JPH0571958A - Optical measuring device for minute displacement - Google Patents

Optical measuring device for minute displacement

Info

Publication number
JPH0571958A
JPH0571958A JP23044591A JP23044591A JPH0571958A JP H0571958 A JPH0571958 A JP H0571958A JP 23044591 A JP23044591 A JP 23044591A JP 23044591 A JP23044591 A JP 23044591A JP H0571958 A JPH0571958 A JP H0571958A
Authority
JP
Japan
Prior art keywords
reflected
measured
light
light beam
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23044591A
Other languages
Japanese (ja)
Inventor
Masaichi Mobara
政一 茂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP23044591A priority Critical patent/JPH0571958A/en
Publication of JPH0571958A publication Critical patent/JPH0571958A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To detect the minute displacement of an object to be measured without being affected by the inclination thereof by revolving and scanning the reflected beam of a polygon mirror and detecting the diameter of the beam through a slit. CONSTITUTION:A polygon mirror 1 reflects the reflected beam L1 from an object 106 to be measured condensed by an object lens 105 and passed through a 1/4 wavelength plate 104 and a polarizing beam splitter 103 to revolve the same. The beam L1 is incident to a photodetector 2. The beam L2 emitted from a light source 4 is reflected from the other surface of the mirror 1 to be incident to a photodetector 6 to make it possible to realize the state equivalent to such a state that the beam L1 is reflected from the mirror 1 to be incident to the photodetector 2. Then, on the basis of the time when the intensity of the reflected beam becomes a predetermined ratio with respect to the max. value, the width of the predetermined ratio in intensity-of-beam distribution characteristics is calculated and, on the basis of the calculated value, the diameter of the beam reflecting the converging or diffusing degree of the reflected beam can be calculated. since the reflected beam is revolved at this time, the effect of the inclination of the object to be measured is excluded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被測定物の微小変位や
表面粗さを光学的手段により測定する光学式微小変位測
定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical micro-displacement measuring device for measuring micro-displacement and surface roughness of an object to be measured by optical means.

【0002】[0002]

【従来の技術】従来より、焦点に対する被測定物のずれ
量を検出して被測定物の微小変位や表面粗さを測定する
装置として、例えば臨界角法を用いたもの(特開昭59
−90007号公報参照)、非点収差法を用いたもの
(特開昭60−186705号公報参照)、あるいはフ
ーコー法を用いたもの(光技術コンタクトvol 26,NO1
1,1988.P773〜784)などが知られている。
2. Description of the Related Art Conventionally, for example, a critical angle method has been used as an apparatus for detecting a displacement amount of an object to be measured with respect to a focus to measure a minute displacement or surface roughness of the object to be measured (Japanese Patent Laid-Open No. 59-59).
-90007), a method using an astigmatism method (see JP-A-60-186705), or a method using the Foucault method (optical technology contact vol 26, NO1).
1, 1988. P773 to 784) are known.

【0003】これらのうち、臨界角法は、プリズムの有
する固有の臨界角近傍に入射する光ビーム強度が微小な
角度変化に対して急激な変化を呈する性質を利用したも
のである。
Of these, the critical angle method utilizes the property that the intensity of a light beam incident near the inherent critical angle of a prism exhibits a sharp change with respect to a minute angle change.

【0004】かかる臨界角法による従来の光学式微小変
位測定装置の構成を図4に示す。同図中、101はレー
ザー光源、102はコリメートレンズ、103は偏光ビ
ームスプリッタ、104は1/4波長板、105は対物
レンズ、106は被測定物、107はビームスプリッ
タ、108a,108bは臨界角プリズム、109a,
109bは2分割受光素子である。
FIG. 4 shows the configuration of a conventional optical micro-displacement measuring device using the critical angle method. In the figure, 101 is a laser light source, 102 is a collimating lens, 103 is a polarization beam splitter, 104 is a quarter wavelength plate, 105 is an objective lens, 106 is an object to be measured, 107 is a beam splitter, 108a and 108b are critical angles. Prism, 109a,
109b is a two-divided light receiving element.

