JPS6090723A - Molding method of synthetic resin electric conductor - Google Patents

Molding method of synthetic resin electric conductor

Info

Publication number
JPS6090723A
JPS6090723A JP58198273A JP19827383A JPS6090723A JP S6090723 A JPS6090723 A JP S6090723A JP 58198273 A JP58198273 A JP 58198273A JP 19827383 A JP19827383 A JP 19827383A JP S6090723 A JPS6090723 A JP S6090723A
Authority
JP
Japan
Prior art keywords
mat
synthetic resin
fibers
filament
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58198273A
Other languages
Japanese (ja)
Other versions
JPH0112645B2 (en
Inventor
Takashi Nishimoto
敬 西本
Kiyokazu Nakamura
清和 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAINIPPON GLASS KOGYO KK
Dainihon Glass Industry Co Ltd
Original Assignee
DAINIPPON GLASS KOGYO KK
Dainihon Glass Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAINIPPON GLASS KOGYO KK, Dainihon Glass Industry Co Ltd filed Critical DAINIPPON GLASS KOGYO KK
Priority to JP58198273A priority Critical patent/JPS6090723A/en
Publication of JPS6090723A publication Critical patent/JPS6090723A/en
Publication of JPH0112645B2 publication Critical patent/JPH0112645B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a conductive filament free from creases and breaks by putting a continuous strand mat as reinforcement on both the internal and the external surface of the conductive filament. CONSTITUTION:Continuous strand mats (in which a bundle of hundreds of glass filaments are arranged without being cut, non-directionally, uniformly, laminated to a specified thickness and hardened with synthetic resin adhesives) are laminated on the SMC containing 25% of glass and mats of glass filament whose surface is coated with aluminum are laminated and pressed in a concave form to mold a parabola antenna. The molded body obtained shows excellent reflection factor and is free from breaks of the mat.

Description

【発明の詳細な説明】 本発明は、合成樹脂製導電体のプレス成形方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for press molding a synthetic resin conductor.

導電性繊維を合成樹脂に充填させた導電体は、電磁遮蔽
材、発熱体、静電気防止包装材あるいは電波受信用アン
テナ等に使われている。電磁遮蔽材やアンテナの用途に
おいては、均一で高い導電性を付与する必要から、導電
性線維としては通常10μ前後の直径を有するフィラメ
ント繊維のマット状物が知られ【いる。パラボラアンテ
ナのように導電層が凹面の表層部に存在する場合等にお
いては、このような導電性フィラメントマットを表層部
に配し、逆電の繊維強化合成樹脂を支持材として一体的
にプレス成形し得る。しかしながら、表面層の導電性フ
イラメン)−Sットはプレス圧力のためにしわになった
り、切断されやすい等の欠点を有している。
Conductors made by filling synthetic resin with conductive fibers are used in electromagnetic shielding materials, heating elements, antistatic packaging materials, radio wave receiving antennas, and the like. In applications such as electromagnetic shielding materials and antennas, it is necessary to provide uniform and high conductivity, and therefore, mat-like materials of filament fibers having a diameter of approximately 10 μm are known as conductive fibers. In cases where the conductive layer is present on the surface of a concave surface, such as in a parabolic antenna, such a conductive filament mat is placed on the surface and integrally press-molded using a reverse electrical fiber-reinforced synthetic resin as a supporting material. It is possible. However, the conductive filament (S) as the surface layer has drawbacks such as being easily wrinkled and cut due to press pressure.

導電性フィラメントがしわになり偏在すること、あるい
は切断部分を有することは、電磁波漏洩の原因になった
り、電波受信性能に大きな影響があり、防止すべき課題
である。
Conductive filaments that are wrinkled and unevenly distributed, or have cut portions, can cause electromagnetic wave leakage and have a significant impact on radio wave reception performance, and are issues that should be prevented.

