JPH057079B2 - - Google Patents

Info

Publication number
JPH057079B2
JPH057079B2 JP17212885A JP17212885A JPH057079B2 JP H057079 B2 JPH057079 B2 JP H057079B2 JP 17212885 A JP17212885 A JP 17212885A JP 17212885 A JP17212885 A JP 17212885A JP H057079 B2 JPH057079 B2 JP H057079B2
Authority
JP
Japan
Prior art keywords
sodium
added
polyamine derivative
wastewater
polyamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17212885A
Other languages
Japanese (ja)
Other versions
JPS6233590A (en
Inventor
Masafumi Morya
Kazuo Hosoda
Akira Nishimura
Tomio Imachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Myoshi Oil and Fat Co Ltd
Original Assignee
Myoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Myoshi Oil and Fat Co Ltd filed Critical Myoshi Oil and Fat Co Ltd
Priority to JP17212885A priority Critical patent/JPS6233590A/en
Priority to DE8686109995T priority patent/DE3685861T2/en
Priority to AT86109995T priority patent/ATE77806T1/en
Priority to EP86109995A priority patent/EP0211305B1/en
Priority to US06/887,945 priority patent/US4731187A/en
Publication of JPS6233590A publication Critical patent/JPS6233590A/en
Publication of JPH057079B2 publication Critical patent/JPH057079B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は金属捕集方法に関する。 〔従来の技術〕 近年、工場等の廃水による河川、海等の汚染が
問題となるにつれて、廃水による汚染防止のため
の規制が強化され、廃水中に含有される金属類を
所定濃度以下とすることが義務づけられており、
特に水銀、カドミウム、亜鉛、銅、クロム等の人
体に有害な重金属類に対しては特に厳しい規制が
設けられている。このため排水中の金属類を除去
するための種々の方法が提案されており、この種
の方法として、イオン浮選法、イオン交換法、電
解浮上法、電気透析法、逆浸透圧法あるいは消石
灰、苛性ソーダ等のアルカリ中和剤を投入して金
属類を水酸化物とした後、高分子凝集剤により凝
集沈澱させて除去する中和凝集沈澱法等が知られ
ている。 〔発明が解決しようとする問題点〕 しかしながら、イオン浮選法、イオン交換法、
電解浮上法、電気透析法、逆浸透圧法は重金属類
の除去率、操作性、ランニングコスト等の問題が
あり、一部の特殊な廃水処理のみにしか利用され
ていないのが現状である。また中和凝集沈澱法で
は大量の金属水酸化物スラツジが生成し、これら
水酸化物のスラツジは脱水性が悪く、スラツジ容
積も大きいため運搬が困難であるという問題を有
するとともに、重金属類を排水基準値以下に除去
することも非常に困難である。しかもこれらスラ
ツジは廃棄の仕方によつては再溶解して二次公害
を生じるという問題も含んでいる。 〔問題点を解決するための手段〕 本発明者らは上記の点に鑑み鋭意研究した結
果、1分子中に少なくとも1個のβ−ヒドロキシ
アルキル基と、少なくとも1個のジチオカルボキ
シ基またはその塩類をN−置換基として有するポ
リアミン誘導体が金属捕集剤として優れた性能を
有することを見出したが、更に鋭意研究した結
果、上記ポリアミン誘導体と一硫化ナトリウム、
ポリ硫化ナトリウム、硫化水素ナトリウムの少な
くとも1種とを併用することにより、排水中の金
属イオンを最も効率良く捕集除去し得ることを見
出し本発明を完成するに至つた。 本発明の金属捕集方法は、1分子中に少なくと
も1個のβ−ヒドロキシアルキル基と、少なくと
も1個のジチオカルボキシ基またはその塩類をN
−置換基として有するポリアミン誘導体と、一硫
化ナトリウム、ポリ硫化ナトリウム、硫化水素ナ
トリウムの少なくとも1種とを金属イオンを含有
する廃水に添加して廃水中の金属イオンを捕集除
去する方法である。 本発明において用いるポリアミン誘導体は、1
級アミノ基および/または2級アミノ基を有する
ポリアミン分子中の窒素原子に結合する活性水素
と置換したN−置換基として少なくとも1個のβ
−ヒドロキシアルキル基と、少なくとも1個のジ
チオカルボキシ基:−CSSHまたはその塩類、例
えばナトリウム塩、カリウム塩等のアルカリ金属
塩、カルシウム塩等のアルカリ土類金属塩、アン
モニウム塩等、とを有する化合物である。このポ
リアミン誘導体は例えばポリアミン類にエポキシ
アルカンを開環付加せしめて得られる少なくとも
1個のβ−ヒドロキシアルキル基をN−置換基と
して有し、かつ窒素原子に結合した少なくとも1
個の活性水素を有する化合物、即ちポリ(または
モノ)−N−(β−ヒドロキシアルキル)ポリアミ
ンと二硫化炭素を反応せしめるか、あるいはポリ
アミン類に二硫化炭素を反応せしめて得られる少
なくとも1個のジチオカルボキシ基をN−置換基
として有し、かつ窒素原子に結合した少なくとも
1個の活性水素を有する化合物、即ちポリ(また
はモノ)−N−(ジチオカルボキシ)ポリアミンに
エポキシアルカンを開環付加せしめる方法により
得られるが、更に反応終了後、水酸化ナトリウ
ム、水酸化カリウム、水酸化アンモニウム等のア
ルカリで処理するか、あるいは前記反応をアルカ
リの存在下で行うことによりジチオカルボキシ基
の活性水素をアルカリ金属、アルカリ土類金属、
アンモニウム等で置換することができる。更にジ
チオカルボキシ基の一部の活性水素をアルカリ金
属、アルカリ土類金属、アンモニウム等で置換し
てジチオカルボキシ基及びジチオカルボキシ基の
塩を置換基として有するポリアミン誘導体とする
こともできる。ポリ(またはモノ)−N−(β−ヒ
ドロキシアルキル)ポリアミンと二硫化炭素とを
反応は溶媒、好ましくは水、アルコール中で30〜
100℃で1〜10時間、特に40〜70℃で2〜5時間
行うことが好ましい。またポリ(またはモノ)−
N−(ジチオカルボキシ)ポリアミンとエポキシ
アルカンとの反応は、溶媒、好ましくは水、アル
コール、アセトン、ジオキサン、メチルエチルケ
トン等の単独もしくは混合溶媒中にて40〜100℃
で1〜19時間、特に水−アセトンの1:1混合溶
媒中に60〜80℃で2〜3時間行うことが好まし
い。 上記ポリアミン類としては例えば、エチレンジ
アミン、プロピレンジアミン、ブチレンジアミ
ン、ヘキサメチレンジアミン、ジエチレントリア
ミン、ジプロピレントリアミン、ジブチレントリ
アミン、トリエチレンテトラミン、トリプロピレ
ンテトラミン、トリブチレンテトラミン、テトラ
エチレンペンタミン、テトラプロピレンペンタミ
ン、テトラブチレンペンタミン、ペンタエチレン
ヘキサミン等のポリアルキレンポリアミン;フエ
ニレンジアミン、キシレンジアミン、メタキシレ
ンジアミン、イミノビスプロピルアミン、モノメ
チルアミノプロピルアミン、メチルイミノビスプ
ロピルアミン、1,3−ビス(アミノメチル)シ
クロヘキサン、3,5−ジアミノクロロベンゼ
ン、メラミン、1−アミノエチルピペラジン、ピ
ペラジン、3,3′−ジクロロベンジジン、ジアミ
ノフエニルエーテル、トリジン、m−トルイレン
ジアミン等やポリエチレンポリイミン(平均分子
量300以上)等が用いられる。更にN−アルキル
ポリアミン、N−アシルポリアミン等のアルキル
基、アシル基等を置換基として有するN−置換ポ
リアミン類も用いることができる。これらN−置
換ポリアミン類は前記ポリアミン類にアルキルハ
ライド、脂肪酸類を反応せしめる等により得られ
る。N−アルキルポリアミンとしては、例えばN
−アルキルエチレンジアミン、N−アルキルプロ
ピレンジアミン、N−アルキルヘキサメチレンジ
アミン、N−アルキルフエニレンジアミン、N−
アルキルキシレンジアミン、N−アルキルエチレ
ントリアミン、N−アルキルトリエチレンテトラ
ミン、N−アルキルテトラエチレンペンタミン、
N−アルキルペンタエチレンヘキサミン等が挙げ
られるが、N−置換アルキル基の炭素数は2〜18
が好ましい。 上記ポリアミン類、N−置換ポリアミン類は単
独または二種以上混合して用いることができる。 本発明において用いる、少なくとも1個のβ−
ヒドロキシアルキル基と少なくとも1個のジチオ
カルボキシ基またはその塩類を置換基として有す
るポリアミン誘導体におけるβ−ヒドロキシアル
キル基は炭素数2〜28のものが好ましく、β−ヒ
ドロキシアルキル基を導入するための好ましいエ
ポキシアルカンは炭素数2〜28のものである。上
記エポキシアルカンとしては、例えばエチレンオ
キシド、プロピレンオキシド、ビチレンオキシド
あるいはα−オレフインオキシド(炭素数6〜
28)等が挙げられる。 本発明方法では少なくとも1個のβ−ヒドロキ
シアルキル基と、少なくとも1個のジチオカルボ
キシ基とをN−置換基として有するポリアミン誘
導体と、一硫化ナトリウム、ポリ硫化ナトリウ
ム、硫化水素ナトリウムの少なくとも1種とを廃
水中に添加して廃水中の金属イオンを捕集除去す
る。ポリ硫化ナトリウムとしては、二硫化ナトリ
ウム、三硫化ナトリウム、四硫化ナトリウム、五
硫化ナトリウムが用いられる。ポリアミン誘導体
と上記硫化ナトリウム類との使用割合は重量比で
1:99〜99:1であれば本発明の目的を達し得る
が、特に20:80〜98:2であることが好ましい。
ポリアミン誘導体と、硫化ナトリウム類とはあら
かじめ混合して廃水に添加しても、別々に廃水に
添加しても良いが、あらかじめ両者を混合して廃
水に添加することが好ましい。尚、別々に添加す
る場合、ポリアミン誘導体を先に添加し、その
後、硫化ナトリウム類を添加しても、その逆の順
序で添加しても金属イオン除去効果はほぼ同等で
ある。 本発明において用いられるポリアミン誘導体は
単独でも金属捕集剤として用いられ得るが、硫化
ナトリウム類と併用した場合、生成するフロツク
が更に大きく、フロツクの沈澱に要する時間を短
縮でき、廃水中の金属イオンをきわめて効率良く
捕集除去できる。また硫化ナトリウム類も金属イ
オンとの錯形成能を有するが、単独で用いた場
合、生成するフロツクがきわめて小さいためフロ
ツクを沈澱せしめて除去することが困難であり、
前記ポリアミン誘導体と併用してはじめて廃水中
の金属イオンを効率良く捕集除去することができ
る。これはポリアミン誘導体の金属イオンに対す
る錯形成能と、硫化ナトリウム類の金属イオンに
対する錯形成能とが相乗効果的に作用するものと
考えられる。従つてポリアミン誘導体及び硫化ナ
トリウム類の廃水への添加量は、両者の合計量と
して廃水中の金属イオン量の0.7〜4モル当量、
特に0.9〜1.5モル当量となる量が好ましい。 本発明において廃水中にポリアミン誘導体と硫
化ナトリウム類とを添加して廃水中の金属イオン
を捕集除去するに際して、廃水のPHを3〜10、特
に4〜9に調整することが好ましい。PHの調整に
用いられる酸、アルカリとしては、フロツクの生
成を阻害しないものであれば良いが、通常は酸と
して塩酸、硫酸、硝酸等が用いられ、アルカリと
しては水酸化ナトリウム、水酸化カリウム、水酸
化カルシウム等が用いられる。 本発明方法によれば水銀、カドミウム、亜鉛、
鉛、銅、クロム、砒素、金、銀、白金、バナジウ
ム、タリウム等を効率良く捕集して除去すること
ができる。 〔実施例〕 以下、実施例を挙げて本発明を更に詳細に説明
する。 実施例 1 攪拌機、温度計、滴下ロート、還流冷却機を付
けた四ツ口フラスコ中に、N−(β−ヒドロキシ
ラウリル)エチレンジアミン106gと20%水酸化
ナトリウム水溶液90gを仕込み、40℃にて激しく
攪拌しながら滴下ロートより二硫化炭素33gを滴
下し、滴下終了後、同温度にて4時間熟成を行つ
た。次いで反応溶液を大量のアアセトン中に投入
して沈澱を生成させ、沈澱物を水−アセトン系で