【0005】レーザー光源101からのレーザー光はコ
リメートレンズ102により平行光束に変換され、S偏
光で偏光ビームスプリッタ103を介して1/4波長板
104へ導かれる。この1/4波長板104に導かれた
レーザー光は円偏光の光束に変換された後、対物レンズ
105を介して被測定物106の表面に集光される。被
測定物106で反射されたレーザー光は1/4波長板1
04でP偏光にされた後、偏光ビームスプリッタ103
を透過してビームスプリッタ107に導かれ、分光され
る。分光された光はそれぞれ、反射面が臨界角に限定さ
れている臨界角プリズム108a,108bで反射さ
れ、それぞれ2分割受光素子109a,109bに入射
され、光量が検出される。
The laser light from the laser light source 101 is converted into a parallel light flux by the collimator lens 102, and is guided to the quarter-wave plate 104 as S-polarized light through the polarization beam splitter 103. The laser light guided to the quarter-wave plate 104 is converted into a circularly polarized light beam, and then is condensed on the surface of the DUT 106 via the objective lens 105. The laser light reflected by the DUT 106 is a quarter wavelength plate 1.
After being converted into P-polarized light at 04, the polarization beam splitter 103
Is transmitted to the beam splitter 107, where it is dispersed. The split light is reflected by the critical angle prisms 108a and 108b whose reflection surfaces are limited to the critical angle, and is incident on the two-divided light receiving elements 109a and 109b, respectively, and the light amount is detected.

【0006】このように、被測定物106が対物レンズ
105の焦点に位置している場合には、反射光は平行光
となり、臨界角プリズム108a,108bにおける反
射率は全光束で一定となり、2分割受光素子109a,
109bに受光される光量は等しくなる。しかし、被測
定物106が対物レンズ105の焦点より遠くに位置し
ている場合には反射光は収束光となるので臨界角プリズ
ム108a,108bに入る光束の入射角はその光軸に
対して臨界角プリズム108aで図中下側、臨界角プリ
ズム108bで図中右側は臨界角より小さくなり、反射
率が低下して、2分割受光素子109a,109bに受
光される光量に差が生じる。
As described above, when the object 106 to be measured is located at the focal point of the objective lens 105, the reflected light becomes parallel light, and the reflectance at the critical angle prisms 108a and 108b is constant for all luminous fluxes. Split light receiving element 109a,
The amount of light received by 109b becomes equal. However, when the DUT 106 is located farther than the focal point of the objective lens 105, the reflected light becomes a convergent light, so that the incident angle of the light flux entering the critical angle prisms 108a and 108b is critical with respect to the optical axis. The lower side in the figure of the angular prism 108a and the right side in the figure of the critical angle prism 108b become smaller than the critical angle, and the reflectance decreases, causing a difference in the amount of light received by the two-divided light receiving elements 109a and 109b.

【0007】同様に被測定物106が対物レンズ105
の焦点より近い地点に位置している場合には反射光は発
散光となり、上述した場合とは逆になる。
Similarly, the object to be measured 106 is the objective lens 105.
When it is located closer to the focal point of, the reflected light becomes divergent light, which is the opposite of the above case.

【0008】この結果、2分割受光素子109a,10
9bに受光される光量に差が生じる。このような光量の
差から被測定物106の、対物レンズ105の焦点位置
からの変位を検出し、被測定物106の微小変位や表面
粗さを測定することができる。
As a result, the two-divided light receiving elements 109a, 109
There is a difference in the amount of light received by 9b. The displacement of the object 106 to be measured from the focus position of the objective lens 105 can be detected from such a difference in the amount of light, and the minute displacement and surface roughness of the object 106 can be measured.

【0009】一方、非点収差法は、円筒レンズを用いて
検出像に非点収差を与え、測定対象物の位置の移動変位
量を像の変形に変換するものである。この方法による微
小変位測定装置では、被測定物が対物レンズの合焦点位
置にある場合には、受光ビームは円形状となるが、結像
位置が近い場合には縦長な楕円形状になり、また、遠い
場合には横長な楕円形状となるので、これを4分割フォ
トダイオードで光電変換し、縦方向,横方向のそれぞれ
の和を求め、更にそれらの差の出力信号を求め、被測定
物の移動変位量に比例した出力を得るものである。
On the other hand, the astigmatism method applies astigmatism to a detected image by using a cylindrical lens and converts the displacement amount of the position of the object to be measured into image deformation. In the micro-displacement measuring device according to this method, when the object to be measured is at the in-focus position of the objective lens, the received beam has a circular shape, but when the imaging position is close, it has a vertically elongated elliptical shape. When it is distant, it becomes a horizontally long elliptical shape, so this is photoelectrically converted by a four-division photodiode, the sum of each of the vertical direction and the horizontal direction is calculated, and the output signal of the difference between them is calculated. The output is obtained in proportion to the amount of displacement.

【0010】また、フーコー法による微小変位測定装置
は、光学的ナイフエッジ効果を持つ分割プリズムを用い
て被測定物からの反射光束を2光束に分割し、2分割フ
ォトダイオードに入射させるものであり、対物レンズと
被測定物との距離が変化すると被測定物からの反射光束
の広がり角が変化するため、2分割フォトダイオードの
受光量に差が生ずるので、これにより被測定物の変位量
を求めるものである。
The Foucault micro-displacement measuring apparatus uses a split prism having an optical knife edge effect to split a reflected light beam from an object to be measured into two light beams and make them enter a two-divided photodiode. When the distance between the objective lens and the object to be measured changes, the divergence angle of the reflected light beam from the object to be measured changes, so that the amount of light received by the two-divided photodiodes differs. It is what you want.

