JPH0572160A - Measuring method for concentration of hydrogen peroxide and device thereof - Google Patents

Measuring method for concentration of hydrogen peroxide and device thereof

Info

Publication number
JPH0572160A
JPH0572160A JP23295991A JP23295991A JPH0572160A JP H0572160 A JPH0572160 A JP H0572160A JP 23295991 A JP23295991 A JP 23295991A JP 23295991 A JP23295991 A JP 23295991A JP H0572160 A JPH0572160 A JP H0572160A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
resistance component
electrode
peroxide concentration
sample solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23295991A
Other languages
Japanese (ja)
Inventor
Kenji Yokose
賢次 横瀬
Yamato Asakura
大和 朝倉
Makoto Nagase
誠 長瀬
Masayoshi Kondo
政義 近藤
Toshio Sawa
俊雄 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23295991A priority Critical patent/JPH0572160A/en
Publication of JPH0572160A publication Critical patent/JPH0572160A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To estimate concentration of hydrogen peroxide from resistance component by measuring the resistance component of an electric double layer on the surface of an electrode. CONSTITUTION:An electrode 2 is soaked in sample solution, and decided voltage is applied on the electrode 2 by the use of a voltage applying device 3. Decomposition reaction of hydrogen peroxide is promoted by applying voltage, and the resistance component of the electric double layer of the electrode is lowered according to the concentration of hydrogen peroxide. This is discriminated as the solution resistance component by the use of a resistance component discriminating device 4, and the concentration of the hydrogen peroxide is calculated by a hydrogen peroxide concentration estimating device 5, based on the discriminated resistance component of the electric double layer of the electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子力プラント等の水質
診断に係り、特に、過酸化水素濃度を簡便なセンサで、
かつオンラインで測定する方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to water quality diagnosis in nuclear power plants and the like.
And on-line measuring method and device.

【0002】[0002]

【従来の技術】従来、過酸化水素濃度の測定方法につい
ては、特開昭59−163551号に記載のように、水の190
〜300nmの範囲の光の吸光度を測定し、そのピーク
強度から過酸化水素濃度を、直接、測定していた。
2. Description of the Related Art Conventionally, as for the method of measuring the concentration of hydrogen peroxide, as described in JP-A-59-163551, water concentration of 190
The absorbance of light in the range of up to 300 nm was measured, and the hydrogen peroxide concentration was directly measured from the peak intensity.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、過
酸化水素濃度を光により計測するため光源から試料に照
射する光強度の低下を防ぐために、光源を測定対象物に
近接させて設置する必要があり、また、光検出器も透過
光強度の低下を防ぐために測定対象物に近接させる必要
があった。また、光ファイバで光を転送する方法も考え
ることができるが、原子炉のような高放射線場では光フ
ァイバの耐放射線性が低いため、耐久性が問題であっ
た。
In the above-mentioned prior art, since the hydrogen peroxide concentration is measured by light, it is necessary to install the light source close to the object to be measured in order to prevent a decrease in the intensity of light emitted from the light source to the sample. In addition, the photodetector also needs to be placed close to the measurement target in order to prevent the transmitted light intensity from decreasing. Although a method of transferring light by an optical fiber can be considered, durability is a problem because the optical fiber has low radiation resistance in a high radiation field such as a nuclear reactor.

【0004】本発明の目的は、簡便なセンサで過酸化水
素濃度を電気的に計測できる過酸化水素濃度計測装置を
提供することにある。
An object of the present invention is to provide a hydrogen peroxide concentration measuring device capable of electrically measuring the hydrogen peroxide concentration with a simple sensor.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は電極表面における電気二重層の抵抗成分を
測定し、この抵抗成分から過酸化水素濃度を評価する構
成とした。
In order to achieve the above object, the present invention is configured to measure the resistance component of the electric double layer on the electrode surface and evaluate the hydrogen peroxide concentration from this resistance component.

【0006】[0006]

【作用】以下、本発明の過酸化水素濃度の測定原理を図
1を用いて説明する。
The principle of measuring the hydrogen peroxide concentration according to the present invention will be described below with reference to FIG.

