (2)〜(4) アクリル系樹脂の製造、配合、フイルム
形成及び物性 実施例1(2)と同様にしてアクリル系樹脂を製
造し、同(3)と同様に配合し、同(4)と同様に物性
を観察した。結果を第3表に示した。
[Table] (2) to (4) Production, blending, film formation, and physical properties of acrylic resin Acrylic resin was produced in the same manner as in Example 1 (2), blended in the same manner as in Example 1 (3), and Physical properties were observed in the same manner as (4). The results are shown in Table 3.

【表】【table】

【表】 比較例 6 実施例1(1)で用いた開始剤をラウロイルパーオ
キサイドに変更した以外は同様にして架橋アクリ
ル系共重合体を得た。得られた架橋アクリル系共
重合体のTgは−44℃で平均粒径は60μであつた。
これを400メツシユの篩を用いて区分して実施例
1(2)〜(4)に従い、塩ビラミネート品の60゜光沢を
測定した。結果を第6表に示した。 比較例 7 実施例1(1)で用いた界面活性剤を第5表の如く
変更した以外は同様にしてTgが−44℃、平均粒
径が0.2μの架橋アクリル系共重合体を得た。得ら
れた架橋アクリル系共重合体を実施例(2)〜(4)に従
い、塩ビラミネート品の60゜光沢を測定した。結
果を第6表に示した。
[Table] Comparative Example 6 A crosslinked acrylic copolymer was obtained in the same manner as in Example 1(1) except that the initiator used was changed to lauroyl peroxide. The crosslinked acrylic copolymer obtained had a Tg of -44°C and an average particle size of 60μ.
This was separated using a 400-mesh sieve, and the 60° gloss of the vinyl chloride laminate product was measured according to Examples 1 (2) to (4). The results are shown in Table 6. Comparative Example 7 A crosslinked acrylic copolymer with a Tg of -44°C and an average particle size of 0.2μ was obtained in the same manner as in Example 1(1), except that the surfactant used was changed as shown in Table 5. . The resulting crosslinked acrylic copolymer was laminated with vinyl chloride and its 60° gloss was measured according to Examples (2) to (4). The results are shown in Table 6.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 アクリル系樹脂の乳化分散液(固形分B)
と、アルキル基の炭素数1〜13のアクリル酸アル
キルエステル50〜100重量部、アルキル基の炭素
数1〜13のメタクリル酸アルキルエステル0〜50
重量部からなる非架橋性モノマー100重量部と分
子内に2個以上の二重結合を有する架橋性モノマ
ー0.25〜17重量部を微細懸濁重合して得られた、
ガラス転移点が30℃以下で且つ平均粒径が0.3〜
10μの艶消用架橋アクリル系共重合体水分散液
(固形分A)とが(B)/(A)=2〜20の範囲で均一に
混合分散されていることを特徴とする艶消アクリ
ル系樹脂水分散液。 2 アクリル系樹脂の乳化分散液が、平均粒径
0.2μ以下でアクリル酸アルキルエステル50重量部
以上を含む架橋構造を有する弾性体成分20〜50重
量%を核とし、メタクリル酸アルキルエステルを
50重量部以上含む非架橋構造を有する外殻樹脂層
80〜50重量%よりなる重合体粒子が水系に乳化分
散されたものである特許請求の範囲第1項記載の
樹脂水分散剤。 3 アクリル系樹脂の乳化分散液(固形分B)
と、アルキル基の炭素数1〜18のアクリル酸アル
キルエステル50〜100重量部、アルキル基の炭素
数1〜13のメタクリル酸アルキルエステル0〜50
重量部からなる非架橋性モノマー100重量部と分
子内に2個以上の二重結合を有する架橋性モノマ
ー0.25〜17重量部を微細懸濁重合して得られた、
ガラス転移点が30℃以下で且つ平均粒径が0.3〜
10μの艶消用アクリル系共重合水分散液(固形分
A)とが(B)/(A)=2〜20の範囲で均一に混合分散
した樹脂水分散液から分離した樹脂を成形して得
られる厚さ10〜200μの艶消アクリル系フイルム。 4 アクリル系樹脂の乳化分散液が、平均粒径
0.2μ以下でアクリル酸アルキルエステル50重量部
以上を含む架橋構造を有する弾性体成分20〜50重
量%を核とし、メタクリル酸アルキルエステルを
50重量部以上含む非架橋構造を有する外殻樹脂層
80〜50重量%よりなる重合体粒子が水系に乳化分
散されたものである特許請求の範囲第3項記載の
フイルム。
[Claims] 1. Emulsified dispersion of acrylic resin (solid content B)
and 50 to 100 parts by weight of an alkyl acrylate having an alkyl group of 1 to 13 carbon atoms, and 0 to 50 parts by weight of an alkyl methacrylate having an alkyl group of 1 to 13 carbon atoms.
