JPH0112645B2 - - Google Patents

Info

Publication number
JPH0112645B2
JPH0112645B2 JP58198273A JP19827383A JPH0112645B2 JP H0112645 B2 JPH0112645 B2 JP H0112645B2 JP 58198273 A JP58198273 A JP 58198273A JP 19827383 A JP19827383 A JP 19827383A JP H0112645 B2 JPH0112645 B2 JP H0112645B2
Authority
JP
Japan
Prior art keywords
fibers
mat
filament
conductive
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58198273A
Other languages
Japanese (ja)
Other versions
JPS6090723A (en
Inventor
Takashi Nishimoto
Kyokazu Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainihon Glass Industry Co Ltd
Original Assignee
Dainihon Glass Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainihon Glass Industry Co Ltd filed Critical Dainihon Glass Industry Co Ltd
Priority to JP58198273A priority Critical patent/JPS6090723A/en
Publication of JPS6090723A publication Critical patent/JPS6090723A/en
Publication of JPH0112645B2 publication Critical patent/JPH0112645B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、合成樹脂製導電体のプレス成形方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for press molding a synthetic resin conductor.

導電性繊維を合成樹脂に充填させた導電体は、
電磁遮蔽材、発熱体、静電気防止包装材あるいは
電波受信用アンテナ等に使われている。電磁遮蔽
材やアンテナの用途においては、均一で高い導電
性を付与する必要から、導電性繊維としては通常
10μ前後の直径を有するフイラメント繊維のマツ
ト状物が知られている。パラボラアンテナのよう
に導電層が凹面の表層部に存在する場合等におい
ては、このような導電性フイラメントマツトを表
層部に配し、通常の繊維強化合成樹脂を支持材と
して一体的にプレス成形し得る。しかしながら、
表面層の導電性フイラメントマツトはプレス圧力
のためにしわになつたり、切断されやすい等の欠
点を有している。導電性フイラメントがしわにな
り偏在すること、あるいは切断部分を有すること
は、電磁波漏洩の原因になつたり、電波受信性能
に大きな影響があり、防止すべき課題である。
A conductor made by filling synthetic resin with conductive fibers is
It is used in electromagnetic shielding materials, heating elements, antistatic packaging materials, radio wave receiving antennas, etc. In applications such as electromagnetic shielding materials and antennas, it is necessary to provide uniform and high conductivity, so conductive fibers are usually used.
Mats of filament fibers having a diameter of around 10μ are known. In cases where the conductive layer is present on the surface of a concave surface, such as in a parabolic antenna, such a conductive filament mat is placed on the surface and integrally press-molded using ordinary fiber-reinforced synthetic resin as a supporting material. obtain. however,
The conductive filament mat of the surface layer has drawbacks such as being easily wrinkled and cut due to press pressure. If the conductive filament is wrinkled and unevenly distributed, or if it has cut portions, it may cause leakage of electromagnetic waves and have a large effect on radio wave reception performance, which is a problem that should be prevented.

本発明者等は、導電性フイラメントマツトを有
する合成樹脂製導電体のプレス成形方法におい
て、上記のような欠点がない成形法を見い出すべ
く鋭意検討を重ねた結果、フイラメントマツトと
ともにコンテイニユアスストランドマツトを併用
することで良く解決できることがわかつた。すな
わち本発明は、表面層に導電性フイラメントマツ
トを有する合成樹脂製導電体のプレス成形法にお
いて、該表面層にコンテイニユアスストランドマ
ツトを併存せしめることを特徴とする合成樹脂製
導電体の成形法に関するものである。
The present inventors have conducted intensive studies to find a press molding method for synthetic resin conductors having conductive filament mats that does not have the above-mentioned drawbacks. It was found that the problem could be solved by using in combination. That is, the present invention provides a press-molding method for a synthetic resin conductor having a conductive filament mat in its surface layer, which is characterized in that a continuous strand mat is coexisted in the surface layer. It is related to.

一般に、導電体の導電層は、表面部に1mm前後
の厚みで均一に、又、高密度で存在していること
が重要である。特にパラボラアンテナ等のような
導電体においては、さらに表面の平滑性を要求さ
れる。従つて、導電性フイラメントマツトを構成
するフイラメント繊維の直径は余り大きくない方
が好ましい。このため、プレス成形に際してはフ
イラメント繊維が切断しやすく、その対策が必要
であるが、本発明によれば良く防止することがで
きる。コンテイニユアスストランドマツトとは、
ガラス繊維フイラメントを数百本集束したストラ
ンドを2m前後に切断し又は切断することなく、
無方向に均一に配置して所定の厚み、例えば0.5
〜4mmに積み重ね、結合剤で固めたマツト状補強
材である。
Generally, it is important that the conductive layer of the conductor exists uniformly on the surface with a thickness of about 1 mm and at high density. In particular, conductive materials such as parabolic antennas are required to have a smooth surface. Therefore, it is preferable that the diameter of the filament fibers constituting the conductive filament mat is not too large. For this reason, the filament fibers are easily cut during press molding, and countermeasures are required, but this can be effectively prevented according to the present invention. What is Container Strand Matsut?
A strand made of several hundred glass fiber filaments can be cut into approximately 2m lengths or without cutting.
Arrange uniformly in no direction to a predetermined thickness, e.g. 0.5
It is a pine-shaped reinforcing material stacked to ~4 mm and hardened with a binder.