【0007】三枚の白金平行平板電極A,B,Cを不等
間隔に配置し、電極A−B間、電極B−C間の交流イン
ピーダンスを測定する。一方、二枚の電極間の電気化学
的等価回路は図1のように考えることができるので、そ
の交流インピーダンスZは下式となる。
Three platinum parallel plate electrodes A, B and C are arranged at unequal intervals, and the AC impedances between the electrodes A and B and between the electrodes B and C are measured. On the other hand, since an electrochemical equivalent circuit between two electrodes can be considered as shown in FIG. 1, its AC impedance Z is given by the following equation.

【0008】[0008]

【数1】 [Equation 1]

【0009】ここで、Rsは溶液の抵抗成分であり、R
fは電極の電気二重層の抵抗成分、Cは電極容量、ωは
角周波数、jは虚数単位である。(数1)中のωを十分
小さくすることにより、虚数成分をキャンセルできるの
で交流インピーダンスZは
Where Rs is the resistance component of the solution, and Rs
f is the resistance component of the electric double layer of the electrode, C is the electrode capacitance, ω is the angular frequency, and j is the imaginary unit. Since the imaginary component can be canceled by making ω in (Equation 1) sufficiently small, the AC impedance Z is

【0010】[0010]

【数2】 [Equation 2]

【0011】となる。三枚の電極の材質や表面状態及び
水質等を同一にすることで、電極の電気二重層の抵抗成
分Rfは一定とできる。一方、溶液抵抗Rsは溶液が均
質の場合、電極間隔に比例する量である。従って、不等
間隔に配置した電極A−B間、及び電極B−C間の交流
インピーダンスのω=0における値を各々ZA-B、ZB-C
とすれば、
[0011] The resistance component Rf of the electric double layer of the electrodes can be made constant by making the materials, surface conditions, water quality, etc. of the three electrodes the same. On the other hand, the solution resistance Rs is an amount proportional to the electrode interval when the solution is homogeneous. Therefore, the values of the AC impedances between the electrodes A and B and the electrodes B and C arranged at unequal intervals at ω = 0 are Z AB and Z BC , respectively .
given that,

【0012】[0012]

【数3】 [Equation 3]

【0013】[0013]

【数4】 [Equation 4]

【0014】となる。(数3)から(数4)を差し引く
ことにより電極の電気二重層の抵抗成分Rfの影響をキ
ャンセルでき、溶液の抵抗成分Rsのみを算出できる。
このとき、例えば
[0014] By subtracting (Equation 4) from (Equation 3), the effect of the resistance component Rf of the electric double layer of the electrode can be canceled, and only the resistance component Rs of the solution can be calculated.
At this time, for example

【0015】[0015]

【数5】 [Equation 5]

【0016】となるように電極の間隔を設定すれば、算
出した溶液の抵抗成分Rsと(数3)または(数4)か
ら電極の電気二重層の抵抗成分Rfを算出できる。
If the distance between the electrodes is set so that the resistance component Rs of the electric double layer of the electrode can be calculated from the calculated resistance component Rs of the solution and (Formula 3) or (Formula 4).

【0017】図2に過酸化水素濃度と電極の電気二重層
の抵抗成分Rfの関係を示した。電極の電気二重層の抵
抗成分Rfは過酸化水素濃度に反比例して減少する。こ
のことは、電極表面で過酸化水素の分解反応が進行し、
反応に伴って流れる電流(反応電流)が過酸化水素濃度
に依存するためである。反応電流と過酸化水素濃度の関
係を示したのが図3である。図3から過酸化水素濃度が
1ppm程度までは反応電流が直線的に増加することが
わかる。従って、反応電流を測定すること、即ち、電極
の電気二重層の抵抗成分を測定することにより過酸化水
素濃度を定量することができる。
FIG. 2 shows the relationship between the hydrogen peroxide concentration and the resistance component Rf of the electric double layer of the electrode. The resistance component Rf of the electric double layer of the electrode decreases in inverse proportion to the hydrogen peroxide concentration. This means that the decomposition reaction of hydrogen peroxide proceeds on the electrode surface,
This is because the current (reaction current) flowing with the reaction depends on the hydrogen peroxide concentration. FIG. 3 shows the relationship between the reaction current and the hydrogen peroxide concentration. It can be seen from FIG. 3 that the reaction current increases linearly until the hydrogen peroxide concentration reaches about 1 ppm. Therefore, the hydrogen peroxide concentration can be quantified by measuring the reaction current, that is, by measuring the resistance component of the electric double layer of the electrode.