obtained by fine suspension polymerization of 100 parts by weight of a non-crosslinkable monomer consisting of 100 parts by weight and 0.25 to 17 parts by weight of a crosslinkable monomer having two or more double bonds in the molecule,
Glass transition point is below 30℃ and average particle size is 0.3~
A matte acrylic product characterized in that a 10 μm crosslinked acrylic copolymer aqueous dispersion (solid content A) is uniformly mixed and dispersed in a range of (B)/(A) = 2 to 20. Aqueous resin dispersion. 2 The emulsified dispersion of acrylic resin has an average particle size of
The core is 20 to 50% by weight of an elastomer component with a crosslinked structure that is 0.2 μ or less and contains 50 parts by weight or more of an acrylic acid alkyl ester, and a methacrylic acid alkyl ester.
Outer shell resin layer with non-crosslinked structure containing 50 parts by weight or more
The resin aqueous dispersant according to claim 1, wherein 80 to 50% by weight of polymer particles are emulsified and dispersed in an aqueous system. 3 Emulsified dispersion of acrylic resin (solid content B)
and 50 to 100 parts by weight of an alkyl acrylate having an alkyl group of 1 to 18 carbon atoms, and 0 to 50 parts by weight of an alkyl methacrylate having an alkyl group of 1 to 13 carbon atoms.
obtained by fine suspension polymerization of 100 parts by weight of a non-crosslinkable monomer consisting of 100 parts by weight and 0.25 to 17 parts by weight of a crosslinkable monomer having two or more double bonds in the molecule,
Glass transition point is below 30℃ and average particle size is 0.3~
A resin separated from a resin aqueous dispersion in which a 10 μ matting acrylic copolymer aqueous dispersion (solid content A) is uniformly mixed and dispersed in the range of (B)/(A) = 2 to 20 is molded. The resulting matte acrylic film has a thickness of 10 to 200μ. 4 The emulsified dispersion of acrylic resin has an average particle size of
The core is 20 to 50% by weight of an elastomer component with a crosslinked structure that is 0.2 μ or less and contains 50 parts by weight or more of an acrylic acid alkyl ester, and a methacrylic acid alkyl ester.
Outer shell resin layer with non-crosslinked structure containing 50 parts by weight or more
4. The film according to claim 3, wherein 80 to 50% by weight of polymer particles are emulsified and dispersed in an aqueous system.
JP20316483A 1983-10-28 1983-10-28 Crosslinked acrylic copolymer for delustering use, its production, resin composition and film made thereof Granted JPS6094413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20316483A JPS6094413A (en) 1983-10-28 1983-10-28 Crosslinked acrylic copolymer for delustering use, its production, resin composition and film made thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20316483A JPS6094413A (en) 1983-10-28 1983-10-28 Crosslinked acrylic copolymer for delustering use, its production, resin composition and film made thereof

