JPH0571108A - Execution method for multi diameter continuous beam having rc floor plate - Google Patents

Execution method for multi diameter continuous beam having rc floor plate

Info

Publication number
JPH0571108A
JPH0571108A JP23314391A JP23314391A JPH0571108A JP H0571108 A JPH0571108 A JP H0571108A JP 23314391 A JP23314391 A JP 23314391A JP 23314391 A JP23314391 A JP 23314391A JP H0571108 A JPH0571108 A JP H0571108A
Authority
JP
Japan
Prior art keywords
concrete
girder
floor plate
floor slab
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23314391A
Other languages
Japanese (ja)
Inventor
Akinobu Kishi
明信 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23314391A priority Critical patent/JPH0571108A/en
Publication of JPH0571108A publication Critical patent/JPH0571108A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To freely set the order of placing concrete of a RC floor plate by controlling the tensile force generated in floor plate concrete in an intermediate supporting point of a multi-diameter continuous beam where a RC floor plate is formed in layer on a steel beam. CONSTITUTION:At the time of placing concrete of floor plate in a multidiameter continuous beam A where a RC floor plate 2 is formed in layer on a steel beam 1, in an intermediate supporting point of a continuous beam, compressive force is introduced as pre-stress in the upper portion of the steel beam 1 and concrete of the RC floor plate 2 through a pre-stress loading device 4 installed above a neutral axis of the steel beam 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋼桁上にRC床版が層着
された橋梁等における多径間連続桁の施工法に係るもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for constructing a multi-span continuous girder in a bridge or the like in which RC slabs are layered on a steel girder.

【0002】[0002]

【従来の技術】従来のRC床版を有する橋梁は、一般に
鋼製のI桁a1 、あるいは箱桁a2 より構成された鋼桁
a上に、路床部を構成するRC床版bが重層され、同R
C床版bと鋼桁aとの間にずれ止めcが設置されてい
て、鋼桁aの変形に伴ってRC床版b部分に応力が発生
するように構成されている。(図8及び図9並に図10
参照)図中dは橋脚である。図11に示すような連続桁
の場合、中間支点部においては死荷重等の垂直荷重によ
って負のモーメントを生じ、RC床版b部に引張力が生
じる。
2. Description of the Related Art A bridge having a conventional RC floor slab generally has a steel floor girder a 1 or a steel girder a 2 composed of a box girder a 2 on which a RC floor slab b constituting a roadbed portion is formed. Layered and same R
A shift stopper c is installed between the C floor slab b and the steel girder a, and a stress is generated in the RC floor slab b portion as the steel girder a deforms. (See FIG. 8 and FIG. 9 as well as FIG.
Reference) d in the figure is a pier. In the case of the continuous girder as shown in FIG. 11, a negative moment is generated at the intermediate fulcrum by a vertical load such as a dead load, and a tensile force is generated at the RC floor slab b.

【0003】従ってRC床版のコンクリート打設時にお
いて、同打設コンクリートの材令が低い場合にはRC床
版の十分な強度が得られず、中間支点部に発生する引張
力によって、クラツク等の有害な損傷が発生する。この
ため従来は多径間連続桁における中間支点部のRC床版
のコンクリートを打残しておき、最後に同部のコンクリ
ートを打設する方法を彩っていた。
Therefore, at the time of concrete pouring of RC floor slabs, when the age of the cast concrete is low, sufficient strength of RC floor slabs cannot be obtained, and cracks or the like are caused by the tensile force generated at the intermediate fulcrum. The harmful damage of. For this reason, conventionally, the method of leaving the concrete of the RC floor slab at the intermediate fulcrum portion of the multi-span continuous girder and finally placing the concrete of the same portion was colored.

【0004】図12(a)(b)(c)は前記RC床版
のコンクリート打設順序を示し、pは新規コンクリート
打設部、qは既設コンクリート部を示す。
FIGS. 12 (a), 12 (b) and 12 (c) show the concrete pouring sequence of the RC floor slab, where p is a new concrete pouring portion and q is an existing concrete portion.