【0011】[0011]

【発明が解決しようとする課題】前述した光学式微小変
位測定装置において被測定物が傾いた場合には、反射光
束軸は入射光束軸に対して平行移動してしまう。例えば
図4に示す装置で被測定物106がθだけ傾いた場合、
図5に示すように、入射光束軸110に対して、反射光
束軸111は△xだけ平行移動することになる。そし
て、このとき被測定物106は対物レンズ105の焦点
距離をfとすると、 △x=ftan 2θ の関係が成り立つ。
When the object to be measured is tilted in the above-described optical micro-displacement measuring device, the reflected light beam axis is moved in parallel with the incident light beam axis. For example, in the device shown in FIG. 4, when the DUT 106 is tilted by θ,
As shown in FIG. 5, the reflected light beam axis 111 is translated by Δx with respect to the incident light beam axis 110. Then, in this case, when the focal length of the objective lens 105 of the DUT 106 is f, the relationship of Δx = ftan 2θ is established.

【0012】ところで、図4に示した装置では反射光を
分光してそれぞれを2分割受光素子109a,109b
で受光するようにしており、上述した光軸のずれ△x
は、2分割受光素子109a,109bにおいて互いに
逆向きに生じるので、△xによる受光光量の差は、原理
的には、相殺される構成となっている。
By the way, in the apparatus shown in FIG. 4, the reflected light is separated into two light-receiving elements 109a and 109b.
The light is received by, and the above-mentioned deviation of the optical axis Δx
Occurs in opposite directions in the two-divided light receiving elements 109a and 109b, so that the difference in received light amount due to Δx is theoretically offset.

【0013】しかしながら、被測定物106の傾き角θ
が大きくなった場合、反射光束が2分割受光素子109
a,109bの受光面から外れてしまい、微小変位や表
面粗さを測定できなくなるという問題がある。
However, the tilt angle θ of the DUT 106 is
Is larger, the reflected light beam is divided into two split light receiving elements 109.
There is a problem in that it becomes out of the light-receiving surface of a and 109b, and it becomes impossible to measure minute displacement and surface roughness.

【0014】そして、従来の微小変位測定装置は全て同
様な問題を有している。
All the conventional small displacement measuring devices have the same problem.

【0015】本発明はこのような事情に鑑み、被測定物
が大きく傾いた場合でも、微小変位や表面粗さの測定が
可能な光学式微小変位測定装置を提供することを目的と
する。
In view of such circumstances, it is an object of the present invention to provide an optical micro-displacement measuring device capable of measuring micro-displacement and surface roughness even when the object to be measured is greatly inclined.

【0016】[0016]

【課題を解決するための手段】上記目的を達成する本発
明の構成は、
The structure of the present invention which achieves the above object is as follows.

【0017】光源からの光束を被測定物に照射するとと
もに、被測定物からの反射光束から、被測定物の焦点に
対するずれ量に基づく反射光束の収束、若しくは拡散の
程度を検出することにより、前記ずれ量に基づく被測定
物の微小変位を検出するようになっている光学式微小変
位測定装置であって、前記反射光束を反射するととも
に、この反射光束が回動するよう回転駆動される多面鏡
と、多面鏡の一面で反射されて回動する反射光束を検出
し、この反射光束の光強度の最大値を記憶するととも
に、多面鏡の次の面で反射された反射光束の光強度が前
記最大値に対して所定の割合になる時間を記憶し、この
時間と多面鏡の回転速度とから反射光束の光束径を求め
る光束検出手段とを有することを特徴とする。
By irradiating the object to be measured with a light beam from the light source and detecting the degree of convergence or diffusion of the reflected light beam from the object to be measured, which is based on the amount of deviation from the focus of the object to be measured, An optical micro-displacement measuring device adapted to detect a micro-displacement of an object to be measured based on the displacement amount, the multi-face being driven to rotate the reflected light flux while reflecting the reflected light flux. The mirror and the reflected light flux that is reflected by one surface of the polygon mirror and rotates are detected, the maximum value of the light intensity of this reflected light flux is stored, and the light intensity of the reflected light flux reflected by the next surface of the polygon mirror is stored. It is characterized by further comprising a light beam detecting means for storing a time for which a predetermined ratio to the maximum value is obtained and for obtaining a light beam diameter of the reflected light beam from this time and the rotation speed of the polygon mirror.