再沈澱を3回行つて精製した後、減圧乾燥して硫
黄含有率17.5wt%のポリアミン誘導体粉末125g
を得た。 このポリアミン誘導体100gに一硫化ナトリウ
ム30gを混合した混合物0.3gを銅イオン含有水
溶液(50ppmのCu2+含有、PH=5.0)、カドミウム
イオン含有水溶液(50ppmのCd2+含有、PH=
5.0)、水銀イオン含有水溶液(50ppmのHg2+
有、PH=5.0)、鉛イオン含有水溶液(50ppmの
Pb2+含有、PH=5.0)の4種の水溶液各々1000ml
に添加し、5分間攪拌した後、静置して生成した
フロツクが沈澱するまでの時間を測定した。結果
を第1表に示す。次いで生成したフロツクを濾過
した後、濾液中の残存金属イオン濃度を原子吸光
分析法により測定した結果及び生成したフロツク
の容量を第1表にあわせて示す。 実施例 2 実施例1と同様の装置に、N−(β−ヒドロキ
シオクチル)トリエチレンテトラミン118gと、
20%水酸化ナトリウム水溶液180gを仕込み、実
施例1と同様にして二硫化炭素66gを反応せし
め、精製乾燥して硫黄含有率26.8wt%の淡黄色の
ポリアミン誘導体粉末195gを得た。 このポリアミン誘導体100gに五硫化ナトリウ
ム30gを混合した混合物0.3gを、実施例1と同
様の4種の金属イオン含有水溶液1000mlに各々添
加し実施例1と同様にしてフロツク沈澱時間、フ
ロツク生成量、濾液中の残存金属イオン濃度を測
定した。結果を第1表に示す。 実施例 3 実施例1と同様の装置に、N,N−ビス(β
−ヒドロキシオクチル)トリエチレンテトラミン
173gと20%水酸化ナトリウム水溶液360gを仕込
み、次いで実施例1と同様にして二硫化炭素66g
を反応させ、精製乾燥して硫黄含有率19.1wt%の
淡黄白色のポリアミン誘導体の粉末286gを得た。 このポリアミン誘導体100gに硫化水素ナトリ
ウム20gを混合した混合物0.4gを、実施例1と
同様の4種の金属イオン含有水溶液1000mlに各々
添加し、実施例1と同様にしてフロツク沈澱時
間、フロツク生成量、濾液中の残存金属イオン濃
度を測定した。結果を第1表に示す。 実施例 4 実施例1と同様の装置にN−(β−ヒドロキシ
ヘキサデシル)ジエチレントリアミン167gと水
200gを仕込み、60℃に加熱して二硫化炭素44g
を滴下ロートより滴下し、滴下終了後、同温度に
て4時間熟成を行つた。次いで反応溶液を70〜75
℃に昇温し、20%水酸化ナトリウム120gを添加
して1.5時間反応を行つた。しかる後、実施例1
と同様にして精製乾燥を行い、硫黄含有率15.7wt
%の淡赤褐色のポリアミン誘導体粉末207gを得
た。 このポリアミン誘導体100gに一硫化ナトリウ
ム20gと五硫化ナトリウム15gを混合した混合物
0.3gを、実施例1と同様の4種の金属イオン含
有水溶液1000mlに各々添加し、実施例1と同様に
してフロツク沈澱時間、フロツク生成量、濾液中
の残存金属イオン濃度を測定した。結果を第1表
に示す。 実施例 5 実施例1と同様の装置に水429gを仕込み、次
いでN−(β−ヒドロキシオクタコシル)ヘキサ
メチレンジアミン299gを細かく粉砕して水に分
散せしめた後、40℃にて二硫化炭素47gを滴下
し、滴下終了後、同温度にて熟成した。次いで30
%水酸化ナトリウム水溶液74gを添加し、50℃に
昇温して1.5時間反応を行つた。反応終了後、不
溶成分を濾別して水洗し、更にアセトンにて洗浄
した後、粉砕し減圧乾燥して硫黄含有率12.5wt%
の黄色のポリアミン誘導体の粉砕物306gを得た。 このポリアミン誘導体100gに一硫化ナトリウ
ム20gを混合した混合物0.4gを、実施例1と同
様の4種の金属イオン含有水溶液1000mlに各々添
加し、実施例1と同様にしてフロツク沈澱時間、
フロツク生成量、濾液中の残存金属イオン濃度を
測定した。結果を第1表に示す。 実施例 6 市販ポリエチレンポリイミン(日本触媒化学工
業(株)製、エポミンSP−300)99gをエチルアルコ
ール146gに溶解させ、75℃に加熱攪拌しながら
還流下でエポキシアルカン(炭素数12)212gを
滴下し、滴下終了後、同一温度に2時間保持した
後、濃縮して黄色の結晶性固体231gを得た。こ
の結晶性固体200gを細かく粉砕して水200gに分
散させ、水酸化ナトリウム20gを添加して40℃で
二硫化炭素32gを滴下し、滴下終了後、同一温度
で2時間反応を続けた。反応終了後、不溶成分を
濾別して水洗し、更にアセトンで洗浄後、減圧乾
燥させて硫黄含有率10.1wt%の黄色のポリアミン
誘導体の粉砕物241gを得た。 このポリアミン誘導体100gに五硫化ナトリウ
ム30gを混合した混合物0.3gを、実施例1と同
様の4種の金属イオン含有水溶液1000mlに各々添
加し、実施例1と同様にしてフロツク沈澱時間、
フロツク生成量、濾液中の残存金属イオン濃度を
測定した。結果を第1表に示す。 実施例 7 ポリエチレンイミンにエポキシアルカンを反応
せしめた実施例6と同様の結晶性固体200gを濃
アンモニア水58gに溶解させた後、水300gに分
散させ、40℃で二硫化炭素32gを滴下し、滴下終
了後、2時間同一温度で反応を続けた。反応終了
後、不溶成分を濾別して水洗し、更にアセトンで
洗浄後、減圧乾燥して硫黄含有率10.86wt%の黄
色のポリアミン誘導体の粉砕物239gを得た。 このポリアミン誘導体100gに一硫化ナトリウ
ム15gと五硫化ナトリウム15gを混合した混合物
0.3gを、実施例1と同様の4種の金属イオン含
有水溶液1000mlに各々添加し、実施例1と同様に
してフロツク沈澱時間、フロツク生成量、濾液中
の残存金属イオン濃度を測定した。結果を第1表
に示す。 実施例 8 実施例6で得たポリアミン誘導体100gを水200
gに分散させ、更に塩化アンモニウム24gを添加
して50℃で4時間反応を行い、反応終了後、不溶
成分を濾別して水洗し、更にアセトンで洗浄後、
減圧乾燥してジチオカルボキシ基の活性水素をア
ンモニウムで置換してなる、硫黄含有率11.5wt%
の黄色のポリアミン誘導体95gを得た。 このポリアミン誘導体100gに硫化水素ナトリ
ウム30gを混合した混合物0.3gを、実施例1と
同様の4種の金属イオン含有水溶液1000mlに各々
添加し、実施例1と同様にしてフロツク沈澱時
間、フロツク生成量、濾液中の残存金属イオン濃
度を測定した。結果を第1表に示す。 実施例 9 N−(ジチオカルボキシ)エチレンジアミンの
ナトリウム塩100gとエポキシアルカン(炭素数
12)116.5gとを500gの水−アセトン(1:1)
中にて80℃で3時間反応させ、反応終了後、反応
溶液を大量のアセトン中に投入して沈澱を生成さ
せ、濾別した沈澱を水−アセトン系で再沈澱を3
回行つて精製し、減圧乾燥して硫黄含有率17.6%
の淡褐色のポリアミン誘導体の粉末165gを得た。 このポリアミン誘導体100gに一硫化ナトリウ
ム30gを混合した混合物0.3gを、実施例1と同
様の4種の金属イオン含有水溶液1000mlに各々添
加し、実施例1と同様にしてフロツク沈澱時間、
フロツク生成量、濾液中の残存金属イオン濃度を
測定した。結果を第1表に示す。 実施例 10 実施例1と同様の装置にN,N,N′−トリス
(ジチオカルボキシ)フエニレンジアミンのナト
リウム塩120.6g、エポキシアルカン(炭素数12)
55.2g及び500gの水−アセトン(1:1)を仕
込み、80℃で4時間反応を行つた後、反応溶液を
大量のアセトン中に投入して沈澱を生成せしめ、
濾別した沈澱を実施例9と同様にして精製後、減
圧乾燥して硫黄含有率32.76wt%の淡褐色のポリ
アミン誘導体の粉末170.5gを得た。 このポリアミン誘導体100gに五硫化ナトリウ
ム20gを混合した混合物0.3gを、実施例1と同
様の4種の金属イオン含有水溶液1000mlに各々添
加し、実施例1と同様にしてフロツク沈澱時間、
フロツク生成量、濾液中の残存金属イオン濃度を
測定した。結果を第1表に示す。 実施例 11 実施例1と同様の装置にN′,N″,NN´´´´−
テトラキス(ジチオカルボキシ)トリエチレンテ
トラミン159.0g、エポキシアルカン(炭素数12)
73.6g及び500gの水−アセトン(1:1)を仕
込み、実施例10と同様に反応を行つた後、同様に
して精製及び乾燥を行い、硫黄含有率32.8wt%の
褐色のポリアミン誘導体の粉末230gを得た。 このポリアミン誘導体100gに一硫化ナトリウ
ム10gと五硫化ナトリウム5gを混合した混合物
0.3gを、実施例1と同様の4種の金属イオン含
有水溶液1000mlに各々添加し、実施例1と同様に
してフロツク沈澱時間、フロツク生成量、濾液中
の残存金属イオン濃度を測定した。結果を第1表
に示す。 実施例 12 市販のポリエチレンポリイミン(日本触媒化学
工業(株)製、エポミンSP003、分子量約300)の99
gをエチルアルコール146gに溶解させ、75℃に
加熱攪拌して還流下でエポキシアルカン(炭素数
12)212gを滴下し、滴下終了後、更に同一温度
にて2時反応を続けた。反応終了後、反応溶液を
濃縮して黄色の結晶性固体210gを得た。得られ
た結晶性固体200gを細かく粉砕して水200gの水
に分散させ、水酸化ナトリウム20gを添加して40
℃にて二硫化炭素32gを滴下し、滴下終了後、40
℃で2時間反応させた。反応終了後、不溶成分を
濾別して水洗し、更にアセトンで洗浄後、減圧乾
燥して硫黄含有率10.6wt%の黄色のポリアミン誘
導体の粉砕物235gを得た。 このポリアミン誘導体100gに硫化水素ナトリ
ウム10gを混合した混合物0.5gを、実施例1と
同様の4種の金属イオン含有水溶液1000mlに各々
添加し、実施例1と同様にしてフロツク沈澱時
間、フロツク生成量及び濾液中の残存金属イオン
濃度を測定した。結果を第1表に示す。 比較例 1 実施例1と同様のポリアミン誘導体0.3gを単
独で実施例1と同様の4種の金属イオン含有水溶
液1000mlに各々添加し、実施例1と同様にしてフ
ロツク沈澱時間、フロツク生成量、濾液中の残存
金属イオン濃度を測定した。結果を第1表に示
す。
[Industrial Field of Application] The present invention relates to a metal collection method. [Prior art] In recent years, as the pollution of rivers, oceans, etc. by wastewater from factories has become a problem, regulations to prevent pollution by wastewater have been strengthened, and metals contained in wastewater must be kept below a specified concentration. It is mandatory that
Particularly strict regulations are in place for heavy metals that are harmful to the human body, such as mercury, cadmium, zinc, copper, and chromium. For this reason, various methods have been proposed to remove metals from wastewater, including ion flotation, ion exchange, electrolytic flotation, electrodialysis, reverse osmosis, slaked lime, A known method is a neutralization coagulation-sedimentation method in which metals are turned into hydroxides by adding an alkali neutralizing agent such as caustic soda, and then removed by coagulation and precipitation using a polymer flocculant. [Problems to be solved by the invention] However, ion flotation, ion exchange,