【0005】[0005]

【発明が解決しようとする課題】前記従来技術において
は、コンクリート打設量、打設順序等にかなりの検討が
必要であり、また、コンクリートの打設間隔及び打設量
が橋梁の架設工程に重大な影響を及ぼす場合がある。こ
のようにコンクリートの打設検討を行ったにもかかわら
ず、鋼桁とRC床版の合成作用の程度が十分に把握でき
ず、推定していた以上の引張力が発生し床版にクラツク
が発生することがあった。
In the above-mentioned prior art, it is necessary to consider the amount of concrete to be placed, the order of placing, etc., and the interval and the amount of concrete to be placed in the bridge erection process. May have serious effects. In spite of the examination of concrete pouring in this way, the degree of combined action of the steel girder and RC floor slab could not be fully grasped, and the tensile force more than estimated was generated and cracks were generated on the floor slab. It happened.

【0006】更にRC床版の打設順序が限定され、特に
支間中央部から打設するため、計画しているキヤンバー
値(計画高さ)より下がり気味のキヤンバーとなること
が多くRC床版打設後の修正はほぼ不可能であった。本
発明はこのような実情に鑑みて提案されたもので、その
目的とする処は、RC床版のコンクリート打設順序等を
自由に設定できるようにして、コンクリート部に生起す
る構造的に有害な引張力をコントロールすることができ
るRC床版を有する多径間連続桁の施工法を提供する点
にある。
Further, the order of placing RC floor slabs is limited, and in particular, since the casting is carried out from the central portion of the span, RC floor slabs often hit a lower level than the planned cab value (planned height). It was almost impossible to modify after construction. The present invention has been proposed in view of the above circumstances, and the purpose thereof is to make it possible to freely set the concrete pouring order of RC floor slabs and the like, and to prevent structural damage that occurs in the concrete part. The point is to provide a construction method for a multi-span continuous girder having an RC floor slab capable of controlling various tensile forces.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る多径間連続桁の施工法によれば、鋼桁
上にRC床版が層着された多径間連続桁における床版コ
ンクリート打設時、前記連続桁の中間点店において鋼桁
部に設置したプレストレス載荷装置を介して同鋼桁部上
部及び床版コンクリート部に圧縮力をプレストレス力と
して導入するものである。
In order to achieve the above-mentioned object, according to the method for constructing a multi-span continuous girder according to the present invention, a multi-span continuous girder in which an RC floor slab is layered on a steel girder. Injecting compressive force as prestressing force into the steel girder upper part and floor slab concrete part through the prestress loading device installed in the steel girder part at the middle point store of the continuous girder at the time of placing the slab concrete in Is.

【0008】[0008]

【作用】本発明によれば前記したように鋼桁上にRC床
版が層着された多径間連続桁における垂直荷重によって
負の曲げモーメントが生起する中間支点において、鋼桁
部に設置したプレストレス載荷装置を介して、同鋼桁上
部及び床版コンクリートに圧縮力がプレストレス力とし
て導入されるので、前記負の曲げモーメントによって生
起した中間支点におけるRC床版に引張力が低減または
相殺され、同RC床版における引張力の発生が抑止され
る。
According to the present invention, as described above, it is installed in the steel girder portion at the intermediate fulcrum where a negative bending moment is generated by the vertical load in the multi-span continuous girder in which the RC slab is layered on the steel girder. Since a compressive force is introduced as a prestressing force into the steel girder upper part and floor slab concrete via a prestressing load device, the tensile force is reduced or offset in the RC slab at the intermediate fulcrum caused by the negative bending moment. The generation of tensile force in the RC floor slab is suppressed.