【0018】[0018]

【作用】上記構成の本発明によれば、反射光束の光強度
がその最大値に対して所定の割合になる時間に基づき、
光強度分布特性上における前記所定割合の幅を求めるこ
とができ、この幅により、反射光束の収束、若しくは拡
散の程度を反映した光束径を求めることができる。
According to the present invention having the above structure, based on the time when the light intensity of the reflected light flux becomes a predetermined ratio with respect to its maximum value,
The width of the predetermined ratio on the light intensity distribution characteristic can be obtained, and the width of the light flux that reflects the degree of convergence or diffusion of the reflected light flux can be obtained from this width.

【0019】このとき、本発明では、反射光束を回動し
ているので、被測定物の傾きに起因して反射光束が対物
レンズの中心からずれていても、この影響を受けること
はない。
At this time, in the present invention, since the reflected light flux is rotated, even if the reflected light flux deviates from the center of the objective lens due to the inclination of the object to be measured, this is not affected.

【0020】[0020]

【実施例】以下本発明の実施例を図面に基づき詳細に説
明する。なお、図4と同一部分には同一番号を付し、重
複する説明は省略する。
Embodiments of the present invention will now be described in detail with reference to the drawings. Note that the same parts as those in FIG. 4 are denoted by the same reference numerals, and overlapping description will be omitted.

【0021】図1は本発明の実施例の構成の概略を示す
説明図である。同図に示すように、多面鏡であるポリゴ
ンミラー1は、その一面の中心を通り、しかも回転軸1
aの軸方向(図面の紙面に直角な方向)に沿う中心線
と、対物レンズ105の光軸とが、その回転に伴ない交
叉するような位置に配設されて回転可能に構成してあ
る。かくして、ポリゴンミラー1は、被測定物106で
反射し、対物レンズ105で集光するとともに、1/4
波長板104及び偏光ビームスプリッタ103を通過し
た反射光束L1 を反射して回動する。
FIG. 1 is an explanatory view showing the outline of the configuration of an embodiment of the present invention. As shown in the figure, the polygon mirror 1 which is a polygon mirror passes through the center of one surface of the polygon mirror 1
The optical axis of the objective lens 105 and the center line along the axial direction of a (the direction perpendicular to the plane of the drawing) and the optical axis of the objective lens 105 are disposed so as to intersect with each other and are rotatable. .. Thus, the polygon mirror 1 is reflected by the DUT 106, condensed by the objective lens 105, and at the same time 1/4.
The reflected light beam L 1 that has passed through the wave plate 104 and the polarization beam splitter 103 is reflected and rotated.

【0022】光検出器2は、前記ポリゴンミラー1の一
面の図中上方で、この一面の中心を通り、前記光軸と直
交する線上に配設してあり、前記回転軸1aの軸方向と
平行に伸びるスリット3を介してポリゴンミラー1で回
動する反射光束L1 が入射するようになっている。
The photodetector 2 is arranged above the one surface of the polygon mirror 1 in the drawing, passing through the center of the one surface, and on a line orthogonal to the optical axis, and in the axial direction of the rotary shaft 1a. The reflected light beam L 1 which is rotated by the polygon mirror 1 is made incident through the slit 3 extending in parallel.

【0023】光源4、コリメートレンズ5及び光検出器
6は、測定のタイミングの同期をとるためのものであ
る。これらのうち、光源4及びコリメートレンズ5は、
ポリゴンミラー1の図中上下方向の中心線に対し線対象
となる位置にあるこのポリゴンミラー1の他の面の上方
に配設してある。かくして、コリメートレンズ5の光軸
は、ポリゴンミラー1の前記他の面の中心で対物レンズ
105の光軸と直交するようになっている。また、光検
出器6は、その中心が対物レンズ105の光軸上にくる
ような位置に配設してある。かくして、反射光束L1
ポリゴンミラー1の前記一面で反射して光検出器2に入
射する状態と等価な状態を、光源4から出射した光束L
2 が、ポリゴンミラー1の前記他の面で反射して光検出
器6に入射することで実現し得るようになっている。
The light source 4, the collimating lens 5 and the photodetector 6 are for synchronizing the timing of measurement. Of these, the light source 4 and the collimator lens 5 are
The polygon mirror 1 is arranged above the other surface of the polygon mirror 1 at a position which is line-symmetrical with respect to the vertical center line of the polygon mirror 1. Thus, the optical axis of the collimator lens 5 is orthogonal to the optical axis of the objective lens 105 at the center of the other surface of the polygon mirror 1. Further, the photodetector 6 is arranged at a position such that its center is on the optical axis of the objective lens 105. Thus, the light beam L emitted from the light source 4 is in a state equivalent to the state in which the reflected light beam L 1 is reflected by the one surface of the polygon mirror 1 and enters the photodetector 2.
2 can be realized by being reflected by the other surface of the polygon mirror 1 and entering the photodetector 6.

