JPH0572122B2 - - Google Patents

Info

Publication number
JPH0572122B2
JPH0572122B2 JP58075449A JP7544983A JPH0572122B2 JP H0572122 B2 JPH0572122 B2 JP H0572122B2 JP 58075449 A JP58075449 A JP 58075449A JP 7544983 A JP7544983 A JP 7544983A JP H0572122 B2 JPH0572122 B2 JP H0572122B2
Authority
JP
Japan
Prior art keywords
antenna
glass fiber
fibers
cloth
reflective material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58075449A
Other languages
Japanese (ja)
Other versions
JPS59201504A (en
Inventor
Susumu Oono
Mitsuru Kawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kasei Kogyo Co Ltd
Original Assignee
Toyo Kasei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kasei Kogyo Co Ltd filed Critical Toyo Kasei Kogyo Co Ltd
Priority to JP58075449A priority Critical patent/JPS59201504A/en
Publication of JPS59201504A publication Critical patent/JPS59201504A/en
Publication of JPH0572122B2 publication Critical patent/JPH0572122B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/141Apparatus or processes specially adapted for manufacturing reflecting surfaces
    • H01Q15/142Apparatus or processes specially adapted for manufacturing reflecting surfaces using insulating material for supporting the reflecting surface

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、強化プラスチツク製パラボラアン
テナの製造法に関するものである。 アルミニウムや鉄などの金属板にプレス加工や
板金加工を施して製造された従来のパラボラアン
テナは、耐食性や軽量性に問題があるため、最近
は上記の金属板製に代えて金網や炭素繊維マツト
を使用し、これを強化プラスチツクで補強したパ
ラボラアンテナが開発されるようになつた。例え
ば、特開昭56−149802号公報には、金網や炭素繊
維マツトのような導電性反射材を強化プラスチツ
クに重ねて一定形状に成型したものが開示されて
いる。また、実開昭55−3574号公報には、アンテ
ナリフレクタとして、その凹面側からサーフエー
シングクロス、導電性クロス、複数枚のガラスク
ロスおよびサーフエーシングクロスを順に積層
し、これらの各層を樹脂により熱圧着して一体化
したものが開示されている。 しかしながら、前者の場合は、成型に際して上
記の反射材に金型の接触圧または押圧が加わつて
反射材が位置ずれをしたり、その一部が破断した
りして、アンテナの機能を低下させていた。一
方、後者の場合は、凹面側にサーフエーシングク
ロスが存在することにより、成型時にこのサーフ
エーシングクロスが緩衝材として働き、反射材の
位置ずれが減少する反面、ガラス繊維等をたて糸
およびよこ糸に配列して織られたサーフエーシン
グクロスを使用するものであつて、このサーフエ
ーシングクロスは、その伸縮特性が糸方向と傾斜
方向とで異なり、すなわち伸縮特性に方向性が存
在するので、製品のパラボラアンテナに歪みが生
じ、例えば平面上にパラボラアンテナを伏せた場
合に周囲の一部に大きい隙間が形成され、これが
アンテナ性能を低下させるという問題があつた。
また、上記のサーフエーシングクロスは、多数本
の繊維を集束して繊維そのものよりも太く、硬い
糸とし、これをたて糸およびよこ糸に使用するの
で、その目付量が大きくなり、また繊維間に樹脂
が含浸しにくく、成型後の製品表面が平滑性に乏
しく、塗装が困難になり、また成型の際に金型の
シヤーエツジが損傷を受ける等の問題があつた。 この発明は、パラボラアンテナの製造時に上記
反射材の位置ずれがなく、かつ作業性が良好で、
製品のパラボラアンテナに歪みが発生しないパラ
ボラアンテナの製造法を提供するものである。 すなわち、この発明は、導電性反射材の少なく
とも凹面側に、ガラス繊維もしくは有機繊維が無
方向に均一な厚みに重ねられ、繊維相互が接点で
接着されてなる目付量10〜100g/m2のマツト状
緩衝材を配設して成型することを特徴とする強化
プラスチツク製パラボラアンテナの製造法であ
る。 強化プラスチツク製パラボラアンテナを成型す
るには種々の方法が知られているが、雄型および
雌型の一対の金型を使用する製造法の例を図面に
よつて説明する。1は凸面を有する雄型、2は凹
面を有する雌型であり、雄型1はパラボラアンテ
ナの凹面を、また雌型2はパラボラアンテナの凸
面をそれぞれ形成する。雄型1の凸面および雌型
2の凹面に離型剤処理を施した後、凹面ゲルコー
ト層1aおよび凸面ゲルコート層2aを形成す
る。該凹面ゲルコート層1a上に凹面緩衝材3
a、導電性反射材4および凸面緩衝材3bを重ね
た上、樹脂液を含浸させる。次いで、樹脂液を含
浸させたシートモールデイングコンパウンドまた
はガラス繊維マツトを所望の厚さに積層して成型
材料5を形成し、その上に雌型2を組み合わせた
のち加熱して硬化させ、成型する。 金型として雄型1のみを使用するハンドレイア
ツプ法およびスプレイアツプ法では、反射材4の
凸面側の凸面緩衝材3bを省略してもよい。 この発明で使用される緩衝材は、ガラス繊維ま
たは有機繊維からなるマツト、すなわちガラス繊
維もしくは有機繊維の好ましくは繊維長50〜400
mmの短繊維を無方向に均一な厚みに重ね、繊維相
互の接点を接着してシートの形態を保持させた一
種の不織布状のものであつて、その目付量は10〜
100g/m2である。この目付量が10g/m2未満の
場合は緩衝材としての効果が得られず、反対に
100g/m2を超えると、緩衝効果の向上ないにも
かかわらず、含浸用の樹脂が大量に必要になり、
重く、かつ不経済になる。 この発明では、従来の成型法が使用される。不
飽和ポリエステル樹脂、エポキシ樹脂、メチルメ
タクリレート樹脂のような熱硬化性樹脂を使用す
る場合は、ハンドレイアツプ法、スプレイアツプ
法、プリプレグ法などが適当であり、特に不飽和
ポリエステル樹脂とガラス短繊維マツトから作ら
れた比較的安価なシートモールデイングコンパウ