【0009】[0009]

【実施例】以下本発明を図示の実施例について説明す
る。Aは鋼桁1上にRC床版2が層着された多径間連続
桁、3はその支点を示す。前記連続桁Aにおける中間支
点においてプレストレス載荷装置4が装架される。図2
乃至図4は前記プレストレス載荷装置4の一実施例を示
し、RC床版2の合成作用を考慮して、鋼桁1の中立軸
より上部のウエブ部に配設され、鋼桁1のウエブ部にセ
ンターホールジヤツキ5及びPCケーブル6の如きPC
鋼材の定着部を構成するアンカー7が対設され、夫々定
着桁8に取付けられている。
The present invention will be described below with reference to the illustrated embodiments. A indicates a multi-span continuous girder in which an RC floor slab 2 is layered on a steel girder 1, and 3 indicates its fulcrum. The prestress loading device 4 is mounted at an intermediate fulcrum in the continuous girder A. Figure 2
4 shows an embodiment of the prestress loading device 4, which is arranged in the web portion above the neutral axis of the steel girder 1 in consideration of the synthetic action of the RC floor slab 2, and the web of the steel girder 1 is provided. PC such as center hole jack 5 and PC cable 6
Anchors 7 constituting a steel fixing portion are provided opposite to each other and are attached to fixing girders 8, respectively.

【0010】而してRC床版2のコンクリート打設時
に、前記センターホールジヤツキ5によってPCケーブ
ル6を緊張し、アンカー7に定着することによって、鋼
桁1の上部及びRC床版2に圧縮力がプレストレスとし
て導入される。この際前記プレストレス載荷装置4が鋼
桁1のウエブにおける中立軸より上部に配設されたこと
によって、センターホールジヤツキ5の反力がRC床版
2に確実に伝達される。
When the RC floor slab 2 is cast into concrete, the PC cable 6 is tensioned by the center hole jack 5 and fixed to the anchor 7, so that the upper portion of the steel girder 1 and the RC floor slab 2 are compressed. Power is introduced as prestress. At this time, since the prestress loading device 4 is arranged above the neutral shaft of the web of the steel girder 1, the reaction force of the center hole jack 5 is reliably transmitted to the RC floor slab 2.

【0011】かくしてRC床版2が十分な強度を発現し
た後にプレストレス載荷装置4を撤去する。図5はプレ
ストレス載荷装置4においてケーブル6の代りにロツド
9を使用した場合を示し、定着桁8に装架された定着板
に挿貫されたねじ部9aにナツト10を締付けて圧縮プ
レストレス力を導入するものであって引張力の影響範囲
が短かい場合に適用される。
Thus, after the RC floor slab 2 exhibits sufficient strength, the prestress loading device 4 is removed. FIG. 5 shows a case where the rod 9 is used in place of the cable 6 in the prestress loading device 4, and the nut 10 is tightened to the screw portion 9a which is inserted into the fixing plate mounted on the fixing girder 8 to compress the prestress. It applies force and is applied when the range of influence of tensile force is short.

【0012】前記の方法によれば、RC床版2を有する
多径間連続桁Aにおける中間支点において、鋼桁1上部
及びRC床版2に圧縮力がプレストレス力として導入さ
れるので、中間支点部におけるRC床版2に発生する引
張力が低減され、同RC床版2におけるクラツクの発生
が防止される。また図6に示すように既設部pのRC床
版に引張力を発生させず、且つ中間支点の剛性が高いた
め、中央支間のキヤンバーを改善することが可能とな
る。なおプレストレス導入時期は既設床版pがある程度
固化し、新規コンクリートを打設する直前とする。
According to the above method, at the intermediate fulcrum of the multi-span continuous girder A having the RC slab 2, the compressive force is introduced as the prestressing force to the upper part of the steel girder 1 and the RC slab 2, so that the intermediate The tensile force generated in the RC floor slab 2 at the fulcrum portion is reduced, and the generation of cracks in the RC floor slab 2 is prevented. Further, as shown in FIG. 6, no tensile force is generated in the RC floor slab of the existing part p and the rigidity of the intermediate fulcrum is high, so that the chamber between the central supports can be improved. The prestress is introduced just before the existing floor slab p is solidified to some extent and new concrete is poured.