【0024】図2は本実施例に係る光束径検出手段を示
すブロック線図である。この光束検出手段は、ポリゴン
ミラー1で反射されて回動する反射光束L1を光検出器
2に検出し、この反射光束L1 の光強度の最大値を記憶
するとともに、ポリゴンミラー1の次の面で反射された
反射光束L1 の光強度が前記最大値に対して所定の割合
(本実施例では半分)になる時間を記憶し、この時間と
ポリゴンミラー1の回転速度とから反射光束L1 の光束
径を求めるものであり、図1に示す光検出器2及び同期
系を構成する光源4、コリメートレンズ5、光検出器6
を含むものである。
FIG. 2 is a block diagram showing the luminous flux diameter detecting means according to this embodiment. This luminous flux detection means detects a reflected luminous flux L 1 which is reflected by the polygon mirror 1 and rotates, and stores the maximum value of the light intensity of this reflected luminous flux L 1 while The time when the light intensity of the reflected light beam L 1 reflected on the surface becomes a predetermined ratio (half in this embodiment) with respect to the maximum value is stored, and the reflected light beam is calculated from this time and the rotation speed of the polygon mirror 1. The light beam diameter of L 1 is obtained, and the photodetector 2 shown in FIG. 1 and the light source 4, the collimator lens 5, and the photodetector 6 that form the synchronization system are shown.
Is included.

【0025】図2に示すように、光検出器2は、入射し
た反射光束L1 を電気信号に変換し、この反射光束L1
の光強度を表わす光強度信号S1 を、アンプ7を介して
A/D変換器8に供給する。A/D変換器8は、前記光
強度信号S1 をディジタル信号に変換してピークホール
ド回路9及び半値期間検出回路10に供給する。発振器
11は、サンプリングタイミングを規定するクロックパ
ルスS2 をA/D変換器8、ピークホールド回路9及び
半値期間検出回路10に供給する。かくして、クロック
パルスS2 の立上りで光検出器2の出力信号である光強
度信号S1 がA/D変換器8に取り込まれてディジタル
信号に変換されるとともに、このディジタル信号がピー
クホールド回路9及び半値期間検出回路10に供給され
る。ピークホールド回路9は、ポリゴンミラー1による
1回目の走査期間、すなわちポリゴンミラー1のある一
面で反射光束L1 を回動する期間における光強度信号S
1 の最大値を記憶する。半値期間検出回路10は、ポリ
ゴンミラー1による次の走査期間、すなわちポリゴンミ
ラー1の次の一面で反射光束L1 を回動する期間におい
て漸増する光強度信号S1 の最大値の半分の値に達した
時点から最大値を経て漸減し、再度、最大値の半分の値
に達した時点迄の時間を、ピークホールド回路9の記憶
内容を参照して検出するとともに、この検出の結果得ら
れる光強度信号S1 の最大値の半分以上の値である時間
を表わす半値期間信号S3 を変位換算部14に送出す
る。
As shown in FIG. 2, the photodetector 2 converts the incident reflected light beam L 1 into an electric signal, and this reflected light beam L 1
The light intensity signal S 1 representing the light intensity of is supplied to the A / D converter 8 via the amplifier 7. The A / D converter 8 converts the light intensity signal S 1 into a digital signal and supplies the digital signal to the peak hold circuit 9 and the half-value period detection circuit 10. The oscillator 11 supplies a clock pulse S 2 defining the sampling timing to the A / D converter 8, the peak hold circuit 9 and the half-value period detection circuit 10. Thus, at the rising edge of the clock pulse S 2 , the light intensity signal S 1 which is the output signal of the photodetector 2 is taken into the A / D converter 8 and converted into a digital signal, and this digital signal is also held by the peak hold circuit 9 And the half-value period detection circuit 10. The peak hold circuit 9 receives the light intensity signal S during the first scanning period by the polygon mirror 1, that is, during the period in which the reflected light flux L 1 is rotated on one surface of the polygon mirror 1.
Memorize the maximum value of 1 . The half-value period detection circuit 10 sets the half value of the maximum value of the light intensity signal S 1 that gradually increases in the next scanning period by the polygon mirror 1, that is, in the period in which the reflected light flux L 1 is rotated on the next one surface of the polygon mirror 1. The time from the time when it reaches the maximum value to the maximum value is gradually reduced, and the time until the time when the value reaches half the maximum value is detected again by referring to the stored contents of the peak hold circuit 9, and the light obtained as a result of this detection is detected. A half-value period signal S 3 representing a time that is a value that is at least half the maximum value of the intensity signal S 1 is sent to the displacement conversion unit 14.