The electrolytic flotation method, electrodialysis method, and reverse osmosis method have problems such as the removal rate of heavy metals, operability, and running costs, and currently they are only used for some special wastewater treatments. In addition, the neutralization coagulation precipitation method produces a large amount of metal hydroxide sludge, and these hydroxide sludges have problems such as poor dewatering properties and large sludge volumes, making it difficult to transport. It is also very difficult to remove it below the standard value. Moreover, depending on how these sludge is disposed of, there is also the problem that it may re-melt and cause secondary pollution. [Means for Solving the Problems] The present inventors have conducted extensive research in view of the above points, and have found that at least one β-hydroxyalkyl group and at least one dithiocarboxy group or a salt thereof in one molecule. It was discovered that a polyamine derivative having as an N-substituent has excellent performance as a metal scavenger, but as a result of further intensive research, the above polyamine derivative and sodium monosulfide,
The present invention was completed based on the discovery that metal ions in wastewater can be most efficiently collected and removed by using together at least one of sodium polysulfide and sodium hydrogen sulfide. The metal collection method of the present invention includes at least one β-hydroxyalkyl group and at least one dithiocarboxy group or a salt thereof in one molecule.
- This is a method of collecting and removing metal ions in wastewater by adding a polyamine derivative as a substituent and at least one of sodium monosulfide, sodium polysulfide, and sodium hydrogen sulfide to wastewater containing metal ions. The polyamine derivative used in the present invention is 1
At least one β substituent substituted with the active hydrogen bonded to the nitrogen atom in the polyamine molecule having a primary amino group and/or a secondary amino group
-A compound having a hydroxyalkyl group and at least one dithiocarboxy group: -CSSH or its salts, such as alkali metal salts such as sodium salts and potassium salts, alkaline earth metal salts such as calcium salts, ammonium salts, etc. It is. This polyamine derivative has, for example, at least one β-hydroxyalkyl group obtained by ring-opening addition of an epoxy alkane to a polyamine as an N-substituent, and at least one β-hydroxyalkyl group bonded to a nitrogen atom.
At least one active hydrogen compound obtained by reacting a poly(or mono)-N-(β-hydroxyalkyl)polyamine with carbon disulfide, or by reacting polyamines with carbon disulfide. Ring-opening addition of an epoxy alkane to a compound having a dithiocarboxy group as an N-substituent and at least one active hydrogen bonded to a nitrogen atom, that is, a poly(or mono)-N-(dithiocarboxy)polyamine After the completion of the reaction, the active hydrogen of the dithiocarboxy group can be converted into an alkali by treating with an alkali such as sodium hydroxide, potassium hydroxide, or ammonium hydroxide, or by performing the above reaction in the presence of an alkali. metals, alkaline earth metals,
It can be substituted with ammonium or the like. Furthermore, a polyamine derivative having a dithiocarboxy group and a salt of a dithiocarboxy group as a substituent can be obtained by substituting a part of the active hydrogen of the dithiocarboxy group with an alkali metal, an alkaline earth metal, ammonium, or the like. The poly(or mono)-N-(β-hydroxyalkyl)polyamine and carbon disulfide are reacted in a solvent, preferably water or alcohol, for 30 to 30 minutes.
It is preferable to carry out the reaction at 100°C for 1 to 10 hours, particularly at 40 to 70°C for 2 to 5 hours. Also poly (or mono)
The reaction between the N-(dithiocarboxy)polyamine and the epoxy alkane is carried out at 40 to 100°C in a solvent, preferably water, alcohol, acetone, dioxane, methyl ethyl ketone, etc. alone or in a mixed solvent.
It is preferably carried out for 1 to 19 hours, particularly in a 1:1 mixed solvent of water and acetone at 60 to 80°C for 2 to 3 hours. Examples of the above polyamines include ethylene diamine, propylene diamine, butylene diamine, hexamethylene diamine, diethylene triamine, dipropylene triamine, dibutylene triamine, triethylene tetramine, tripropylene tetramine, tributylene tetramine, tetraethylene pentamine, and tetrapropylene pentamine. , polyalkylene polyamines such as tetrabutylene pentamine, pentaethylene hexamine; ) Cyclohexane, 3,5-diaminochlorobenzene, melamine, 1-aminoethylpiperazine, piperazine, 3,3'-dichlorobenzidine, diaminophenyl ether, tolidine, m-tolylenediamine, etc., and polyethylene polyimine (average molecular weight 300 or more) ) etc. are used. Furthermore, N-substituted polyamines having an alkyl group, acyl group, etc. as a substituent, such as N-alkyl polyamine and N-acyl polyamine, can also be used. These N-substituted polyamines can be obtained by reacting the polyamines with alkyl halides and fatty acids. As the N-alkyl polyamine, for example, N
-Alkylethylenediamine, N-alkylpropylenediamine, N-alkylhexamethylenediamine, N-alkylphenylenediamine, N-
Alkylxylene diamine, N-alkylethylenetriamine, N-alkyltriethylenetetramine, N-alkyltetraethylenepentamine,
Examples include N-alkylpentaethylenehexamine, and the number of carbon atoms in the N-substituted alkyl group is 2 to 18.
is preferred. The above polyamines and N-substituted polyamines can be used alone or in combination of two or more. At least one β-
The β-hydroxyalkyl group in the polyamine derivative having a hydroxyalkyl group and at least one dithiocarboxy group or a salt thereof as a substituent has preferably 2 to 28 carbon atoms, and a preferable epoxy group for introducing the β-hydroxyalkyl group is Alkanes have 2 to 28 carbon atoms. Examples of the above-mentioned epoxy alkanes include ethylene oxide, propylene oxide, bitylene oxide, and α-olefin oxide (with 6 to 6 carbon atoms).