このようなコンテイニユアスストランドマツト
を導電性フイラメントマツト層の内層又は外層に
併存せしめることにより、フイラメントの切断を
防止できる。電磁遮蔽用のハウジング材等におい
ては導電性フイラメントマツト層が必ずしも最外
表面部に位置していなくともよく、コンテイニユ
アスストランドマツト層より内部に位置していて
もよい。通常は、これらの層とともに支持材層を
設けることが多く、これらを一体として加熱加圧
プレス成形され得る。支持材としては、例えば、
ガラスチヨツプドストランドマツトに不飽和ポリ
エステル樹脂や増粘剤を含浸した、いわゆる
SMC、短繊維補強材と不飽和ポリエステル樹脂
等を配合して塊状に予備成形した、いわゆる
BMC等が好適であり、この不飽和ポリエステル
樹脂がプレス時にコンテイニユアスストランドマ
ツト層及び導電性フイラメントマツト層に移行
し、加熱硬化一体成形され得る。
By coexisting such a continuous strand mat in the inner or outer layer of the conductive filament mat layer, it is possible to prevent filament breakage. In a housing material for electromagnetic shielding, the conductive filament mat layer does not necessarily have to be located at the outermost surface, but may be located inside the continuous strand mat layer. Usually, a supporting material layer is often provided together with these layers, and these can be integrally formed by heating and press-forming. As supporting materials, for example,
So-called glass chopped strand pine impregnated with unsaturated polyester resin and thickener.
SMC, a so-called block preformed by blending short fiber reinforcing material, unsaturated polyester resin, etc.
BMC or the like is suitable, and this unsaturated polyester resin transfers to the continuous strand mat layer and the conductive filament mat layer during pressing, and can be heat-cured and integrally molded.

支持材中の補強繊維としては、ガラス繊維に限
らず、カーボン繊維、ボロン繊維、溶融石英繊
維、シリカ繊維、アルミナ繊維、ジルコニア繊
維、窒化ホウ素繊維、窒化ケイ素繊維、炭化ホウ
素繊維、炭化ケイ素繊維、アスベスト繊維、金属
繊維等の無機繊維あるいは麻、ビニロン、ポリア
ミド、ポリエステル等の天然若しくは合成繊維を
採用し得る。熱硬化性樹脂についても、何ら限定
されることなく、不飽和ポリエステル樹脂、エポ
キシ樹脂、フエノール樹脂、ビニルエステル樹
脂、シリコン樹脂、ポリイミド樹脂、アルキツド
樹脂、熱硬化性ポリウレタン樹脂等を採用し得
る。又、導電性フイラメントマツトのフイラメン
ト材質としては、カーボン繊維、アルミニウム繊
維、黄銅繊維、銅繊維、ステンレス繊維、メタラ
イズドガラス繊維、カーボンコートガラス繊維、
メタライズドカーボン繊維等を挙げることができ
る。
Reinforcing fibers in the support material are not limited to glass fibers, but include carbon fibers, boron fibers, fused silica fibers, silica fibers, alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, boron carbide fibers, silicon carbide fibers, Inorganic fibers such as asbestos fibers and metal fibers, or natural or synthetic fibers such as hemp, vinylon, polyamide, and polyester may be used. The thermosetting resin is not limited in any way, and unsaturated polyester resins, epoxy resins, phenolic resins, vinyl ester resins, silicone resins, polyimide resins, alkyd resins, thermosetting polyurethane resins, and the like can be employed. In addition, the filament materials of the conductive filament mat include carbon fiber, aluminum fiber, brass fiber, copper fiber, stainless steel fiber, metallized glass fiber, carbon coated glass fiber,
Examples include metallized carbon fibers.

実施例 1 直径800mm、最大深さ100mmの凹面を有するパラ
ボラアンテナをプレス成形した。凹表面部には、
凹表面に遠い方から、ガラス含有率25%のSMC、
次いでコンテニユアスストランドマツト(単位重
量450g/m2)、次いでアルミニウムをフイラメン
トの表層にコートしたガラス繊維フイラメントマ
ツト(単位重量80g/m2)を配置した。一体成形
固化した後の成形体は、良好な反射率を有してお
り、アルミコートガラス繊維フイラメントマツト
には1ケ所も切れが発生していなかつた。
Example 1 A parabolic antenna having a concave surface with a diameter of 800 mm and a maximum depth of 100 mm was press-molded. On the concave surface,
From the side furthest from the concave surface, SMC with a glass content of 25%,
Next, a continuous strand mat (unit weight: 450 g/m 2 ) was placed, followed by a glass fiber filament mat whose filament surface layer was coated with aluminum (unit weight: 80 g/m 2 ). The molded product after integral molding and solidification had good reflectance, and the aluminum-coated glass fiber filament mat did not have a single break.