ンド(SMC)を上記の成型材料5として用い、
金型内で圧縮成型させるSMC法は最適である。
また、ポリアミド、ポリエチレンテレフタレー
ト、ポリプロピレンなどの熱可塑性樹脂を使用す
る場合は、射出成型法が適当である。 上記の導電性反射材としては、アルミニウム、
鉄などからなる金網、炭素繊維マツトのような平
面状のもの、または金属を被覆したガラス繊維チ
ヨツプ、カーボンブラツクなどの導電性フイラー
が使用される。 以下は、この発明の実施例を説明する。 実施例 1 金型(雄型)の凸面に離型剤処理をした後、そ
の上に不飽和ポリエステル樹脂のゲルコート層を
形成し、このゲルコート層上にガラス繊維マツト
(目付量30g/m2)を緩衝材として重ね、更にそ
の上にアルミニウム金網(線径0.2mm、16メツシ
ユ)を反射材として重ね、上面から不飽和ポリエ
ステル樹脂液を含浸させる。次いで、ガラス繊維
からなるチヨツプドストランドマツトおよびロー
ビングクロスを順に重ね合わせると共に、触媒を
含有した不飽和ポリエステル樹脂液を刷毛とロー
ラとで所望の厚み(4.5〜5.0mm)になるまで塗り
込んで、いわゆるハンドレイアツプ法によつて硬
化成型した。しかるのち、脱型、トリミングをし
て直径1.8mのパラボラアンテナを得た。 上記実施例1のアンテナをマウントに取り付け
て、ホーン、導波管およびコンバータを接続し、
200m離れた地点の送信アンテナ(金属製基準パ
ラボラアンテナ)から周波数4GHZの電波をビー
ム状に放射して電波利得を測定したところ、
35.0dBの結果を得た。これに対して、上記の緩
衝材を省略する以外は、実施例1と全く同様にし
作られた比較例1のアンテナは、電波利得が
33.5dBであつた。すなわち、実施例1は緩衝材
を設けることにより、電波利得が1.5dB向上し
た。また、上記実施例1において、緩衝材として
のガラス繊維マツトの目付量を230g/m2に増大
する以外は、実施例1と同様にして比較例2のパ
ラボラアンテナを製作したところ、その電波利得
は、実施例1よりも0.5dB低い34.5dBであつた。
そして、このアンテナを切断して断面を観察した
ところ、反射材(アルミニウム金網)の凹面側に
0.9mmの樹脂およびガラス繊維層が形成されてい
た。 実施例 2 雌雄一対の金型内に緩衝材として実施例1のガ
ラス繊維マツト(目付量30g/m2)および導電性
反射材として炭素繊維マツト(目付量30g/m2
を重ね、金型内にポリプロピレンを射出圧入し
(厚み3〜3.5mm)、冷却して直径1mのパラボラ
アンテナを得た。 この実施例2のアンテナの電波利得を、送信用
に実施例1の基準アンテナを使用して測定したと
ころ、距離2000m、周波数12GHZにおいて
39.8dBであつた。これに対して、上記の緩衝材
を省略した比較例3の電波利得は、38.0dBであ
つた。すなわち、実施例2の緩衝材を設けること
により、電波利得が1.8dB向上した。なお、上記
実施例2のアンテナを平面上に伏せたとき、周囲
に生じる最大隙間は、0.3mmであつた。これに対
し、実施例2の緩衝材をガラス繊維クロス(目付
量30g/m2)に置換した比較例4の最大隙間は、
0.6mmであり、その電波利得は実施例2よりも
0.6dB低い39.2dBであつた。また、上記実施例2
において、ガラス繊維マツトの目付量を5g/m2
に減少する以外は、実施例2と同様にして比較例
5のパラボラアンテナを製作したところ、その電
波利得は、ガラス繊維マツトを省略した比較例3
と同じ38.0dBであつた。 すなわち、実施例1は比較例1,2に比べて、
また実施例2は比較例3,4,5に比べてそれぞ
れ電波利得が、0.5dB以上向上した。 実施例 3 上記実施例2のパラボラアンテナにおいて、ガ
ラス繊維マツトの目付量を50g/m2に、また直径
を75cmにそれぞれ設定する以外は実施例2と同様
にして実施例3のパラボラアンテナを製作した。
また、この実施例3におけるガラス繊維マツトの
目付量を9g/m2に変更する以外は同様にして比
較例6のアンテナを、またガラス繊維マツトの目
付量を9g/m2に変更する以外は同様にして比較
例7のアンテナを、また上記ガラス繊維マツトの
代わりにガラス繊維クロス(目付量50g/m2)を
使用する以外は同様にして比較例8のアンテナ
を、また上記のガラス繊維マツトを省略する以外
は同様にして比較例9のアンテナをそれぞれ製作
した。 上記の実施例3アンテナをグラウンド上に設置
し、これら100m離れた位置に直径40cmの送信ア
ンテナを設置し、周波数12GHZの電波をビーム
状に放射して電波利得を測定した。比較例6〜9
のアンテナについても同様に電波利得を測定し
た。その結果を下記の表1に示す。
This invention relates to a method of manufacturing a reinforced plastic parabolic antenna. Conventional parabolic antennas manufactured by press working or sheet metal processing on metal plates such as aluminum or iron have problems with corrosion resistance and light weight, so recently, instead of the metal plates mentioned above, wire mesh or carbon fiber pine are being used. Parabolic antennas using reinforced plastic and reinforced with reinforced plastic began to be developed. For example, JP-A-56-149802 discloses a structure in which a conductive reflective material such as wire mesh or carbon fiber mat is layered on reinforced plastic and molded into a certain shape. In addition, Japanese Utility Model Application Publication No. 55-3574 discloses that, as an antenna reflector, surfacing cloth, conductive cloth, multiple sheets of glass cloth, and surfacing cloth are laminated in order from the concave side, and each of these layers is made of resin. discloses an integrated unit that is bonded by thermocompression. However, in the former case, contact pressure or pressure from the mold is applied to the reflective material during molding, causing the reflective material to shift or partially