【0013】[0013]

【発明の効果】本発明に係るRC床版を有する多径間連
続桁の施工法によれば、同連続桁の中間支点において床
版コンクリート部に圧縮力がプレストレスト力として導
入され、中間支点に生起する負の曲げモーメントによる
引張力を低減または相殺して、RC床版のクラツクの発
生をなくすことができる。
According to the method of constructing a multi-span continuous girder having an RC floor slab according to the present invention, a compressive force is introduced as a prestressed force into the concrete part of the floor slab at the intermediate fulcrum of the continuous girder, and Tensile forces due to the negative bending moments that occur can be reduced or offset to eliminate cracking on the RC deck.

【0014】またコンクリートの打設順序、打設期間を
自由に設定できるため、架設工程上有利となり、更にま
たコンクリートの打設順序、打設量の設定によってキヤ
ンバー量修正等に利用できる。
Further, the order of placing concrete and the period of placing concrete can be freely set, which is advantageous in the erection process, and can be used for correcting the amount of the chamber by setting the order of placing concrete and the amount of placing concrete.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法が適用されるRC床版を有する多
径間連続桁の概略を示す正面図である。
FIG. 1 is a front view schematically showing a multi-span continuous girder having an RC floor slab to which the method of the present invention is applied.

【図2】プレストレス載荷装置の一実施例を示す正面図
である。
FIG. 2 is a front view showing an embodiment of a prestress loading device.

【図3】図2の側面図である。FIG. 3 is a side view of FIG.

【図4】図2の矢視イ−イ図である。FIG. 4 is a view taken along the line EE in FIG.

【図5】プレストレス載荷装置の他の実施例を示す正面
図である。
FIG. 5 is a front view showing another embodiment of the prestress loading device.

【図6】(a)(b)(c)は本発明の方法によるキヤ
ンバー量の改善方法を示す工程図である。
6 (a), (b) and (c) are process drawings showing a method for improving the amount of camber according to the method of the present invention.

【図7】(a)(b)(c)は従来方法によるキヤンバ
ー量の改善方法を示す工程図である。
7 (a), (b) and (c) are process diagrams showing a method for improving the amount of camber by a conventional method.

【図8】本発明の方法が適用されるRC床版を有する多
径間連続桁の正面図である。
FIG. 8 is a front view of a multi-span continuous girder having an RC floor slab to which the method of the present invention is applied.

【図9】前記多径間連続桁の縦断側面図である。FIG. 9 is a vertical sectional side view of the multi-span continuous girder.

【図10】前記多径間連続桁の他の例を示す縦断側面図
である。
FIG. 10 is a vertical sectional side view showing another example of the multi-span continuous girder.

【図11】前記多径間連続桁の等分布荷重による曲げモ
ーメント分布図である。
FIG. 11 is a bending moment distribution diagram of the multi-span continuous girder due to an evenly distributed load.

【図12】(a)(b)(c)は従来のRC床版コンク
リートの打設順序を示す工程図である。
12 (a), (b) and (c) are process drawings showing the order of placing conventional RC slab concrete.

【符号の説明】[Explanation of symbols]

A 多径間連続桁 1 鋼桁 2 RC床版 3 支点 4 プレストレス載荷装置 5 センターホールジヤツキ 6 ケーブル 7 アンカー 8 定着桁 A Multi-span continuous girder 1 Steel girder 2 RC floor slab 3 Support point 4 Prestress loading device 5 Center hole jack 6 Cable 7 Anchor 8 Anchored girder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼桁上にRC床版が層着された多径間連
続桁における床版コンクリート打設時、前記連続桁の中
間支点において鋼桁部に設置したプレストレス載荷装置
を介して同鋼桁部上部及び床版コンクリート部に圧縮力
をプレストレス力として導入することを特徴とするRC
床版を有する多径間連続桁の施工法。
1. When placing concrete on a floor slab in a multi-span continuous girder in which an RC slab is layered on a steel girder, through a prestress loading device installed in the steel girder part at an intermediate fulcrum of the continuous girder. RC characterized by introducing a compressive force as a prestressing force into the upper part of the steel girder part and the slab concrete part
Construction method for continuous span girders with floor slabs.
JP23314391A 1991-09-12 1991-09-12 Execution method for multi diameter continuous beam having rc floor plate Withdrawn JPH0571108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23314391A JPH0571108A (en) 1991-09-12 1991-09-12 Execution method for multi diameter continuous beam having rc floor plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23314391A JPH0571108A (en) 1991-09-12 1991-09-12 Execution method for multi diameter continuous beam having rc floor plate