【0018】[0018]

【実施例】以下、本発明の実施例を図4及び図6を用い
て説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0019】まず、図4に本発明の一実施例を示した。
試料溶液1に電極2を浸し、電極2に電圧印加装置3を
用いて一定の電圧を印加する。電圧を印加することによ
り過酸化水素の分解反応が進行し、電極の電気二重層の
抵抗成分が過酸化水素濃度に応じて低下する。これを、
抵抗成分弁別装置4を用いて溶液抵抗成分と弁別し、弁
別した電極の電気二重層の抵抗成分に基づいて、過酸化
水素濃度評価装置5で過酸化水素濃度を算出する。本実
施例では、過酸化水素濃度を電気的に測定するため、基
本構成要素が電極2のみのセンサを試料部に挿入するこ
とにより過酸化水素濃度を測定することができる。従っ
て、原子炉内など高放射線場なため計測機器を持ち込め
ない区域の過酸化水素濃度も測定できる。また、本実施
例ではオンラインで過酸化水素濃度を測定することも可
能である。
First, FIG. 4 shows an embodiment of the present invention.
The electrode 2 is immersed in the sample solution 1, and a constant voltage is applied to the electrode 2 using the voltage applying device 3. By applying a voltage, the decomposition reaction of hydrogen peroxide proceeds, and the resistance component of the electric double layer of the electrode decreases according to the hydrogen peroxide concentration. this,
The resistance component discriminating device 4 is used to discriminate from the solution resistance component, and the hydrogen peroxide concentration evaluation device 5 calculates the hydrogen peroxide concentration based on the discriminated resistance component of the electric double layer of the electrode. In this embodiment, since the hydrogen peroxide concentration is electrically measured, the hydrogen peroxide concentration can be measured by inserting a sensor whose basic constituent element is only the electrode 2 into the sample portion. Therefore, it is possible to measure the hydrogen peroxide concentration in an area where measurement equipment cannot be brought in because of a high radiation field such as in a nuclear reactor. Further, in this embodiment, it is also possible to measure the hydrogen peroxide concentration online.

【0020】次に、別の実施例を図5に示した。基本的
な構成は図4と同様であるが、電極2を三枚で構成し、
電極を不等間隔に配置する。また、印加する電圧を交流
とした交流電圧印加装置6を採用することにより、抵抗
成分弁別装置4でインピーダンスを測定し、低周波数側
のインピーダンスから電極の電気二重層の抵抗成分を弁
別する。本実施例では、過酸化水素濃度を電気的に測定
するため、基本構成要素が電極2のみのセンサを試料部
に挿入することにより過酸化水素濃度を測定できる。従
って、原子炉内など高放射線場なため計測機器を持ち込
めない区域の過酸化水素濃度も測定できる。また、本実
施例ではオンラインで過酸化水素濃度を測定することも
可能である。本実施例では電極2を三枚で構成したが、
電極2は四枚以上であってもよい。
Next, another embodiment is shown in FIG. The basic structure is the same as in FIG. 4, but the electrode 2 is composed of three pieces,
The electrodes are arranged at unequal intervals. Further, by adopting the AC voltage applying device 6 in which the applied voltage is AC, the impedance is measured by the resistance component discriminating device 4, and the resistance component of the electric double layer of the electrode is discriminated from the impedance on the low frequency side. In this embodiment, since the hydrogen peroxide concentration is electrically measured, the hydrogen peroxide concentration can be measured by inserting a sensor whose basic constituent element is only the electrode 2 into the sample portion. Therefore, it is possible to measure the hydrogen peroxide concentration in an area where measurement equipment cannot be brought in because of a high radiation field such as in a nuclear reactor. Further, in this embodiment, it is also possible to measure the hydrogen peroxide concentration online. In this embodiment, the electrode 2 is composed of three pieces,
The number of electrodes 2 may be four or more.