28) etc. In the method of the present invention, a polyamine derivative having at least one β-hydroxyalkyl group and at least one dithiocarboxy group as an N-substituent, and at least one of sodium monosulfide, sodium polysulfide, and sodium hydrogen sulfide are used. is added to wastewater to collect and remove metal ions from the wastewater. As the sodium polysulfide, sodium disulfide, sodium trisulfide, sodium tetrasulfide, and sodium pentasulfide are used. The purpose of the present invention can be achieved if the weight ratio of the polyamine derivative to the above-mentioned sodium sulfides is 1:99 to 99:1, but it is particularly preferably 20:80 to 98:2.
The polyamine derivative and the sodium sulfides may be mixed in advance and added to the wastewater, or they may be added to the wastewater separately, but it is preferable to mix them in advance and add them to the wastewater. In addition, when adding them separately, the metal ion removal effect is almost the same whether the polyamine derivative is added first and then the sodium sulfides are added, or the metal ion removal effect is added in the reverse order. The polyamine derivative used in the present invention can be used alone as a metal scavenger, but when used in combination with sodium sulfide, the generated flocs are even larger, the time required for sedimentation of flocs can be shortened, and metal ions in wastewater can be used. can be collected and removed extremely efficiently. Sodium sulfides also have the ability to form complexes with metal ions, but when used alone, the flocs produced are extremely small, making it difficult to precipitate the flocs and remove them.
Metal ions in wastewater can be efficiently collected and removed only when used in combination with the polyamine derivative. This is thought to be due to the synergistic effect of the ability of polyamine derivatives to form a complex with metal ions and the ability of sodium sulfides to form a complex with metal ions. Therefore, the amount of polyamine derivatives and sodium sulfides added to wastewater is 0.7 to 4 molar equivalent of the amount of metal ions in wastewater as the total amount of both,
Particularly preferred is an amount of 0.9 to 1.5 molar equivalents. In the present invention, when collecting and removing metal ions in wastewater by adding polyamine derivatives and sodium sulfides to wastewater, it is preferable to adjust the pH of the wastewater to 3 to 10, particularly 4 to 9. The acid or alkali used to adjust the pH may be anything as long as it does not inhibit the formation of flocs, but the acids usually used are hydrochloric acid, sulfuric acid, nitric acid, etc., and the alkalis include sodium hydroxide, potassium hydroxide, Calcium hydroxide etc. are used. According to the method of the present invention, mercury, cadmium, zinc,
Lead, copper, chromium, arsenic, gold, silver, platinum, vanadium, thallium, etc. can be efficiently collected and removed. [Example] Hereinafter, the present invention will be explained in more detail by giving examples. Example 1 In a four-necked flask equipped with a stirrer, thermometer, dropping funnel, and reflux condenser, 106 g of N-(β-hydroxylauryl)ethylenediamine and 90 g of a 20% aqueous sodium hydroxide solution were charged and heated vigorously at 40°C. While stirring, 33 g of carbon disulfide was added dropwise from the dropping funnel, and after the addition was completed, aging was carried out at the same temperature for 4 hours. Next, the reaction solution was poured into a large amount of acetone to form a precipitate, and the precipitate was purified by reprecipitation three times in a water-acetone system, and then dried under reduced pressure to obtain a polyamine derivative powder with a sulfur content of 17.5 wt%. 125g
I got it. 0.3 g of a mixture of 100 g of this polyamine derivative and 30 g of sodium monosulfide was added to an aqueous solution containing copper ions (containing 50 ppm Cu 2+ , PH = 5.0), an aqueous solution containing cadmium ions (containing 50 ppm Cd 2+ , PH =
5.0), aqueous solution containing mercury ions (containing 50ppm Hg 2+ , PH=5.0), aqueous solution containing lead ion (containing 50ppm Hg 2+, PH=5.0),
1000ml each of 4 types of aqueous solutions containing Pb 2+ (PH=5.0)
After stirring for 5 minutes, the time required for the flocs to settle was measured. The results are shown in Table 1. After the produced flocs were then filtered, the concentration of residual metal ions in the filtrate was measured by atomic absorption spectrometry. The results and the volumes of the produced flocs are also shown in Table 1. Example 2 In the same apparatus as in Example 1, 118 g of N-(β-hydroxyoctyl)triethylenetetramine and
180 g of a 20% aqueous sodium hydroxide solution was charged, and 66 g of carbon disulfide was reacted in the same manner as in Example 1, followed by purification and drying to obtain 195 g of a pale yellow polyamine derivative powder with a sulfur content of 26.8 wt%. 0.3 g of a mixture of 100 g of this polyamine derivative and 30 g of sodium pentasulfide was added to 1000 ml of the same four metal ion-containing aqueous solutions as in Example 1, and the floc precipitation time, floc production amount, The residual metal ion concentration in the filtrate was measured. The results are shown in Table 1. Example 3 In a device similar to Example 1, N,N-bis(β
-Hydroxyoctyl)triethylenetetramine
173g and 360g of 20% sodium hydroxide aqueous solution were charged, and then 66g of carbon disulfide was added in the same manner as in Example 1.