break, reducing the functionality of the antenna. Ta. On the other hand, in the latter case, the presence of the surfacing cloth on the concave side acts as a buffer material during molding, reducing the positional shift of the reflective material. This surfacing cloth uses a surfacing cloth that is woven in an array, and the elasticity of this surfacing cloth is different in the thread direction and the inclination direction, that is, the elasticity has a directionality. There is a problem in that distortion occurs in the parabolic antenna of the product, and for example, when the parabolic antenna is placed face down on a flat surface, a large gap is formed in a part of the periphery, which deteriorates the antenna performance.
In addition, the surfacing cloth mentioned above bundles a large number of fibers into a thread that is thicker and harder than the fibers themselves, and uses this for the warp and weft, so the basis weight is large, and there is also resin between the fibers. There were problems such as difficulty in impregnating the product, resulting in poor smoothness of the product surface after molding, making painting difficult, and damaging the shear edge of the mold during molding. This invention eliminates the positional shift of the reflective material during manufacturing of the parabolic antenna, and has good workability.
The present invention provides a method for manufacturing a parabolic antenna that does not cause distortion in the parabolic antenna product. That is, the present invention provides a conductive reflective material having a basis weight of 10 to 100 g/m2, which is formed by stacking glass fibers or organic fibers to a uniform thickness in any direction on at least the concave side of a conductive reflective material, and bonding the fibers to each other at contact points. This is a method for manufacturing a reinforced plastic parabolic antenna characterized by disposing and molding a mat-like cushioning material. Although various methods are known for molding a reinforced plastic parabolic antenna, an example of a manufacturing method using a pair of male and female molds will be explained with reference to the drawings. 1 is a male mold having a convex surface, and 2 is a female mold having a concave surface. The male mold 1 forms the concave surface of the parabolic antenna, and the female mold 2 forms the convex surface of the parabolic antenna. After the convex surface of the male mold 1 and the concave surface of the female mold 2 are treated with a release agent, a concave gel coat layer 1a and a convex gel coat layer 2a are formed. A concave cushioning material 3 is provided on the concave gel coat layer 1a.
a. The conductive reflective material 4 and the convex cushioning material 3b are stacked and impregnated with a resin liquid. Next, a sheet molding compound or glass fiber mat impregnated with a resin liquid is laminated to a desired thickness to form a molding material 5, and a female mold 2 is assembled thereon, and then heated to harden and molded. . In the hand lay-up method and the spray-up method in which only the male die 1 is used as a mold, the convex cushioning material 3b on the convex side of the reflective material 4 may be omitted. The cushioning material used in this invention is a mat made of glass fiber or organic fiber, that is, the fiber length of the glass fiber or organic fiber is preferably 50 to 400.