【0021】次に、別の実施例を図6に示した。基本的
な構成は図5と同様であるが、抵抗成分弁別装置4でイ
ンピーダンスを測定することにより、低周波数側のイン
ピーダンスから電極の電気二重層の抵抗成分と共に、試
料溶液の抵抗成分も測定できる。そこで、過酸化水素濃
度評価装置5と共に、導電率評価装置7を設けることに
より過酸化水素濃度と同時に導電率も測定できるように
した。本実施例では、過酸化水素濃度を電気的に測定す
るため、基本構成要素が電極2のみのセンサを試料部に
挿入することにより過酸化水素濃度を測定できる。従っ
て、原子炉内など高放射線場なため計測機器を持ち込め
ない区域の過酸化水素濃度も測定できる。また本実施例
ではオンラインで過酸化水素濃度を測定することも可能
である。さらに、過酸化水素濃度と同時に導電率も測定
できるので、単純な装置構成で水質の情報をより多く入
手でき、水質診断やプラント機器の予防保全など広い分
野に応用できる。本実施例では電極2を三枚で構成した
が、電極2は四枚以上であってもよい。
Next, another embodiment is shown in FIG. Although the basic configuration is the same as that of FIG. 5, by measuring the impedance with the resistance component discriminating device 4, the resistance component of the electric double layer of the electrode as well as the resistance component of the sample solution can be measured from the impedance on the low frequency side. . Therefore, the conductivity evaluation device 7 is provided together with the hydrogen peroxide concentration evaluation device 5 so that the conductivity can be measured simultaneously with the hydrogen peroxide concentration. In this embodiment, since the hydrogen peroxide concentration is electrically measured, the hydrogen peroxide concentration can be measured by inserting a sensor whose basic constituent element is only the electrode 2 into the sample portion. Therefore, it is possible to measure the hydrogen peroxide concentration in an area where measurement equipment cannot be brought in because of a high radiation field such as in a nuclear reactor. Further, in the present embodiment, it is possible to measure the hydrogen peroxide concentration online. Furthermore, since the conductivity can be measured at the same time as the hydrogen peroxide concentration, more information on water quality can be obtained with a simple device configuration, and it can be applied to a wide range of fields such as water quality diagnosis and preventive maintenance of plant equipment. In this embodiment, the number of electrodes 2 is three, but the number of electrodes 2 may be four or more.

【0022】[0022]

【発明の効果】本発明によれば、簡便な装置構成で過酸
化水素濃度をオンラインで計測できるので、過酸化水素
濃度測定装置の汎用性を大幅に向上することができる。
According to the present invention, since the hydrogen peroxide concentration can be measured online with a simple device configuration, the versatility of the hydrogen peroxide concentration measuring device can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】過酸化水素濃度の測定原理説明図。FIG. 1 is an explanatory diagram of a measurement principle of hydrogen peroxide concentration.

【図2】電極の電気二重層の抵抗成分と過酸化水素濃度
の関係を示す特性図。
FIG. 2 is a characteristic diagram showing the relationship between the resistance component of the electric double layer of the electrode and the hydrogen peroxide concentration.

【図3】反応電流と過酸化水素濃度の関係を示す特性
図。
FIG. 3 is a characteristic diagram showing the relationship between reaction current and hydrogen peroxide concentration.

【図4】過酸化水素濃度測定の基本構成を示した実施例
のブロック図。
FIG. 4 is a block diagram of an embodiment showing a basic configuration for measuring hydrogen peroxide concentration.

【図5】過酸化水素濃度測定に交流インピーダンスを適
用した実施例のブロック図。
FIG. 5 is a block diagram of an embodiment in which AC impedance is applied to measure hydrogen peroxide concentration.

【図6】過酸化水素濃度を導電率を同時計測する構成と
した実施例のブロック図。
FIG. 6 is a block diagram of an embodiment in which the hydrogen peroxide concentration and the conductivity are simultaneously measured.