【0026】同期系を構成する光検出器6は、入射した
光束L2 を電気信号に変換し、この光束L2 の光強度を
表わす光強度信号に基づくトリガ信号S3 を、アンプ1
2を介してA/D変換器8及びカウンタ13に供給す
る。かくして、A/D変換器8は、例えば光束L2 の入
射を検出した時点で発生するトリガ信号S3 の供給によ
り光強度信号S1 のサンプリングを開始するとともに、
カウンタ13はトリガ信号S3 の供給毎に、すなわち反
射光束L1 の走査毎にその出力状態がHigh若しくはLow
状態となる。
The photodetector 6 constituting the synchronous system converts the incident light beam L 2 into an electric signal, and outputs the trigger signal S 3 based on the light intensity signal representing the light intensity of the light beam L 2 to the amplifier 1.
2 to the A / D converter 8 and the counter 13. Thus, the A / D converter 8 starts sampling of the light intensity signal S 1 by supplying the trigger signal S 3 generated at the time of detecting the incidence of the light flux L 2 , for example.
The output state of the counter 13 is High or Low each time the trigger signal S 3 is supplied, that is, each time the reflected light beam L 1 is scanned.
It becomes a state.

【0027】カウンタ13の出力状態によりピークホー
ルド回路9若しくは半値期間検出回路10の何れか一方
が動作する。すなわち、反射光束L1 のある走査期間
が、光強度信号S1 の最大値を検出する走査期間である
か、最大値の半値期間を検出する走査期間であるかを識
別する必要があるが、1回の走査毎にカウンタ13の内
容を更新し、その出力信号をスイッチング信号とするこ
とにより前記走査期間の何れであるかを識別してピーク
ホールド回路9及び半値期間検出回路10の何れか一方
を選択的に動作させている。
Depending on the output state of the counter 13, either the peak hold circuit 9 or the half-value period detection circuit 10 operates. That is, it is necessary to identify whether a certain scanning period of the reflected light flux L 1 is a scanning period for detecting the maximum value of the light intensity signal S 1 or a scanning period for detecting a half value period of the maximum value. One of the peak hold circuit 9 and the half-value period detection circuit 10 is identified by updating the content of the counter 13 for each scanning and using the output signal as a switching signal to identify which of the scanning periods. Is operated selectively.

【0028】ドライバ15はモータ16を駆動するとと
もに、このモータ16の回転速度を表わす回転速度信号
4 を変位換算部14に送出する。モータ16は、ドラ
イバ15により駆動されてポリゴンミラー1を回転させ
る。
The driver 15 drives the motor 16 and sends a rotation speed signal S 4 representing the rotation speed of the motor 16 to the displacement conversion section 14. The motor 16 is driven by the driver 15 to rotate the polygon mirror 1.

【0029】変位換算部14は、半値期間信号S3 及び
回転速度信号S4 に基づき反射光束L1 の光束径を求
め、この光束径を被測定物106の変位に換算してこの
変位を表わす変位信号S5 を送出する。
The displacement conversion unit 14 obtains the light beam diameter of the reflected light beam L 1 based on the half-value period signal S 3 and the rotation speed signal S 4 , and converts this light beam diameter into the displacement of the DUT 106 to represent this displacement. Displacement signal S 5 is transmitted.

【0030】上記実施例によれば、反射光束L1 の光強
度が、その最大値に対して半分の値になる時間に基づ
き、前記反射光束L1 の光強度分布特性上における半値
幅を求めることができる。この半値幅は、反射光束L1
の光束径を反映したものとなっている。
According to the above embodiment, the light intensity of the reflected light beam L 1 is based on the time to be half the value for the maximum value, determining the half width of the reflected light beam L 1 of the light intensity distribution characteristic on be able to. This half width is equal to the reflected light flux L 1
It reflects the luminous flux diameter of.

【0031】さらに詳言すると、被測定物106の測定
部位が対物レンズ105の焦点より対物レンズ105側
にある場合、反射光束L1 は拡散光となる一方、対物レ
ンズ105の反対側にある場合、収束光となるが、これ
ら拡散及び収束の程度は焦点からの変位を反映したもの
となっている。このとき、光検出器2で検出する反射光
束L1 の光強度分布特性はポリゴンミラー1の回転に伴
ない、図3(a)〜図3(c)に示すような特性とな
る。したがって、図3(a)〜図3(c)に示すような
光強度分布特性上で光強度が最大値の半分になる期間で
ある半値幅を検出して反射光束L1 の光束径を演算する
ことができる。
More specifically, when the measurement site of the object to be measured 106 is on the objective lens 105 side with respect to the focus of the objective lens 105, the reflected light beam L 1 becomes diffused light, and on the opposite side of the objective lens 105. However, the degree of diffusion and convergence reflects the displacement from the focus. At this time, the light intensity distribution characteristic of the reflected light flux L 1 detected by the photodetector 2 becomes the characteristics shown in FIGS. 3A to 3C as the polygon mirror 1 rotates. Therefore, on the light intensity distribution characteristics as shown in FIGS. 3A to 3C, the half value width that is a period in which the light intensity becomes half of the maximum value is detected to calculate the light flux diameter of the reflected light flux L 1. can do.