It is a type of non-woven fabric made by stacking mm short fibers to a uniform thickness in any direction and bonding the contact points between the fibers to maintain the sheet form, and its basis weight is 10~
It is 100g/ m2 . If the area weight is less than 10g/ m2 , it will not be effective as a cushioning material;
If it exceeds 100g/ m2 , a large amount of resin for impregnation will be required, although the buffering effect will not improve.
It becomes heavy and uneconomical. In this invention, conventional molding methods are used. When using thermosetting resins such as unsaturated polyester resins, epoxy resins, and methyl methacrylate resins, hand lay-up methods, spray-up methods, prepreg methods, etc. are suitable, especially for unsaturated polyester resins and short glass fibers. Using a relatively inexpensive sheet molding compound (SMC) made from pine as the molding material 5,
The SMC method, which involves compression molding within a mold, is optimal.
Furthermore, when using thermoplastic resins such as polyamide, polyethylene terephthalate, and polypropylene, injection molding is suitable. The above conductive reflective material includes aluminum,
A wire mesh made of iron or the like, a flat material such as carbon fiber mat, or a conductive filler such as metal-coated glass fiber chop or carbon black is used. The following describes embodiments of the invention. Example 1 After treating the convex surface of the mold (male mold) with a release agent, a gel coat layer of unsaturated polyester resin was formed thereon, and glass fiber mat (fabric weight 30 g/m 2 ) was formed on this gel coat layer. was layered as a cushioning material, and then an aluminum wire mesh (wire diameter 0.2 mm, 16 meshes) was layered on top of that as a reflective material, and the unsaturated polyester resin liquid was impregnated from the top. Next, chopped strand mats made of glass fiber and roving cloth are stacked one on top of the other, and unsaturated polyester resin liquid containing a catalyst is applied with a brush and roller until the desired thickness (4.5 to 5.0 mm) is reached. Then, it was hardened and molded using the so-called hand lay-up method. After that, the mold was removed and trimmed to create a parabolic antenna with a diameter of 1.8 m. Attach the antenna of Example 1 above to a mount, connect the horn, waveguide and converter,
When we measured the radio wave gain by emitting radio waves with a frequency of 4 GHZ in the form of a beam from a transmitting antenna (metal reference parabolic antenna) located 200 meters away, we found that
I got a result of 35.0dB. On the other hand, the antenna of Comparative Example 1, which was made in exactly the same manner as Example 1 except for omitting the above-mentioned buffer material, had a radio wave gain.
It was 33.5dB. That is, in Example 1, the radio wave gain was improved by 1.5 dB by providing the buffer material. In addition, when a parabolic antenna of Comparative Example 2 was manufactured in the same manner as in Example 1 except that the weight of the glass fiber mat as a cushioning material was increased to 230 g/ m2 , the radio wave gain was was 34.5 dB, which is 0.5 dB lower than in Example 1.