were reacted, purified and dried to obtain 286 g of pale yellowish white polyamine derivative powder with a sulfur content of 19.1 wt%. 0.4 g of a mixture of 100 g of this polyamine derivative and 20 g of sodium hydrogen sulfide was added to 1000 ml of the same four metal ion-containing aqueous solutions as in Example 1. , the residual metal ion concentration in the filtrate was measured. The results are shown in Table 1. Example 4 In the same apparatus as in Example 1, 167 g of N-(β-hydroxyhexadecyl)diethylenetriamine and water were added.
Prepare 200g and heat to 60℃ to produce 44g of carbon disulfide.
was added dropwise from the dropping funnel, and after the addition was completed, aging was carried out at the same temperature for 4 hours. Then the reaction solution was heated to 70-75
The temperature was raised to .degree. C., 120 g of 20% sodium hydroxide was added, and the reaction was carried out for 1.5 hours. After that, Example 1
Refined and dried in the same manner as above, resulting in a sulfur content of 15.7wt.
% of pale reddish brown polyamine derivative powder was obtained. A mixture of 100g of this polyamine derivative, 20g of sodium monosulfide and 15g of sodium pentasulfide.
0.3 g was added to 1000 ml of the same four metal ion-containing aqueous solutions as in Example 1, and the floc precipitation time, floc production amount, and residual metal ion concentration in the filtrate were measured in the same manner as in Example 1. The results are shown in Table 1. Example 5 429 g of water was charged into the same apparatus as in Example 1, and then 299 g of N-(β-hydroxyoctacosyl)hexamethylenediamine was finely ground and dispersed in water, and then carbon disulfide was added at 40°C. 47 g was added dropwise, and after the addition was completed, it was aged at the same temperature. then 30
% aqueous sodium hydroxide solution was added, the temperature was raised to 50°C, and the reaction was carried out for 1.5 hours. After the reaction is complete, insoluble components are filtered out and washed with water, then with acetone, crushed and dried under reduced pressure to obtain a sulfur content of 12.5wt%.
306 g of a yellow polyamine derivative was obtained. 0.4 g of a mixture of 100 g of this polyamine derivative and 20 g of sodium monosulfide was added to 1000 ml of the same four metal ion-containing aqueous solutions as in Example 1.
The amount of flocs produced and the concentration of residual metal ions in the filtrate were measured. The results are shown in Table 1. Example 6 99 g of commercially available polyethylene polyimine (manufactured by Nippon Shokubai Kagaku Kogyo Co., Ltd., Epomin SP-300) was dissolved in 146 g of ethyl alcohol, and 212 g of epoxy alkane (carbon number 12) was added under reflux while heating to 75°C and stirring. After dropping, the mixture was kept at the same temperature for 2 hours and then concentrated to obtain 231 g of a yellow crystalline solid. 200 g of this crystalline solid was finely ground and dispersed in 200 g of water, 20 g of sodium hydroxide was added, and 32 g of carbon disulfide was added dropwise at 40°C. After the dropwise addition was completed, the reaction was continued at the same temperature for 2 hours. After the reaction, insoluble components were filtered off and washed with water, further washed with acetone, and dried under reduced pressure to obtain 241 g of a yellow pulverized polyamine derivative having a sulfur content of 10.1 wt%. 0.3 g of a mixture of 100 g of this polyamine derivative and 30 g of sodium pentasulfide was added to 1000 ml of the same four metal ion-containing aqueous solutions as in Example 1.
The amount of flocs produced and the concentration of residual metal ions in the filtrate were measured. The results are shown in Table 1. Example 7 200 g of the same crystalline solid as in Example 6, in which polyethyleneimine was reacted with an epoxy alkane, was dissolved in 58 g of concentrated ammonia water, then dispersed in 300 g of water, and 32 g of carbon disulfide was added dropwise at 40°C. After the dropwise addition was completed, the reaction was continued at the same temperature for 2 hours. After the reaction was completed, insoluble components were filtered off, washed with water, further washed with acetone, and dried under reduced pressure to obtain 239 g of a yellow pulverized polyamine derivative having a sulfur content of 10.86 wt%. A mixture of 100g of this polyamine derivative, 15g of sodium monosulfide and 15g of sodium pentasulfide.
0.3 g was added to 1000 ml of the same four metal ion-containing aqueous solutions as in Example 1, and the floc precipitation time, floc production amount, and residual metal ion concentration in the filtrate were measured in the same manner as in Example 1. The results are shown in Table 1. Example 8 100 g of the polyamine derivative obtained in Example 6 was added to 200 g of water.
Then, 24 g of ammonium chloride was added and the reaction was carried out at 50°C for 4 hours. After the reaction, insoluble components were filtered out and washed with water, and then with acetone.
Sulfur content 11.5wt%, obtained by drying under reduced pressure and replacing the active hydrogen of the dithiocarboxy group with ammonium.
95 g of a yellow polyamine derivative was obtained. 0.3 g of a mixture of 100 g of this polyamine derivative and 30 g of sodium hydrogen sulfide was added to 1000 ml of the same four metal ion-containing aqueous solutions as in Example 1. , the residual metal ion concentration in the filtrate was measured. The results are shown in Table 1. Example 9 100g of sodium salt of N-(dithiocarboxy)ethylenediamine and epoxyalkane (carbon number