【0032】ちなみに、図3(a)は被測定物106の
測定部位が対物レンズ105の焦点より対物レンズ10
5側にある場合、図3(b)は焦点上にある場合、図3
(c)は焦点より対物レンズ105の反対側にある場合
をそれぞれ示している。これら図3(a)〜図3(c)
に示すように、それぞれの場合の半値幅W1 ,W2 ,W
3 は、光束径、すなわち反射光束L1 の拡散・収束の程
度を反映して異なっている。
Incidentally, in FIG. 3A, the measurement site of the object to be measured 106 is closer to the objective lens 10 than the focus of the objective lens 105.
3 is on the focus side, FIG.
(C) shows the case where it is on the opposite side of the objective lens 105 from the focus. These FIG. 3 (a) -FIG. 3 (c)
As shown in, the half widths W 1 , W 2 , W in each case
3 is different, reflecting the luminous flux diameter, that is, the degree of diffusion / convergence of the reflected luminous flux L 1 .

【0033】上述の如き光束径の検出は、光検出器6に
基づくトリガ信号S3 の立上りにより開始され、モータ
16により回転駆動されるポリゴンミラー1の1つの面
による反射光束L1 の1回目の回動・走査の際、カウン
タ13の出力状態で規定される、例えばピークホールド
期間では、反射光束L1 の最大値を検出するとともに、
ポリゴンミラー1の次の面による反射光束L1 の2回目
の回動・走査の際には、カウンタ13の出力状態が変化
するので、例えば半値幅検出期間となり、半値期間検出
回路10によりクロックパルスS2 に基づき半値期間を
検出して半値期間信号S3 を送出する。その後、変位換
算部14で、反射光束L1 の光束径を求め、この光束径
に基づき被測定物106の変位を検出する。
The detection of the luminous flux diameter as described above is started by the rise of the trigger signal S 3 based on the photodetector 6 and is the first time of the luminous flux L 1 reflected by one surface of the polygon mirror 1 which is rotationally driven by the motor 16. At the time of rotation / scanning, the maximum value of the reflected light flux L 1 is detected in the peak hold period defined by the output state of the counter 13, and
During the second rotation, the scanning of the reflected light beam L 1 by the next surface of the polygon mirror 1, the output state of the counter 13 is changed, for example, a half-width detection period, the clock pulses by half period detection circuit 10 The half-value period is detected based on S 2, and the half-value period signal S 3 is transmitted. Then, the displacement conversion unit 14 obtains the luminous flux diameter of the reflected luminous flux L 1 and detects the displacement of the DUT 106 based on this luminous flux diameter.

【0034】このとき、本実施例では、反射光束L1
回動しているので、被測定物106の傾きに起因して反
射光束L1 が対物レンズ105の中心からずれていて
も、この影響を受けることはない。
At this time, in this embodiment, since the reflected light beam L 1 is rotated, even if the reflected light beam L 1 is deviated from the center of the objective lens 105 due to the inclination of the DUT 106, this It will not be affected.

【0035】[0035]

【発明の効果】以上実施例とともに具体的に説明したよ
うに、本発明によれば、被測定物が傾いていても、この
傾きに影響されることなく、正確に、反射光束の光束径
を求めることができ、この光束径により一義的に決定さ
れる被測定物の微小変位を正確に検出し得る。
As described above in detail with reference to the embodiments, according to the present invention, even if the object to be measured is tilted, the diameter of the reflected light beam can be accurately determined without being affected by the tilt. It is possible to accurately determine the minute displacement of the object to be measured which is uniquely determined by the diameter of the light beam.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の構成の概略を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing an outline of a configuration of an embodiment of the present invention.

【図2】前記実施例に係る光束検出手段を示すブロック
線図である。
FIG. 2 is a block diagram showing a light flux detecting means according to the embodiment.

【図3】対物レンズの焦点位置に対する被測定物の位置
により変化する反射光束の光強度分布特性を示すグラフ
である。
FIG. 3 is a graph showing a light intensity distribution characteristic of a reflected light flux that changes depending on the position of the object to be measured with respect to the focal position of the objective lens.

【図4】従来技術に係る光学式微小変位測定装置の構成
の概略を示す説明図である。
FIG. 4 is an explanatory view showing an outline of a configuration of an optical micro-displacement measuring device according to a conventional technique.