When we cut this antenna and observed the cross section, we found that the concave side of the reflective material (aluminum wire mesh)
A 0.9 mm resin and glass fiber layer was formed. Example 2 The glass fiber mat of Example 1 (fabric weight 30 g/m 2 ) as a cushioning material and the carbon fiber mat (fabric weight 30 g/m 2 ) as a conductive reflective material were placed in a pair of male and female molds.
were stacked, polypropylene was injected and press-fitted into the mold (thickness: 3 to 3.5 mm), and cooled to obtain a parabolic antenna with a diameter of 1 m. When the radio wave gain of the antenna of Example 2 was measured using the reference antenna of Example 1 for transmission, it was found that at a distance of 2000 m and a frequency of 12 GHZ.
It was 39.8dB. On the other hand, the radio wave gain of Comparative Example 3 in which the above-mentioned buffer material was omitted was 38.0 dB. That is, by providing the buffer material of Example 2, the radio wave gain was improved by 1.8 dB. Note that when the antenna of Example 2 was laid down on a flat surface, the maximum gap created around it was 0.3 mm. On the other hand, the maximum gap in Comparative Example 4, in which the cushioning material in Example 2 was replaced with glass fiber cloth (basis weight 30 g/m 2 ), was as follows:
0.6mm, and its radio wave gain is higher than that of Example 2.
It was 39.2dB, which is 0.6dB lower. In addition, the above Example 2
In this case, the basis weight of glass fiber pine is 5g/m 2
A parabolic antenna of Comparative Example 5 was manufactured in the same manner as in Example 2, except that the radio wave gain was lower than that of Comparative Example 3 in which the glass fiber mat was omitted.
It was the same as 38.0dB. That is, compared to Comparative Examples 1 and 2, Example 1 had
Furthermore, the radio wave gain of Example 2 was improved by 0.5 dB or more compared to Comparative Examples 3, 4, and 5. Example 3 A parabolic antenna of Example 3 was manufactured in the same manner as Example 2 except that the weight of the glass fiber mat was set to 50 g/m 2 and the diameter was set to 75 cm in the parabolic antenna of Example 2 above. did.
In addition, the antenna of Comparative Example 6 was prepared in the same manner except that the basis weight of the glass fiber mat in Example 3 was changed to 9 g/m 2 , and the basis weight of the glass fiber mat was changed to 9 g/m 2 The antenna of Comparative Example 7 was prepared in the same manner, and the antenna of Comparative Example 8 was prepared in the same manner except that glass fiber cloth (basis weight 50 g/m 2 ) was used instead of the above glass fiber mat. Antennas of Comparative Example 9 were manufactured in the same manner except that . The above Example 3 antenna was installed on the ground, and a transmitting antenna with a diameter of 40 cm was installed 100 m away from the antenna, and radio waves with a frequency of 12 GHZ were radiated in a beam shape to measure the radio wave gain. Comparative examples 6 to 9
The radio wave gain was similarly measured for the antenna. The results are shown in Table 1 below.