【符号の説明】[Explanation of symbols]

1…試料溶液、2…電極、3…電圧印加装置、4…抵抗
成分弁別装置、5…過酸化水素濃度評価装置、6…交流
電圧印加装置、7…導電率評価装置。
DESCRIPTION OF SYMBOLS 1 ... Sample solution, 2 ... Electrode, 3 ... Voltage application apparatus, 4 ... Resistance component discrimination apparatus, 5 ... Hydrogen peroxide concentration evaluation apparatus, 6 ... AC voltage application apparatus, 7 ... Conductivity evaluation apparatus.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 政義 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 澤 俊雄 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masayoshi Kondo 1168 Moriyama-cho, Hitachi City, Ibaraki Prefecture Hiritsu Manufacturing Co., Ltd.Energy Research Institute (72) Inventor Toshio Sawa 1168 Moriyama-cho, Hitachi City, Ibaraki Hitachi Co., Ltd. Energy Research Institute

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】試料溶液に電極を浸し、前記電極に電圧を
印加して、前記試料溶液の抵抗成分と前記電極表面にお
ける電気二重層の抵抗成分を弁別して計測し、前記電気
二重層の抵抗成分が前記試料溶液中の過酸化水素濃度に
反比例する特性を利用して過酸化水素濃度を定量するこ
とを特徴とする過酸化水素濃度の測定方法。
1. A resistance of the electric double layer is measured by immersing an electrode in the sample solution and applying a voltage to the electrode to discriminate and measure the resistance component of the sample solution and the resistance component of the electric double layer on the surface of the electrode. A method for measuring hydrogen peroxide concentration, characterized in that the hydrogen peroxide concentration is quantified by utilizing the characteristic that the components are inversely proportional to the hydrogen peroxide concentration in the sample solution.
【請求項2】試料溶液に電極を浸し、前記電極に電圧を
印加して、前記試料溶液の抵抗成分と前記電極表面にお
ける電気二重層の抵抗成分を弁別して計測し、前記電気
二重層の抵抗成分が前記試料溶液中の過酸化水素濃度に
反比例する特性を利用して過酸化水素濃度を定量する方
法に於いて、前記電気二重層の抵抗成分の弁別法とし
て、三枚以上の電極を間隔を変えて配置し、交流インピ
ーダンスを測定することを特徴とする過酸化水素濃度の
測定方法。
2. The resistance of the electric double layer is measured by immersing an electrode in the sample solution and applying a voltage to the electrode to discriminate and measure the resistance component of the sample solution and the resistance component of the electric double layer on the electrode surface. In the method of quantifying the hydrogen peroxide concentration by utilizing the characteristic that the component is inversely proportional to the hydrogen peroxide concentration in the sample solution, as a method of discriminating the resistance component of the electric double layer, three or more electrodes are separated. A method for measuring the concentration of hydrogen peroxide, which comprises arranging the electrodes differently and measuring the AC impedance.
【請求項3】試料溶液に電極を浸し、前記電極に電圧を
印加して、前記試料溶液の抵抗成分と前記電極表面にお
ける電気二重層の抵抗成分を弁別して計測し、前記電気
二重層の抵抗成分が前記試料溶液中の過酸化水素濃度に
反比例する特性を利用して過酸化水素濃度を定量する方
法に於いて、前記電気二重層の抵抗成分の弁別法とし
て、三枚以上の電極を間隔を変えて配置して交流インピ
ーダンスを測定し、前記電気二重層の抵抗成分から過酸
化水素濃度を測定すると共に、前記試料溶液の抵抗成分
から前記試料溶液の導電率を測定することを特徴とする
過酸化水素濃度の測定方法。
3. The resistance of the electric double layer is measured by immersing the electrode in the sample solution and applying a voltage to the electrode to discriminate and measure the resistance component of the sample solution and the resistance component of the electric double layer on the electrode surface. In the method of quantifying the hydrogen peroxide concentration by utilizing the characteristic that the component is inversely proportional to the hydrogen peroxide concentration in the sample solution, as a method of discriminating the resistance component of the electric double layer, three or more electrodes are separated. Alternating current impedance by arranging differently, measuring the hydrogen peroxide concentration from the resistance component of the electric double layer, and measuring the conductivity of the sample solution from the resistance component of the sample solution. Method for measuring hydrogen peroxide concentration.