【図5】被測定物が傾いた場合の反射光束の様子を示す
説明図である。
FIG. 5 is an explanatory diagram showing a state of a reflected light flux when an object to be measured is tilted.

【符号の説明】[Explanation of symbols]

1 ポリゴンミラー 2,6 光検出器 3 スリット 4,101 光源 103 偏光ビームスプリッタ 105 対物レンズ 106 被測定物 L1 反射光束1 Polygon Mirror 2, 6 Photo Detector 3 Slit 4, 101 Light Source 103 Polarizing Beam Splitter 105 Objective Lens 106 Object to be Measured L 1 Reflected Luminous Flux

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光束を被測定物に照射すると
ともに、被測定物からの反射光束から、被測定物の焦点
に対するずれ量に基づく反射光束の収束、若しくは拡散
の程度を検出することにより、前記ずれ量に基づく被測
定物の微小変位を検出するようになっている光学式微小
変位測定装置であって、 前記反射光束を反射するとともに、この反射光束が回動
するよう回転駆動される多面鏡と、 多面鏡の一面で反射されて回動する反射光束を検出し、
この反射光束の光強度の最大値を記憶するとともに、多
面鏡の次の面で反射された反射光束の光強度が前記最大
値に対して所定の割合になる時間を記憶し、この時間と
多面鏡の回転速度とから反射光束の光束径を求める光束
径検出手段とを有することを特徴とする光学式微小変位
測定装置。
1. A method of irradiating an object to be measured with a light beam from a light source and detecting the degree of convergence or diffusion of the reflected light beam based on the amount of deviation from the focus of the object to be measured from the light beam reflected from the object to be measured. The optical micro-displacement measuring device is configured to detect the micro-displacement of the object to be measured based on the displacement amount by the above-mentioned method. And the reflected light flux that is reflected by one surface of the polygon mirror and rotates,
The maximum value of the light intensity of the reflected light flux is stored, and the time when the light intensity of the reflected light flux reflected by the next surface of the polygon mirror becomes a predetermined ratio with respect to the maximum value is stored. An optical micro-displacement measuring device comprising: a light beam diameter detecting means for obtaining a light beam diameter of a reflected light beam based on a rotation speed of a mirror.
JP23044591A 1991-09-10 1991-09-10 Optical measuring device for minute displacement Withdrawn JPH0571958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23044591A JPH0571958A (en) 1991-09-10 1991-09-10 Optical measuring device for minute displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23044591A JPH0571958A (en) 1991-09-10 1991-09-10 Optical measuring device for minute displacement

Publications (1)

Publication Number Publication Date
JPH0571958A true JPH0571958A (en) 1993-03-23

Family

ID=16908005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23044591A Withdrawn JPH0571958A (en) 1991-09-10 1991-09-10 Optical measuring device for minute displacement

Country Status (1)

Country Link
JP (1) JPH0571958A (en)

Similar Documents

Publication Publication Date Title
FR2458830A1 (en) OPTICAL REPRESENTATION SYSTEM PROVIDED WITH AN OPTOELECTRONIC DETECTION SYSTEM FOR DETERMINING A GAP BETWEEN THE IMAGE PLAN OF THE REPRESENTATION SYSTEM AND A SECOND PLAN FOR REPRESENTATION
JPS6249562B2 (en)
KR100608892B1 (en) Displacement, yaw and pitch measuring method and measuring apparatus therefor
JPH0571959A (en) Optical measuring device for minute displacement
JPH0571958A (en) Optical measuring device for minute displacement
JPH04282407A (en) Measuring device of three-dimensional shape
JP2003065762A (en) Rotary laser device
JP2000028398A (en) Optical encoder apparatus
JP2001074604A (en) Method for measuring lens characteristics and its optical system
JP2531449B2 (en) Laser displacement meter
JPH07117414B2 (en) Automatic collimating lightwave rangefinder
JP3507262B2 (en) Surface inspection equipment
JP2003232606A (en) Angle detection system, angle detection method, and laser beam machining device
JP2531450B2 (en) Laser displacement meter
JPH06235865A (en) Confocal microscope
JP2808713B2 (en) Optical micro displacement measuring device
JPS6363910A (en) Distance measuring apparatus
JP2625209B2 (en) Optical micro displacement measuring device
JPS62218802A (en) Optical type distance and inclination measuring apparatus
JPH0560558A (en) Optical micro displacement measuring apparatus
JPH05141933A (en) Three-dimensional shape measuring device
RU2018792C1 (en) Method and device for aligning fabric-perot interferometer
JPH04130239A (en) Apparatus for measuring outward position and inward position of dynamic surface
JPH05209719A (en) Scan type laser displacement meter
JP2933678B2 (en) Surface shape measuring instrument

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203