本発明者等は、導電性フィラメントマットを有する合成
樹脂製導電体のプレス成形方法において、上記のような
欠点がない成形法を遅い出すべく鋭章検討を重ねた結果
、フィラメントマットとともにコンティニュアスストラ
ンドマットを併用することで良く解決できることがわか
った。すなわち本発明は、表面層に導電性フィラメント
マットを有する合成樹脂製導電体のプレス成形法におい
て、該表面層にコンティニュアスストランドマットを併
存せしめることを特徴とする合成樹脂製導電体の成形法
に関するものである。
The inventors of the present invention have conducted extensive research to develop a press molding method for synthetic resin conductors having conductive filament mats that does not have the drawbacks mentioned above. It was found that the problem could be solved by using a strand mat in combination. That is, the present invention provides a press-molding method for a synthetic resin conductor having a conductive filament mat in its surface layer, which is characterized in that a continuous strand mat is coexisted in the surface layer. It is related to.

一般に、導電体の導電層は、表面部に1m前後の厚みで
均一に、又、高密度で存在していることが1要である。
Generally, it is essential that the conductive layer of the conductor exists uniformly on the surface with a thickness of about 1 m and at high density.

特にパラボラアンテナ等のような導電体においては、さ
らに表面の平滑性を要求される。従って、導電性フィラ
メントマットを構成するフィラメント維の直径は余り大
きくない方が好ましい。このため、プレス成形に際して
はフィラメント繊維が切断しやすく、その対策が必要で
あるが、本発明によれば良く防止することができる。コ
ンティニュアスストランドマットとは、ガラス繊維フィ
ラメントを数百本集束したストランドを切断することな
く、蕪方向に均一に配置して所定の厚み、例えば0.5
〜4鰭に積み重ね、結合剤で固めたマット状補強材であ
る。
In particular, conductive materials such as parabolic antennas are required to have a smooth surface. Therefore, it is preferable that the diameter of the filament fibers constituting the conductive filament mat is not too large. For this reason, the filament fibers are easily cut during press molding, and countermeasures are required, but this can be effectively prevented according to the present invention. Continuous strand mat is a strand made of several hundred glass fiber filaments, which are arranged uniformly in the direction of the turn without cutting, to a predetermined thickness, e.g. 0.5 strands.
- It is a mat-like reinforcement material stacked on 4 fins and hardened with a binding agent.

このようなコンティニュアスストランドマットを導電性
フィラメントマット層の内層又は外層に併存せしめるこ
とにより、フィラメントの切断を防止できる。電W1蓮
蔽用のハウジング材等においては導電性フィラメントマ
ット層が必すしも最外表面部に位置していなくともよく
、コンティニュアスストランドマット層より内部に位置
していてもよい。通常は、これらの層とともに支持材層
を設けることが多(、これらを一体として加熱加圧プレ
ス成形され得る。支持材としては、例えば、ガラスチョ
ツプドストランドマットに不飽和ポリエステル樹脂や増
粘剤を含浸した、いわゆる13M01短繊維補強材と不
飽和ポリエステル樹脂等を配合して塊状に予備成形した
、いわゆるBMO等が好適であり、この不飽和ポリエス
テル樹脂がプレス時にコンティニュアスストランドマッ
ト層及び導電性フィラメントマット層に移行し、加熱硬
化一体成形され得る。
By coexisting such a continuous strand mat in the inner layer or outer layer of the conductive filament mat layer, filament breakage can be prevented. In the housing material for the electric W1 lotus shield, the conductive filament mat layer does not necessarily have to be located on the outermost surface, but may be located inside the continuous strand mat layer. Usually, a supporting material layer is often provided together with these layers (and these can be integrally formed by heating and press-molding.As a supporting material, for example, unsaturated polyester resin or thickened glass chopped strand mat is used). So-called BMO, etc., which is preformed into a block by blending so-called 13M01 short fiber reinforcing material impregnated with an agent and unsaturated polyester resin, etc., is suitable, and this unsaturated polyester resin forms a continuous strand mat layer and a layer during pressing. It can be transferred to a conductive filament mat layer and integrally molded by heat curing.