【請求項4】試料溶液に浸漬する電極、前記電極に電圧
を印加する電圧印加装置、前記試料溶液の抵抗成分と前
記電極の表面における電気二重層の抵抗成分を弁別計測
する抵抗成分弁別装置、前記抵抗成分弁別装置でもとめ
た電気二重層の抵抗成分から前記試料溶液中の過酸化水
素濃度を評価する過酸化水素濃度評価装置から成ること
を特徴とする過酸化水素濃度の測定装置。
4. An electrode immersed in a sample solution, a voltage applying device for applying a voltage to the electrode, a resistance component discriminating device for discriminating and measuring a resistance component of the sample solution and a resistance component of an electric double layer on the surface of the electrode, A hydrogen peroxide concentration measuring device comprising a hydrogen peroxide concentration evaluating device for evaluating the hydrogen peroxide concentration in the sample solution from the resistance component of the electric double layer determined by the resistance component discriminating device.
【請求項5】試料溶液に浸漬する不等間隔に配置した三
枚以上の電極、前記電極に交流電圧を印加する交流電圧
印加装置、前記試料溶液の抵抗成分と前記電極表面にお
ける電気二重層の抵抗成分を弁別計測する抵抗成分弁別
装置、前記抵抗成分弁別装置でもとめた前記電極表面に
おける電気二重層の抵抗成分から過酸化水素濃度を算出
する過酸化水素濃度評価装置からなることを特徴とする
過酸化水素濃度の測定装置。
5. A three or more electrode which is immersed in a sample solution and arranged at unequal intervals, an AC voltage applying device for applying an AC voltage to the electrode, a resistance component of the sample solution and an electric double layer on the surface of the electrode. A resistance component discriminating device for discriminating and measuring the resistance component, and a hydrogen peroxide concentration evaluation device for calculating the hydrogen peroxide concentration from the resistance component of the electric double layer on the electrode surface obtained by the resistance component discriminating device. Hydrogen peroxide concentration measuring device.
【請求項6】試料溶液に浸漬する不等間隔に配置した三
枚以上の電極、前記電極に交流電圧を印加する交流電圧
印加装置、前記試料溶液の抵抗成分と前記電極表面にお
ける電気二重層の抵抗成分を弁別計測する抵抗成分弁別
装置、前記抵抗成分弁別装置でもとめた前記電極表面に
おける電気二重層の抵抗成分から過酸化水素濃度を算出
する過酸化水素濃度評価装置、前記試料溶液の抵抗成分
から前記試料溶液の導電率を算出する導電率評価装置か
らなることを特徴とする過酸化水素濃度の測定装置。
6. Three or more electrodes which are immersed in a sample solution and arranged at unequal intervals, an AC voltage applying device which applies an AC voltage to the electrodes, a resistance component of the sample solution and an electric double layer on the electrode surface. Resistance component discriminating device for discriminating and measuring resistance component, hydrogen peroxide concentration evaluation device for calculating hydrogen peroxide concentration from resistance component of electric double layer on the electrode surface obtained by the resistance component discriminating device, resistance component of the sample solution An apparatus for measuring the concentration of hydrogen peroxide, which comprises an electric conductivity evaluation apparatus for calculating the electric conductivity of the sample solution from
【請求項7】請求項4,5ないし6に於いて、使用する
電極の材質が白金,金,パラジウムなどの白金族元素で
ある過酸化水素濃度の測定装置。
7. An apparatus for measuring hydrogen peroxide concentration according to claim 4, 5 or 6, wherein the material of the electrode used is a platinum group element such as platinum, gold or palladium.
JP23295991A 1991-09-12 1991-09-12 Measuring method for concentration of hydrogen peroxide and device thereof Pending JPH0572160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23295991A JPH0572160A (en) 1991-09-12 1991-09-12 Measuring method for concentration of hydrogen peroxide and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23295991A JPH0572160A (en) 1991-09-12 1991-09-12 Measuring method for concentration of hydrogen peroxide and device thereof