12) 116.5g and 500g of water-acetone (1:1)
After the reaction was completed, the reaction solution was poured into a large amount of acetone to form a precipitate, and the precipitate separated by filtration was reprecipitated in a water-acetone system for 3 hours.
The sulfur content is 17.6% after being purified and dried under reduced pressure.
165 g of light brown polyamine derivative powder was obtained. 0.3 g of a mixture of 100 g of this polyamine derivative and 30 g of sodium monosulfide was added to 1000 ml of the same four metal ion-containing aqueous solutions as in Example 1.
The amount of flocs produced and the concentration of residual metal ions in the filtrate were measured. The results are shown in Table 1. Example 10 In the same apparatus as in Example 1, 120.6 g of sodium salt of N,N,N'-tris(dithiocarboxy)phenylenediamine and epoxy alkane (carbon number 12) were added.
After charging 55.2 g and 500 g of water-acetone (1:1) and carrying out a reaction at 80°C for 4 hours, the reaction solution was poured into a large amount of acetone to form a precipitate.
The filtered precipitate was purified in the same manner as in Example 9 and dried under reduced pressure to obtain 170.5 g of a light brown polyamine derivative powder with a sulfur content of 32.76 wt%. 0.3 g of a mixture of 100 g of this polyamine derivative and 20 g of sodium pentasulfide was added to 1000 ml of the same four metal ion-containing aqueous solutions as in Example 1.
The amount of flocs produced and the concentration of residual metal ions in the filtrate were measured. The results are shown in Table 1. Example 11 In the same device as in Example 1, N′, N″, NN´´´´−
Tetrakis(dithiocarboxy)triethylenetetramine 159.0g, epoxyalkane (12 carbons)
After charging 73.6 g and 500 g of water-acetone (1:1) and carrying out the reaction in the same manner as in Example 10, purification and drying were carried out in the same manner to obtain a brown polyamine derivative powder with a sulfur content of 32.8 wt%. Obtained 230g. A mixture of 100g of this polyamine derivative, 10g of sodium monosulfide, and 5g of sodium pentasulfide.
0.3 g was added to 1000 ml of the same four metal ion-containing aqueous solutions as in Example 1, and the floc precipitation time, floc production amount, and residual metal ion concentration in the filtrate were measured in the same manner as in Example 1. The results are shown in Table 1. Example 12 Commercially available polyethylene polyimine (manufactured by Nippon Shokubai Chemical Co., Ltd., Epomin SP003, molecular weight approximately 300) 99
g in 146 g of ethyl alcohol, heated to 75°C with stirring, and refluxed to dissolve the epoxy alkane (carbon number
12) 212 g was added dropwise, and after the addition was completed, the reaction was continued for an additional 2 hours at the same temperature. After the reaction was completed, the reaction solution was concentrated to obtain 210 g of a yellow crystalline solid. 200 g of the obtained crystalline solid was finely ground and dispersed in 200 g of water, and 20 g of sodium hydroxide was added to give 40 g.
Drop 32g of carbon disulfide at
The reaction was carried out at ℃ for 2 hours. After the reaction was completed, insoluble components were filtered off, washed with water, further washed with acetone, and dried under reduced pressure to obtain 235 g of a yellow pulverized polyamine derivative having a sulfur content of 10.6 wt%. 0.5 g of a mixture of 100 g of this polyamine derivative and 10 g of sodium hydrogen sulfide was added to 1000 ml of the same four metal ion-containing aqueous solutions as in Example 1. And the residual metal ion concentration in the filtrate was measured. The results are shown in Table 1. Comparative Example 1 0.3 g of the same polyamine derivative as in Example 1 was individually added to 1000 ml of the same four metal ion-containing aqueous solutions as in Example 1, and the floc precipitation time, floc production amount, The residual metal ion concentration in the filtrate was measured. The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の金属捕集方法は、
1分子中に少なくとも1個のβ−ヒドロキシアル
キル基と、少なくとも1個のジチオカルボキシ基
またはその塩類をN−置換基として有するポリア
ミン誘導体と、一硫化ナトリウム、ポリ硫化ナト
リウム、硫化水素ナトリウムの少なくとも1種と
を金属捕集剤として金属イオンを含有する廃水中
に添加して廃水中の金属イオンを捕集除去する方
法を採用したから、従来の金属捕集方法に比べて
少ない金属捕集剤の添加量でも充分に廃水中の金
属イオンを効率良く捕集除去できる。しかも本発
明において用いるポリアミン誘導体は単独で用い
ても充分金属イオンを捕集除去することができる
が、一硫化ナトリウム、ポリ硫化ナトリウム、硫
化水素ナトリウムの少なくとも1種と併用したこ
とにより、両者が相乗効果的に作用し、ポリアミ
ン誘導体を単独で用いた場合より更にフロツクの
沈澱速度が速く、きわめて効率良く廃水中の金属
イオンを捕集除去できる効果を有する。
As explained above, the metal collection method of the present invention
A polyamine derivative having at least one β-hydroxyalkyl group and at least one dithiocarboxy group or a salt thereof as an N-substituent in one molecule, and at least one of sodium monosulfide, sodium polysulfide, and sodium hydrogen sulfide. Since we adopted a method to collect and remove metal ions in wastewater by adding seeds as a metal scavenger to wastewater containing metal ions, we can use less metal scavenger than conventional metal capture methods. Even the amount added is sufficient to efficiently collect and remove metal ions from wastewater. Moreover, the polyamine derivative used in the present invention can sufficiently collect and remove metal ions even when used alone, but when used in combination with at least one of sodium monosulfide, sodium polysulfide, and sodium hydrogen sulfide, the two can synergize. It works effectively, and the floc sedimentation rate is faster than when a polyamine derivative is used alone, and it has the effect of highly efficiently collecting and removing metal ions in wastewater.