支持材中の補強繊維としては、ガラス繊維に限らず、カ
ーボン繊維、ボロン繊維、溶融石英繊維、シリカ繊維、
アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化
ケイ素繊維、炭化ホウ素繊維、炭化ケイ素繊維、アスベ
スト繊維、金属繊維等の無機繊維あるいは麻、ビニ四ン
、ポリアミド、ポリエステル等の天然若しくは合成繊維
を採用し得る。熱硬化性樹脂についても、何ら限定され
ることなく、不飽和ポリエステル樹脂、エポキシ樹脂、
フェノール樹脂、ビニルエステル樹脂、シリコン樹脂、
ポリイミド樹脂、アルキッド樹脂、熱硬化性ポリウレタ
ン樹脂等を採用し得る。又、導電性フィラメントマット
のフィラメント材質としては、カーボン繊維、アルミニ
ウム繊維、黄銅繊維、銅繊維、ステンレス繊維、メタラ
イズドガラス繊維、カーボンコートガラス繊維、メタラ
イズドカーボン繊維等を挙げることができる。
The reinforcing fibers in the support material are not limited to glass fibers, but include carbon fibers, boron fibers, fused silica fibers, silica fibers,
Inorganic fibers such as alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, boron carbide fibers, silicon carbide fibers, asbestos fibers, metal fibers, etc., or natural or synthetic fibers such as hemp, polyamide, polyester, etc. are used. obtain. Thermosetting resins are not limited in any way, and include unsaturated polyester resins, epoxy resins,
Phenolic resin, vinyl ester resin, silicone resin,
Polyimide resin, alkyd resin, thermosetting polyurethane resin, etc. can be used. Further, examples of the filament material of the conductive filament mat include carbon fiber, aluminum fiber, brass fiber, copper fiber, stainless steel fiber, metallized glass fiber, carbon coated glass fiber, and metallized carbon fiber.

実施例1 直径800m、最大深さ100鯛の凹面を有するパラボ
ラアンテナをプレス成形した。凹表面部には、凹表面に
遠い方から、ガラス含有率25チのSMO,次いでコン
テニュアスストランドマット(単位型t4 s o f
 / m’ ) 、次いでアルミニウムをフィラメント
の表層にコートしたガラス繊維フィラメントマット(単
位重量801/rr?)を配置した。一体成形固化した
後の成形体は、良好な反射率を有しており、アルミコー
トガラス繊維フィラメントマットには1ケ所も切れが発
生していなかった。
Example 1 A parabolic antenna having a concave surface with a diameter of 800 m and a maximum depth of 100 m was press-molded. In the concave surface area, from the side farthest from the concave surface, SMO with a glass content of 25 cm, followed by continuous strand mat (unit type t4 s o f
/m') Then, a glass fiber filament mat (unit weight 801/rr?) whose surface layer of the filament was coated with aluminum was placed. The molded product after integral molding and solidification had good reflectance, and the aluminum-coated glass fiber filament mat did not have any breaks.

実施例2 コンテニュアスストランドマットを凹表面部の最外表面
に配置する以外は、実施例1と同様にしてパラボラアン
テナの放物面体を得た。その結果、アルミコートガラス
繊維マットには1ケ所の切れも発生しておらす、反射率
も良好であった。
Example 2 A paraboloid for a parabolic antenna was obtained in the same manner as in Example 1 except that the continuous strand mat was placed on the outermost surface of the concave surface portion. As a result, the aluminum-coated glass fiber mat had only one break, and the reflectance was good.

比較例 コンティニュアスストランドマットを配置しない以外は
、実施例Iと同様にしてパラボラアンテナの放物面体を
得た。その結果、アルミコートガラス繊維マットには多
数の切れが発生し、反射率の低下を招いた。
Comparative Example A paraboloid for a parabolic antenna was obtained in the same manner as in Example I except that the continuous strand mat was not disposed. As a result, many breaks occurred in the aluminum-coated glass fiber mat, resulting in a decrease in reflectance.

代理人 [人11) 明 代理人 !復 原 亮 − 手続補正書 昭和59年1り月?υ日 特許庁長官 殿 1、事件の表示 昭和58年特許願第198273号 2、発明の名称 合成樹脂製導電体の成形法 3、補正をする者 事件との関係 特許出願人 住 所 神奈川県相模原市宮下1丁目2番27号名 称
 大日木硝子工業株式会社 自発補正 6、補正により増加する発明の数 なし?、補正の対象
 明細書の発明の詳細な説明の欄8、補正の内容 し又は切断することなく、」なる記載に訂正する。
Agent [Person 11] Akira Agent! Restored by Ryo Hara - Procedural amendment January 1982? υ Japan Patent Office Commissioner 1, Indication of the case, Patent Application No. 198273, filed in 1982, 2, Name of the invention, Method for molding synthetic resin conductor 3, Relationship with the person making the amendment, patent applicant address, Sagamihara, Kanagawa Prefecture 1-2-27 Miyashita, Ichi Name Dainichi Glass Industry Co., Ltd. Voluntary amendment 6. Number of inventions increased by amendment None? , Subject of the amendment Column 8 of the detailed explanation of the invention in the specification, the content of the amendment is corrected to the following statement without truncating it.