【表】 上記の表1で明らかなように、緩衝材に使用し
たガラス繊維マツトの目付量が少な過ぎる比較例
6、反対に多過ぎる比較例7、マツトの代わりに
クロスを使用した比較例8、および緩衝材を全く
使用しない比較例9は、いずれも実施例3に比較
して電波利得が低く、特に比較例6および比較例
9は、著しく劣つていた。 上記のとおり、この発明は、導電性反射材の少
なくとも凹面側に、ガラス繊維もしくは有機繊維
からなる緩衝材を配設するものであるから、成型
の際に導電性反射材の位置ずれが発生せず、その
ため緩衝材を使用しない場合に比べてアンテナ性
能が少なくとも1%向上する。そして、緩衝材と
して目付量10〜100g/m2のマツト状のものを使
用するので、緩衝材としてクロスを使用する場合
に比べてアンテナの重量増加を低くすることがで
き、かつ方向性が無く、歪みの発生が少なくなつ
てアンテナ性能が向上し、しかも樹脂が含浸し易
く、加工が容易である等の効果を奏する。
[Table] As is clear from Table 1 above, Comparative Example 6 uses too little glass fiber pine for the cushioning material, Comparative Example 7 uses too much fiberglass, and Comparative Example 8 uses cloth instead of pine. , and Comparative Example 9, in which no buffer material was used, both had lower radio wave gains than Example 3, and in particular, Comparative Examples 6 and 9 were significantly inferior. As described above, in this invention, a buffer material made of glass fiber or organic fiber is provided at least on the concave side of the conductive reflective material, so that the positional shift of the conductive reflective material does not occur during molding. Therefore, the antenna performance is improved by at least 1% compared to the case where no buffer material is used. In addition, since a pine-like material with a basis weight of 10 to 100 g/ m2 is used as a cushioning material, the weight increase of the antenna can be reduced compared to the case of using cloth as a cushioning material, and there is no directionality. , the occurrence of distortion is reduced, the antenna performance is improved, and furthermore, it is easy to impregnate with resin and is easy to process.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の実施態様を示す金型要部の断
面図である。 1……雄型、2……雌型、3a,3b……マツ
ト状緩衝材、4……導電性反射材、5……成型材
料。
The drawing is a sectional view of the main part of a mold showing an embodiment of the present invention. 1...male type, 2...female type, 3a, 3b...pine-shaped cushioning material, 4...conductive reflective material, 5...molding material.