Publications (1)

Publication Number Publication Date
JPH0571108A true JPH0571108A (en) 1993-03-23

Family

ID=16950400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23314391A Withdrawn JPH0571108A (en) 1991-09-12 1991-09-12 Execution method for multi diameter continuous beam having rc floor plate

Country Status (1)

Country Link
JP (1) JPH0571108A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100391713B1 (en) * 2000-09-08 2003-07-16 삼표산업 주식회사 Continuous Preflex Beam Structures Using External Tendon and Constructing Method thereof
KR20030093465A (en) * 2002-06-03 2003-12-11 (주)대우건설 Bridge Having Pre-cast Concrete Slab Reinforced By Compressive Force and Construction Method Thereof
CN109183634A (en) * 2018-10-26 2019-01-11 福州大学 The construction and its construction method of simply supported T-beam bridge serialization are realized in end floor beam connection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100391713B1 (en) * 2000-09-08 2003-07-16 삼표산업 주식회사 Continuous Preflex Beam Structures Using External Tendon and Constructing Method thereof
KR20030093465A (en) * 2002-06-03 2003-12-11 (주)대우건설 Bridge Having Pre-cast Concrete Slab Reinforced By Compressive Force and Construction Method Thereof
CN109183634A (en) * 2018-10-26 2019-01-11 福州大学 The construction and its construction method of simply supported T-beam bridge serialization are realized in end floor beam connection

Similar Documents

Publication Publication Date Title
CN1322202C (en) Method for anti-cracking in hogging moment area of steel-concrete combined beam
US5655243A (en) Method for connecting precast concrete beams
JP2967874B1 (en) How to build an overhead suspension bridge
KR100785634B1 (en) Continuation structure of prestressed concrete composite beam bridge and method thereof
CN210621476U (en) Segment prefabricated bent cap cantilever assembling construction device
JPH0571108A (en) Execution method for multi diameter continuous beam having rc floor plate
CN211735114U (en) A antidumping reinforced structure for rectangle single-column mound bridge
JPH09235705A (en) Reinforcing structure of gerber bridge hinge and reinforcing method thereof
JP2000064228A (en) Erection method for box girder bridge
KR20060110685A (en) The method for construction of bridge
CN110700122A (en) A antidumping reinforced structure for rectangle single-column mound bridge
JP2003064621A (en) Hanging floor slab bridge and reinforcing method of hanging floor slab
JP2796943B2 (en) Construction method of multi-span continuous steel girder with reinforced concrete slab
JP3171676B2 (en) Construction method of cast-in-place concrete horizontal member
KR100437258B1 (en) Rehabilitating method of rahman hinged-joint bridge
JP2954523B2 (en) Pretension type PC member and manufacturing method thereof
JPH0765297B2 (en) How to erection a cane ramen bridge
KR0151684B1 (en) Girders of the precasting concrete
KR20040010852A (en) Method for protecting the loss of prestress in prestressed beam by temporary load
JPS5927819B2 (en) Unbonded prestressed concrete method
JPS58117135A (en) Reinforcement of concrete supporting point
KR20240052250A (en) prestressed concrete girder
JP3028159B2 (en) Construction method of railway viaduct
CN110409279A (en) Strong bridge structure and construction method
JPH1129936A (en) Slope frame structure, and its construction method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203