以上that's all

Claims (1)

【特許請求の範囲】[Claims] (1) 表面層に導電性フィラメントマットを有スる合
成樹脂製導電体のプレス成形法において、核表面層にコ
ンティニュアスストランドマットを併存せしめることを
%徴とする合成樹脂製導電体の成形法。
(1) In a press molding method for a synthetic resin conductor having a conductive filament mat in its surface layer, molding of a synthetic resin conductor in which a continuous strand mat coexists in the core surface layer is a characteristic feature. Law.
JP58198273A 1983-10-25 1983-10-25 Molding method of synthetic resin electric conductor Granted JPS6090723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58198273A JPS6090723A (en) 1983-10-25 1983-10-25 Molding method of synthetic resin electric conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58198273A JPS6090723A (en) 1983-10-25 1983-10-25 Molding method of synthetic resin electric conductor

Publications (2)

Publication Number Publication Date
JPS6090723A true JPS6090723A (en) 1985-05-21
JPH0112645B2 JPH0112645B2 (en) 1989-03-01

Family

ID=16388384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58198273A Granted JPS6090723A (en) 1983-10-25 1983-10-25 Molding method of synthetic resin electric conductor

Country Status (1)

Country Link
JP (1) JPS6090723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522652A (en) * 2007-03-29 2010-07-08 カルボヌ フォルジュ Method for manufacturing thermoplastic composite parts by molding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59201504A (en) * 1983-04-28 1984-11-15 Toyo Kasei Kogyo Kk Manufacture of reinforced plastic-made parabolic antenna

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59201504A (en) * 1983-04-28 1984-11-15 Toyo Kasei Kogyo Kk Manufacture of reinforced plastic-made parabolic antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522652A (en) * 2007-03-29 2010-07-08 カルボヌ フォルジュ Method for manufacturing thermoplastic composite parts by molding

Also Published As

Publication number Publication date
JPH0112645B2 (en) 1989-03-01

Similar Documents

Publication Publication Date Title
US3900357A (en) Composite material springs and manufacture
JP5198419B2 (en) Aluminum conductor composite core reinforced cable and manufacturing method
CA2413187C (en) Stranded cable and method of making
WO2005040017A2 (en) Aluminum conductor composite core reinforced cable and method of manufacture
JPS61105397A (en) Device for thermal protection from removal by melting and vibration
JPH03500148A (en) composite material
GB1149549A (en) Composite compressor or like rotor blades
JPS6090723A (en) Molding method of synthetic resin electric conductor
CN113226717A (en) Method and apparatus for molding composite ribs and rib-sheet
US5132168A (en) Lightning strike protection for composite aircraft structures
US2966643A (en) Electromagnetic wave guide structure
KR102007608B1 (en) Electro Magnetic Shielding Materials Using Metal Foil and Process for Producing The Same
JPS63234035A (en) Filament reinforced plastic body and its production
JPS62111500A (en) Electromagnetic wave reflecting unit
US3056710A (en) Method for constructing a wave guide
JPH0147761B2 (en)
JP2001267783A (en) Electromagnetic wave absorbing sheet
JPS5945284B2 (en) antenna
JP2000278032A (en) Electromagnetic wave absorbing sheet
JPS60134500A (en) Electromagnetic wave shielding material
JP3679191B2 (en) Wrapping material and method for producing the same
JPH01239999A (en) Electromagnetic wave reflector
JPS6441401A (en) Wheel for automobile
JPH06232581A (en) Absorber for millimeter radiowave
FR2591530A1 (en) Laminated composite material, a process for making it and its application to the treatment of electrostatic or electromagnetic phenomena