実施例 2 コンテニユアスストランドマツトを凹表面部の
最外表面に配置する以外は、実施例1と同様にし
てパラボラアンテナの放物面体を得た。その結
果、アルミコートガラス繊維マツトには1ケ所の
切れも発生しておらず、反射率も良好であつた。
Example 2 A paraboloid for a parabolic antenna was obtained in the same manner as in Example 1 except that a continuous strand mat was placed on the outermost surface of the concave surface portion. As a result, the aluminum-coated glass fiber mat did not have a single break, and the reflectance was good.

比較例 コンテイニユアスストランドマツトを配置しな
い以外は、実施例1と同様にしてパラボラアンテ
ナの放物面体を得た。その結果、アルミコートガ
ラス繊維マツトには多数の切れが発生し、反射率
の低下を招いた。
Comparative Example A paraboloid for a parabolic antenna was obtained in the same manner as in Example 1 except that the continuous strand mat was not arranged. As a result, many breaks occurred in the aluminum-coated glass fiber mat, resulting in a decrease in reflectance.

Claims (1)

【特許請求の範囲】[Claims] 1 表面層に導電性フイラメントマツトを有する
合成樹脂製導電体のプレス成形法において、該表
面層にコンテイニユアスストランドマツトを併存
せしめることを特徴とする合成樹脂製導電体の成
形法。
1. A method for press-molding a synthetic resin conductor having a conductive filament mat in its surface layer, characterized in that a continuous strand mat is coexisted in the surface layer.
JP58198273A 1983-10-25 1983-10-25 Molding method of synthetic resin electric conductor Granted JPS6090723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58198273A JPS6090723A (en) 1983-10-25 1983-10-25 Molding method of synthetic resin electric conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58198273A JPS6090723A (en) 1983-10-25 1983-10-25 Molding method of synthetic resin electric conductor

Publications (2)

Publication Number Publication Date
JPS6090723A JPS6090723A (en) 1985-05-21
JPH0112645B2 true JPH0112645B2 (en) 1989-03-01

Family

ID=16388384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58198273A Granted JPS6090723A (en) 1983-10-25 1983-10-25 Molding method of synthetic resin electric conductor

Country Status (1)

Country Link
JP (1) JPS6090723A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2924378B1 (en) * 2007-03-29 2010-01-01 Carbone Forge PROCESS FOR THE MANUFACTURE BY MOLDING A THERMOPLASTIC COMPOSITE PIECE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59201504A (en) * 1983-04-28 1984-11-15 Toyo Kasei Kogyo Kk Manufacture of reinforced plastic-made parabolic antenna

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59201504A (en) * 1983-04-28 1984-11-15 Toyo Kasei Kogyo Kk Manufacture of reinforced plastic-made parabolic antenna

Also Published As

Publication number Publication date
JPS6090723A (en) 1985-05-21

Similar Documents

Publication Publication Date Title
JP5198419B2 (en) Aluminum conductor composite core reinforced cable and manufacturing method
US3974314A (en) Electrical insulation particularly for use in winding slots of dynamo-electric machines and method for its manufacture
US4647329A (en) Manufacture of parabolic antennas
US7752754B2 (en) Method for increasing the current carried between two high voltage conductor support towers
US4134120A (en) Whip antenna formed of electrically conductive graphite strands embedded in a resin material
US4960965A (en) Coaxial cable with composite outer conductor
EP1301930A1 (en) Stranded cable and method of making
KR890017724A (en) Animal resistant cable
US20060289189A1 (en) Resin-coated micron conductive fiber wiring
WO2007146704A1 (en) Metal/ceramic composite conductor and cable including same
US20020037376A1 (en) Heat shrinkable article shielding against EMI and RFI
CN108134198A (en) A kind of high frequency wave transparent antenna house
JPH0112645B2 (en)
JPH06505545A (en) Pultruded brake lining and its manufacturing method
US4789868A (en) Manufacture of parabolic antennas
US5876643A (en) Electromagnetic interference shielding
US2966643A (en) Electromagnetic wave guide structure
US20040238798A1 (en) Electriplast moldable composite capsule
KR910008947B1 (en) Antenna
JPS62111500A (en) Electromagnetic wave reflecting unit
US3986157A (en) Electric fuse having substantially prismatic casing
US6809696B1 (en) Microwave components
JP2000278032A (en) Electromagnetic wave absorbing sheet
JP2001267783A (en) Electromagnetic wave absorbing sheet
US5840383A (en) Electromagnetic wave reflective fabric