Claims (1)

【特許請求の範囲】[Claims] 1 導電性反射材の少なくとも凹面側に、ガラス
繊維もしくは有機繊維が無方向に均一な厚みに重
ねられ、繊維相互が接点で接着されてなる目付量
10〜100g/m2のマツト状緩衝材を配設して成型
することを特徴とする強化プラスチツク製パラボ
ラアンテナの製造法。
1. The basis weight obtained by stacking glass fibers or organic fibers to a uniform thickness in any direction on at least the concave side of a conductive reflective material, and bonding the fibers to each other at contact points.
1. A method for manufacturing a reinforced plastic parabolic antenna, characterized in that a pine-shaped cushioning material of 10 to 100 g/m 2 is disposed and molded.
JP58075449A 1983-04-28 1983-04-28 Manufacture of reinforced plastic-made parabolic antenna Granted JPS59201504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58075449A JPS59201504A (en) 1983-04-28 1983-04-28 Manufacture of reinforced plastic-made parabolic antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58075449A JPS59201504A (en) 1983-04-28 1983-04-28 Manufacture of reinforced plastic-made parabolic antenna

Publications (2)

Publication Number Publication Date
JPS59201504A JPS59201504A (en) 1984-11-15
JPH0572122B2 true JPH0572122B2 (en) 1993-10-08

Family

ID=13576581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58075449A Granted JPS59201504A (en) 1983-04-28 1983-04-28 Manufacture of reinforced plastic-made parabolic antenna

Country Status (1)

Country Link
JP (1) JPS59201504A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090723A (en) * 1983-10-25 1985-05-21 Dainippon Glass Kogyo Kk Molding method of synthetic resin electric conductor
JPS60100803A (en) * 1983-11-07 1985-06-04 Takeda Chem Ind Ltd Production of reflecting plate for parabolic antenna
JPS6157613U (en) * 1984-09-17 1986-04-18
FR2591530B1 (en) * 1985-12-17 1988-09-02 Stratinor LAMINATE COMPOSITE MATERIAL, A PROCESS FOR ITS PREPARATION AND ITS APPLICATION TO THE TREATMENT OF ELECTROSTATIC OR ELECTROMAGNETIC PHENOMENES
CN103042697A (en) * 2012-12-31 2013-04-17 北京玻钢院复合材料有限公司 Integral forming process of carbon fiber antenna reflecting surface

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553574U (en) * 1978-06-22 1980-01-10

Also Published As

Publication number Publication date
JPS59201504A (en) 1984-11-15

Similar Documents

Publication Publication Date Title
US4647329A (en) Manufacture of parabolic antennas
US4933131A (en) Method of fabricating composite structures
US4789868A (en) Manufacture of parabolic antennas
CA1149275A (en) Continuous process for preparing reinforced resin laminates
US6509078B1 (en) Composite material
NO173221B (en) PROCEDURE FOR MANUFACTURING A FIBER ENHANCED PRESS CASTLE RESPONSE, PRIOR TO A PARABOLAN ANTENNA
JP3631994B2 (en) Long fiber reinforced thermoplastic resin sheet and composite molded body reinforced by the sheet
CN109263172A (en) A kind of undaform carbon felt electromagnetic armouring structure body and preparation method thereof
JP2749650B2 (en) Automotive molded ceiling material and method of manufacturing the same
JPH0572122B2 (en)
JP3160720B2 (en) Building materials
US4260445A (en) Process for producing thick reinforced plastic articles
US3215583A (en) Integral structure
KR102075264B1 (en) Fiber reinforced plastic sandwich panel
KR102066538B1 (en) Core material for sandwich panel, sandwich panel and manufacturing method of sandwich panel
JP4144940B2 (en) Radio wave absorber
CN214491692U (en) Grid structure
JPH0249222B2 (en)
JPS59167103A (en) Parabolic reflective plate for antenna
JP2825406B2 (en) Laminated body and method for producing the same
CA1226362A (en) Manufacture of parabola antennas
JPH06232581A (en) Absorber for millimeter radiowave
JPH082606B2 (en) Fiber-reinforced phenolic resin foam and method for producing the same
JP2001337681A (en) Sound absorption insulator and its manufacturing method
CN113479265B (en) Cargo box floor, floor processing system and floor processing method