Publications (1)

Publication Number Publication Date
JPH0572160A true JPH0572160A (en) 1993-03-23

Family

ID=16947554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23295991A Pending JPH0572160A (en) 1991-09-12 1991-09-12 Measuring method for concentration of hydrogen peroxide and device thereof

Country Status (1)

Country Link
JP (1) JPH0572160A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008750A (en) * 2006-06-29 2008-01-17 Tohoku Univ Corrosive environment determination method of nuclear reactor cooling water, and device therefor
JP2010059502A (en) * 2008-09-04 2010-03-18 Takuo Kawahara Treatment method and device for copper etching waste solution
WO2011086677A1 (en) * 2010-01-14 2011-07-21 トヨタ自動車株式会社 Concentration detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008750A (en) * 2006-06-29 2008-01-17 Tohoku Univ Corrosive environment determination method of nuclear reactor cooling water, and device therefor
JP2010059502A (en) * 2008-09-04 2010-03-18 Takuo Kawahara Treatment method and device for copper etching waste solution
WO2011086677A1 (en) * 2010-01-14 2011-07-21 トヨタ自動車株式会社 Concentration detection device
CN102713590A (en) * 2010-01-14 2012-10-03 丰田自动车株式会社 Concentration detection device
JP5299522B2 (en) * 2010-01-14 2013-09-25 トヨタ自動車株式会社 Concentration detector

Similar Documents

Publication Publication Date Title
CN100385231C (en) Electrochemical noise technique for corrosion
DE3780633D1 (en) CORROSION MONITORING.
GB2200459A (en) Corrosion detecting probe for steel buried in concrete
NO894085D0 (en) INSTRUMENT FOR MEASUREMENT OF PHYSICAL TESTS, EX. THE CONDUCTIVITY OF AN URADRAPE.
EP0068101B1 (en) Electrochemical analytical apparatus
DE69731539D1 (en) CONDUCTIVITY MEASUREMENT WITH A SINGLE ELECTRODE
ATE93320T1 (en) METHOD OF DETECTING AND/OR IDENTIFYING A BIOLOGICAL SUBSTANCE BY ELECTRICAL MEASUREMENTS AND DEVICE FOR PERFORMING SUCH PROCEDURE.
DE4439584A1 (en) Transient method for determining solution resistance for simple and accurate measurement of corrosion rate
DE69623006T2 (en) SENSOR
EP0645623B1 (en) Method of monitoring acid concentration in plating baths
US6740225B2 (en) Method for determining the amount of chlorine and bromine in water
CN109612921B (en) Corrosion monitoring sensor and preparation method thereof
JP2001215203A (en) Instrument for measuring electric conductivity, method of measuring electric conductivity of soil, and instrument for measuring electric conductivity of soil solution
US5725754A (en) Method of measuring the concentration of ions in solution
JPH0572160A (en) Measuring method for concentration of hydrogen peroxide and device thereof
Silva et al. Mercury-electroplated-iridium microelectrode array based sensors for the detection of heavy metal ultratraces: optimization of the mercury charge
JP3678406B2 (en) In-situ measurement method for corrosion rate of steel structures.
DE19856885C2 (en) Measuring probe and method for measuring the concentration of agents in gases and / or liquids
JPH07146276A (en) Monitoring method of metal ion content in plating bath
Rafiquddin et al. Mercury (II) stripping electroanalysis with hot microelectrodes
US3631338A (en) Method and apparatus for determining galvanic corrosion by polarization techniques
TW364120B (en) Method and device for checking the characteristics of a surface layer of a zirconium-alloy element and use for the checking of fuel rods for a nuclear reactor
Nelson et al. Electrochemical deposition of lead for water quality sensing
Diard et al. Automatic measurement of the conductivity of an electrolyte solution by FFT electrochemical impedance spectroscopy
Seitz et al. Process-monitoring via impedance spectroscopy