Claims (1)

【特許請求の範囲】[Claims] 1 1分子中に少なくとも1個のβ−ヒドロキシ
アルキル基と、少なくとも1個のジチオカルボキ
シ基またはその塩類をN−置換基として有するポ
リアミン誘導体と、一硫化ナトリウム、ポリ硫化
ナトリウム、硫化水素ナトリウムの少なくとも1
種とを金属イオンを含有する廃水に添加して廃水
中の金属イオンを捕集除去することを特徴とする
金属捕集方法。
1. A polyamine derivative having at least one β-hydroxyalkyl group and at least one dithiocarboxy group or a salt thereof as an N-substituent in one molecule, and at least one of sodium monosulfide, sodium polysulfide, and sodium hydrogen sulfide. 1
1. A method for collecting metals, which comprises adding seeds to wastewater containing metal ions to collect and remove metal ions in the wastewater.
JP17212885A 1985-08-05 1985-08-05 Method for collecting metal Granted JPS6233590A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP17212885A JPS6233590A (en) 1985-08-05 1985-08-05 Method for collecting metal
DE8686109995T DE3685861T2 (en) 1985-08-05 1986-07-21 METHOD FOR DEPOSITING METALS.
AT86109995T ATE77806T1 (en) 1985-08-05 1986-07-21 PROCESSES FOR THE DEPOSITION OF METALS.
EP86109995A EP0211305B1 (en) 1985-08-05 1986-07-21 Metal scavenging process
US06/887,945 US4731187A (en) 1985-08-05 1986-07-22 Removal of heavy metals from waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17212885A JPS6233590A (en) 1985-08-05 1985-08-05 Method for collecting metal