Publications (2)

Publication Number Publication Date
JPS6094413A JPS6094413A (en) 1985-05-27
JPH0572419B2 true JPH0572419B2 (en) 1993-10-12

Family

ID=16469501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20316483A Granted JPS6094413A (en) 1983-10-28 1983-10-28 Crosslinked acrylic copolymer for delustering use, its production, resin composition and film made thereof

Country Status (1)

Country Link
JP (1) JPS6094413A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241209A (en) * 1985-08-16 1987-02-23 Denki Kagaku Kogyo Kk Production of polymer
JPH0613583B2 (en) * 1985-09-09 1994-02-23 電気化学工業株式会社 Method for producing copolymer
CA1281492C (en) * 1985-10-23 1991-03-12 Joseph Albert Antonelli Crosslinked polymer microparticle
GB8925939D0 (en) * 1989-11-16 1990-01-04 Exxon Chemical Patents Inc Cable coating compositions and cables made therefrom
US5753772A (en) * 1997-07-17 1998-05-19 The Goodyear Tire & Rubber Company Rubbery polymers with improved color stability
CN107075220B (en) * 2014-07-14 2020-05-15 三菱化学株式会社 Thermoplastic resin composition for matting, fluorine-based matting film, and fluorine-based matting laminate film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834984A (en) * 1971-09-10 1973-05-23
JPS49124192A (en) * 1973-03-02 1974-11-27
JPS5046785A (en) * 1973-08-15 1975-04-25
JPS5688460A (en) * 1979-11-26 1981-07-17 Mitsubishi Rayon Co Ltd Matte thermoplastic resin composition
JPS5714650A (en) * 1980-07-01 1982-01-25 Mitsubishi Rayon Co Ltd Matted thermoplastic resin composition
JPS5829856A (en) * 1981-08-13 1983-02-22 Mitsubishi Rayon Co Ltd Matte thermoplastic resin composition
JPS5978253A (en) * 1982-10-28 1984-05-07 Mitsubishi Rayon Co Ltd Matte thermoplastic resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834984A (en) * 1971-09-10 1973-05-23
JPS49124192A (en) * 1973-03-02 1974-11-27
JPS5046785A (en) * 1973-08-15 1975-04-25
JPS5688460A (en) * 1979-11-26 1981-07-17 Mitsubishi Rayon Co Ltd Matte thermoplastic resin composition
JPS5714650A (en) * 1980-07-01 1982-01-25 Mitsubishi Rayon Co Ltd Matted thermoplastic resin composition
JPS5829856A (en) * 1981-08-13 1983-02-22 Mitsubishi Rayon Co Ltd Matte thermoplastic resin composition
JPS5978253A (en) * 1982-10-28 1984-05-07 Mitsubishi Rayon Co Ltd Matte thermoplastic resin composition

Also Published As

Publication number Publication date
JPS6094413A (en) 1985-05-27

Similar Documents

Publication Publication Date Title
JP2992236B2 (en) Core / shell impact additives for thermoplastic polymers
US7173082B2 (en) Acrylic impact modifier prepared by multi-stage polymerization and method for preparing the same
US5612413A (en) Impact-modified poly(vinyl chloride)
JP2005515280A6 (en) Acrylic strength modifier produced by multistage polymerization and method for producing the same
US5422399A (en) Rigid article having a stucco appearance made from a blend of PVC and crosslinked PVC
US6031047A (en) Impact-modified poly(vinyl chloride) exhibiting improved low-temperature fusion
JP4938170B2 (en) Process for producing modified thermoplastic polyvinyl chloride molding compound, thermoplastic polyvinyl chloride molding compound and use thereof
JP2002504179A (en) Plastic composition with mineral-like appearance
KR101127342B1 (en) Matted thermoplastic resin composition and preparation method thereof
EP1658317B1 (en) Acrylic copolymer composition, method for preparing acrylic copolymer, and vinyl chloride resin composition containing the acrylic copolymer
US8664338B2 (en) Processability improver for foam molding and vinyl chloride resin composition containing same
JPH0312110B2 (en)
JPH0572419B2 (en)
EP0850740B1 (en) Impact-modified poly(vinyl chloride) exhibiting improved low-temperature fusion
EP1698663B1 (en) (meth)acrylic resin composition
JPS61133257A (en) Vinyl chloride resin composition
JPS63120716A (en) Production of impact-resistant resin
JPH09272777A (en) Thermoplastic resin composition and laminate using the same
US7199171B2 (en) (Meth)acrylic resin composition
JP2005307073A (en) Graft copolymer, method for producing the same, and thermoplastic resin composition
JPH0362186B2 (en)
JPS6245886B2 (en)
JP2011153291A (en) Multilayered polymer particle
JPS6156243B2 (en)
JPS6189244A (en) Vinyl chloride resin composition