Publications (2)

Publication Number Publication Date
JPS6233590A JPS6233590A (en) 1987-02-13
JPH057079B2 true JPH057079B2 (en) 1993-01-28

Family

ID=15936080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17212885A Granted JPS6233590A (en) 1985-08-05 1985-08-05 Method for collecting metal

Country Status (1)

Country Link
JP (1) JPS6233590A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4790029A (en) * 1987-06-05 1988-12-06 Custom Packaging Systems, Inc. Collapsible bag with square ends formed by triangular portions
JP2617970B2 (en) * 1988-02-22 1997-06-11 信秋 林 How to reinforce the neck of your guitar
JP2001335972A (en) * 2000-05-30 2001-12-07 Sumitomo Precision Prod Co Ltd Method for preventing corrosion in aluminum constitution

Also Published As

Publication number Publication date
JPS6233590A (en) 1987-02-13

Similar Documents

Publication Publication Date Title
US4731187A (en) Removal of heavy metals from waste water
US4670180A (en) Metal scavenger and metal scavenging process
US5346627A (en) Method for removing metals from a fluid stream
US3778368A (en) Disposal of metal-containing waste water
KR20020080327A (en) Cationic polymers for sludge dewatering
CN103395815A (en) Preparation method for preparing high-purity calcium chloride from industrial calcium chloride
US5347071A (en) Process for the removal of heavy metals from contaminants
CN102765796A (en) Preparation method of loose type polyaluminum ferric chloride flocculants
JP2948879B2 (en) Metal collecting agent and metal collecting method
JP4042169B2 (en) Cement production equipment extraction dust processing method
JPH057079B2 (en)
JP4468571B2 (en) Water purification system and water purification method
RU2334023C1 (en) Method of regenerative purification of copper-ammonia etching solutions
CN109621904B (en) Purifying agent for nickel-containing aqueous solution and method for purifying nickel-containing aqueous solution
JP4445632B2 (en) Heavy metal collection agent and collection method
JPH0582871B2 (en)
JPH057080B2 (en)
JPH1147766A (en) Arsenic fixing agent and treatment of drainage containing arsenic
JP4468568B2 (en) Water treatment flocculant, method for producing the same, and water treatment method
JPS643549B2 (en)
JPS6123040B2 (en)
JP4306917B2 (en) Anion scavenger and method for recovering inorganic anion from waste water
JPH08103774A (en) Treatment of waste water
JPH057078B2 (en)
JP2002263665A (en) Method for removing heavy metal in waste water

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees