JPH057078B2 - - Google Patents

Info

Publication number
JPH057078B2
JPH057078B2 JP14769385A JP14769385A JPH057078B2 JP H057078 B2 JPH057078 B2 JP H057078B2 JP 14769385 A JP14769385 A JP 14769385A JP 14769385 A JP14769385 A JP 14769385A JP H057078 B2 JPH057078 B2 JP H057078B2
Authority
JP
Japan
Prior art keywords
polyamine
added
sodium
aqueous solution
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14769385A
Other languages
Japanese (ja)
Other versions
JPS627492A (en
Inventor
Masafumi Morya
Kazuo Hosoda
Akira Nishimura
Tomio Imachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Myoshi Oil and Fat Co Ltd
Original Assignee
Myoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Myoshi Oil and Fat Co Ltd filed Critical Myoshi Oil and Fat Co Ltd
Priority to JP14769385A priority Critical patent/JPS627492A/en
Priority to US06/853,692 priority patent/US4670180A/en
Priority to DE8686105545T priority patent/DE3673222D1/en
Priority to EP86105545A priority patent/EP0200143B1/en
Priority to AT86105545T priority patent/ATE55362T1/en
Priority to US06/905,977 priority patent/US4670160A/en
Publication of JPS627492A publication Critical patent/JPS627492A/en
Publication of JPH057078B2 publication Critical patent/JPH057078B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は金属捕集方法に関する。 〔従来の技術〕 近年、工場等の廃水による河川、海等の汚染が
問題となるにつれて、廃水による汚染防止のため
の規制が強化され、廃水中に含有される金属類を
所定濃度以下とすることが義務づけられており、
特に水銀、カドミウム、亜鉛、鉛、銅、クロム等
の人体に有害な重金属類に対しては特に厳しい規
制が設けられている。このため廃水中の金属類を
除去するための種々の方法が提案されており、こ
の種の方法として、イオン浮選法、イオン交換
法、電解浮上法、電気透析法、逆浸透圧法あるい
は消石灰、苛性ソーダ等のアルカリ中和剤を投入
して金属類を水酸化物とした後、高分子凝集剤に
より凝集沈澱して除去する中和凝集沈澱法等が知
られている。また金属捕集剤により金属を捕集し
て除去する方法も知られており、この種の金属捕
集剤として脂肪族ポリジチオカルバミン酸又はそ
の塩類を含有する金属捕集剤が知られている(特
開昭49−99978号)。 〔発明が解決しようとする問題点〕 しかしながら、イオン浮選法、イオン交換法、
電解浮上法、電気透析法、逆浸透圧法は重金属類
の除去率、操作性、ランニングコスト等に問題が
あり、一部の特殊な廃水処理のみにしか利用され
ていないのが現状である。また中和凝集沈澱法で
は大量の金属水酸化物のスラツジが生成し、これ
ら水酸化物のスラツジは脱水性が悪く、スラツジ
容積も大きいため運搬が困難であるという問題を
有するとともに重金属類を排水基準値以下に除去
することも非常に困難である。しかもこれらスラ
ツジは廃棄の仕方によつては再溶解して二次公害
を生じるという問題も含んでいる。 一方、脂肪族ポリジチオカルバミン酸又はその
塩類を含有する金属捕集剤により金属を捕集して
除去する方法によれば上記の問題点は一応解消さ
れるものの、この金属捕集剤は分子量が小さいた
め添加量が多く必要となるとともに、生成フロツ
クも小さく、沈降性が悪い等の問題を有してい
た。 〔問題点を解決するための手段〕 本発明者らは上記の点に鑑み鋭意研究した結
果、ポリアミン類とエピハロヒドリンとが重縮合
した重縮合ポリアミンの活性水素原子と置換した
少なくとも1個のカルボジチオ酸基及び/又はそ
の塩類を置換基として有するポリアミン誘導体が
金属捕集剤として優れた性能を有することを見出
し先に出願を行なつたが(特願昭60−89998号)、
更に鋭意研究した結果、上記ポリアミン誘導体
と、一硫化ナトリウム、ポリ硫化ナトリウム、硫
化水素ナトリウムの少なくとも一種とを併用する
ことにより廃水中の金属イオンを最も効率良く捕
集し得ることを見出し本発明を完成するに至つ
た。 本発明の金属捕集方法は、ポリアミン類とエピ
ハロヒドリンとが重縮合した重縮合ポリアミンの
活性水素原子と置換した少なくとも1個のカルボ
ジチオ酸基及び/又はその塩類を置換基として有
するポリアミン誘導体と、一硫化ナトリウム、ポ
リ硫化ナトリウム、硫化水素ナトリウムの少なく
とも1種とを金属イオンを含有する廃水中に添加
して廃水中の金属イオンを捕集除去する方法であ
る。 本発明において用いられるポリアミン誘導体は
重縮合ポリアミンの活性水素原子と置換した少な
くとも1個のカルボジチオ酸基:−CSSH及び/
又はその塩類を置換基として有する構造の化合物
であり、ポリアミン類とエピハロヒドリンとを重
縮合せしめて重縮合ポリアミンとした後、この重
縮合ポリアミンにカルボジチオ酸基及び/又はそ
の塩類を置換基として導入する方法によるか、ポ
リアミン類にカルボジチオ酸基及び/又はその塩
類を置換基として導入した後、エピハロヒドリン
と重縮合せしめる方法により得られる。 また本発明において用いられるポリアミン誘導
体は重縮合ポリアミンの窒素原子にN−置換基と
してアルキル基、ヒドロキシアルキル基、アシル
基の1種または2種以上が結合していても良い。
上記N−置換基はエピハロヒドリンと重縮合せし
める前にポリアミン類をメチルハライド、エチル
ハライド、プチルハライド、ラウリルハライド、
ステアリルハライド等のアルキルハライド;エチ
レンオキシド、プロピレンオキシド、プチレンオ
キシド、スチレンオキシド、1,2−ドデシルエ
ポキシアルカン、1,2−オクタコシルエポキシ
アルカン等のエポキシアルカンあるいは酢酸、プ
ロピオン酸、酪酸、カプロン酸、カプリル酸、ラ
ウリン酸、ミリスチン酸、パルミチン酸、ステア
リン酸、ベヘン酸等の脂肪酸あるいはこれら脂肪
酸のエステル類、またはこれら脂肪酸の酸ハライ
ド類と反応させるか、ポリアミン類とエピハロヒ
ドリンとを重縮合させて重縮合ポリアミンとした
後、上記の如きアルキルハライド、エポキシアル
カンあるいは脂肪酸類と反応させることにより導
入することができる。またN−置換基としては同
種のものが分子中に2個以上存在しても良く、異
種のものが2個以上存在しても良い。 本発明において用いられるポリアミン誘導体は
重縮合ポリアミンの窒素原子にカルボジチオ酸基
及び/又はその塩類が結合した構造を有するもの
でも、アミン類とエピハロヒドリンとが重縮合し
た際にエピハロヒドリン骨格部分に生じる水酸基
の水素原子と置換してカルボジチオ酸基及び/又
はその塩類が酸素原子に結合した構造を有するも
のでも良く、また窒素原子と酸素原子の両方に結
合した構造を有するものでも良い。上記カルボジ
チオ酸基の塩類としてはナトリウム塩、カリウム
塩等のアルカリ金属塩、カルシウム塩、マグネシ
ウム塩等のアルカリ土類金属塩、アンモニウム塩
等が挙げられる。 上記ポリアミン類とは窒素原子に1個または2
個の活性水素原子が結合してなるイミノ基または
アミノ基を2個以上有する化合物であり、例えば
エチレンジアミン、プロピレンジアミン、ブチレ
ンジアミン、ヘキサメチレンジアミン、ジエチレ
ントリアミン、ジプロピレントリアミン、ジブチ
レントリアミン、トリエチレンテトラミン、トリ
プロピレンテトラミン、トリブチレンテトラミ
ン、テトラエチレンペンタミン、テトラプロピレ
ンペンタミン、テトラブチレンペンタミン、ペン
タエチレンヘキサミン等のポリアルキレンポリア
ミン;フエニレンジアミン、キシレンジアミン、
メタキシレンジアミン、イミノビスプロピルアミ
ン、モノメチルアミノプロピルアミン、メチルイ
ミノビスプロピルアミン、1,3−ビス(アミノ
メチル)シクロヘキサン、1,3−ジアミノプロ
パン、1,4−ジアミノブタン、3,5−ジアミ
ノクロロベンゼン、メラミン、1−アミノエチル
ピペラジン、ピペラジン、ジアミノフエニルエー
テル、3,3′−ジクロロベンジジン、トリジンベ
ース、m−トルイレンジアミン等やポリエチレン
ポリイミン(平均分子量300以上)等が挙げられ
る。また上記のポリアミン類の他に、これらのポ
リアミン類にアルキルハライド、エポキシアルカ
ンあるいは脂肪酸類を反応せしめる等により得ら
れるN−アルキルポリアミン、N−ヒドロキシア
ルキルポリアミンあるいはN−アシルポリアミン
等を用いることもできる。N−アルキルポリアミ
ンとしてはN−アルキルエチレンジアミン、N−
アルキルプロピレンジアミン、N−アルキルヘキ
サメチレンジアミン、N−アルキルフエニレンジ
アミン、N−アルキルキシレンジアミン、N−ア
ルキルジエチレントリアミン、N−アルキルトリ
エチレンテトラミン、N−アルキルテトラエチレ
ンペンタミン、N−アルキルペンタエチレンヘキ
サミン等を用いることができる。上記N−置換ア
ルキル基の炭素数は2〜18が好ましい。N−ヒド
ロキシアルキルポリアミンとしてはN−ヒドロキ
シエチルポリアミン、N−ヒドロキシプロピルポ
リアミン、N−ヒドロキシブチルポリアミン、N
−β−ヒドロキシドデシルポリアミン、N−β−
ヒドロキシテトラデシルポリアミン、N−β−ヒ
ドロキシヘキサデシルポリアミン、N−β−ヒド
ロキシオクタデシルポリアミン、N−β−ヒドロ
キシオクタコシルポリアミン等が挙げられる。ま
たN−アシルポリアミンとしては、N−アセチル
ポリアミン、N−プロピオニルポリアミン、N−
ブチリルポリアミン、N−カプロイルポリアミ
ン、N−ラウロイルポリアミン、N−オレオイル
ポリアミン、N−ミリスチロイルポリアミン、N
−ステアロイルポリアミン、N−ベヘロイルポリ
アミン等が挙げられる。これらポリアミン類は単
独または二種以上混合して用いることができる。
またエピハロヒドリンとしてはエピクロルヒドリ
ン、エピプロムヒドリン、エピヨードヒドリン、
等が挙げられる。 本発明において用いられるポリアミン誘導体は
エピハロヒドリンと重縮合せしめるポリアミン類
(エピハロヒドリンと重縮合せしめる前にポリア
ミンに置換基を導入する場合は、置換基導入前の
ポリアミン類)がアミノ基を2個有するジアミン
の場合には直鎖状構造を有し、一般に水溶性を有
する。また架橋構造を有する場合には水に対して
分散性あるいは懸濁性を有する。 本発明方法では上記ポリアミン誘導体と一硫化
ナトリウム、ポリ硫化ナトリウム、硫化水素ナト
リウムの少なくとも1種とを廃水に添加して廃水
中の金属イオンを捕集除去する。ポリ硫化ナトリ
ウムとしては二硫化ナトリウム、三硫化ナトリウ
ム、四硫化ナトリウム、五硫化ナトリウムが用い
られる。ポリアミン誘導体と上記硫化ナトリウム
類との使用割合は重量比で1:99〜99:1であれ
ば本発明の目的を達し得るが、特に20:80〜98:
2であることが好ましい。ポリアミン誘導体と硫
化ナトリウム類は、あらかじめ混合して廃水に添
加しても、別々に廃水に添加しても良いが、あら
かじめ両者を混合して廃水に添加することが好ま
しい。尚、別々に添加する場合、ポリアミン誘導
体を先に添加し、その後、硫化ナトリウム類を添
加しても、その逆の順序で添加しても金属イオン
除去効果はほぼ同等である。 本発明において用いられるポリアミン誘導体は
単独で金属捕集剤として用いられ得るが硫化ナト
リウム類と併用した場合、更に生成したフロツク
が大きく、フロツクの沈澱に要する時間を短縮で
き、廃水中の金属イオンを効率良く捕集除去でき
る。また硫化ナトリウム類も金属イオンとの錯形
成能を有するが、単独で用いた場合、生成するフ
ロツクがきわめて小さいためフロツクを沈澱せし
めて除去することが困難であり、前記ポリアミン
誘導体と併用してはじめて廃水中の金属イオンを
効率良く捕集除去することができる。これはポリ
アミン誘導体の金属イオンに対する錯形成能と、
硫化ナトリウム類の金属イオンに対する錯形成能
とが相剰効果的に作用するものと考えられる。従
つてポリアミン誘導体及び硫化ナトリウム類の廃
水への添加量は、両者の合計量として廃水中の金
属イオン量の0.7〜4モル当量、特に0.9〜1.5モル
当量となる量が好ましい。 本発明において廃水中にポリアミン誘導体と硫
化ナトリウム類とを添加して廃水中の金属イオン
を捕集除去するに際して廃水のPHを3〜10特に
4〜9に調整することが好ましい。PHの調整に
用いられる酸、アルカリとしては、フロツクの生
成を阻害しないものであれば良いが、通常は酸と
しては塩酸、硫酸、硝酸等が用いられ、アルカリ
としては水酸化ナトリウム、水酸化カリウム、水
酸化カルシウム等が用いられる。 本発明方法によれば水銀、カドミウム、亜鉛、
鉛、銅、クロム、砒素、金、銀、白金、バナジウ
ム、タリウム等の金属を効率良く捕集して除去す
ることができる。 〔実施例〕 以下、実施例を挙げて本発明を更に詳細に説明
する。 実施例 1 攪拌機、温度計、滴下ロート、及び還流冷却器
を付けた1の4つ口フラスコにメタキシレンジ
アミン261.1gと水−アセトン(1:1)混合物
300gを入れ、攪拌下に60℃に加熱し、これにエ
ピクロルヒドリン174gを4時間かけて90℃を超
えないように温度調整を行いながら滴下し、滴下
終了後80〜90℃で1時間保持し、メタキシレンジ
アミンとエピクロルヒドリンとが重縮合した重縮
合ポリアミンの水−アセトン溶液727gを得た。 次いで上記重縮合ポリアミン溶液234.1g、純
水517.4gおよび水酸化ナトリウム59.9gを上記
と同様の装置に入れ、40℃にて攪拌下に86.9gの
二硫化炭素を3時間かけて滴下した。更に同温度
で1時間保持した後、60〜90℃にて水−アセトン
を留去し、ポリアミン誘導体を得た。 上記ポリアミン誘導体100重量部当りに第1表
に示す硫化ナトリウム類を同表に示す割合で混合
し、Cu2+含有水溶液、Cd2+含有水溶液、Hg2+
有水溶液、Pb2+含有水溶液(いずれも金属イオ
ン含有量50ppm,PH=5.0)の4種の水溶液各々
1000mlに上記混合物の0.5wt%水溶液を第1表に
示す量添加し、5分間攪拌した後、静置し生成し
たフロツクが沈澱するまでの時間を測定した。結
果を第1表に示す。次いで生成したフロツクを
過した後、液中の残存金属イオン濃度を原子吸
光分析により測定した結果及び別して回収した
フロツク量を第1表にあわせて示す。 実施例 2 実施例1と同様の装置の中にエチレンジアミン
30.6g、純水450g、水酸化カリウム57.2gを入
れ、50℃にて二硫化炭素77.5gを4時間かけて滴
下した後、60℃にて3時間加熱しカルボジチオ酸
カリウム塩基を置換基として有するエチレンジア
ミン誘導体を得た。次いで30℃に冷却し、この中
にエピクロルヒドリン47.2gを5時間かけて滴下
した後、70〜90℃にて3時間反応を続けた後、純
水308gを加えて20.0wt%のポリアミン誘導体を
含有する水溶液を得た。 このポリアミン誘導体水溶液100重量部当りに
第1表に示す硫化ナトリウム類を同表に示す割合
で混合し、実施例1と同様の4種類の金属イオン
含有水溶液各々1000mlに上記混合物の2wt%水溶
液を第1表に示す量添加し、実施例1と同様にし
てフロツク沈澱時間、フロツク生成量、液中の
残存金属イオン濃度を測定した。結果を第1表に
あわせて示す。 実施例 3 温度計、還流冷却器、攪拌機及び滴下ロートを
付けた500mlの4つ口フラスコにメタキシレンジ
アミン71.2g,7.5%水酸化ナトリウム水溶液279
gを入れ、激しく攪拌しながら45℃にて二硫化炭
素79.6gを6時間かけて滴下し、滴下終了後、同
温度にて1.5時間反応を行い、更に70℃で2時間
反応を行い、カルボジチオ酸基及びカルボジチオ
酸ナトリウム塩基を置換基として有する反応生成
物の水溶液を得た。 上記水溶液400gと純水267.3gを上記と同様の
装置に入れ、60℃にてエピクロルヒドリン50.3g
を4時間かけて添加し、さらに70〜80℃にて1時
間反応を行い、ポリアミン誘導体の28.1wt%水溶
液を得た。 このポリアミン誘導体水溶液100重量部当りに
第1表に示す硫化ナトリウム類を同表に示す割合
で混合し、更に純水を加えて2wt%水溶液とし
た。次いで実施例1と同様の4種類の金属イオン
含有水溶液各々1000mlに上記混合物の2wt%水溶
液を第1表に示す量添加し、実施例1と同様にし
てフロツク沈澱時間、フロツク生成量、液中の
残存金属イオン濃度を測定した。結果を第1表に
あわせて示す。 実施例 4 実施例3と同様の装置にジエチレントリアミン
21.0g、純水326.4gおよび水酸化ナトリウム24.5
gを入れ、40℃にて二硫化炭素46.5gを3時間か
けて滴下した。滴下終了後70℃で更に反応を行つ
た後、約30℃まで冷却しエピブロモヒドリン34.4
gを2時間かけて添加した後、80〜90℃に昇温し
て2時間反応を続け、27.1%のポリアミン誘導体
を含有する水溶液を得た。 このポリアミン誘導体水溶液100重量部当りに
第1表に示す硫化ナトリウム類を同表に示す割合
で混合し、更に純水を加えて2wt%水溶液とし
た。次いで実施例1と同様の4種類の金属イオン
含有水溶液各々1000mlに上記混合物の2wt%水溶
液を第1表に示す量添加し、実施例1と同様にし
てフロツク沈澱時間、フロツク生成量、液中の
残存金属イオン濃度を測定した。結果を第1表に
あわせて示す。 実施例 5 実施例1と同様の装置にジエチレントリアミン
29.9gおよびトルエン120gを入れ、40〜50℃で
エピクロルヒドリン26.8gを3時間かけて滴下
し、滴下終了後60℃で2時間反応を続けた。次い
で、これに水酸化ナトリウム46.4gおよび純水
641.8gを加えて40℃にて二硫化炭素66.1gを2
時間かけて滴下し、滴下終了後更に70℃にて4時
間反応を行つた。反応終了後30℃に冷却し、攪拌
を停止すると2層に分離した。上層のトルエンを
除去した後、攪拌下に40℃に加熱してエピブロモ
ヒドリン48.9gを3時間かけて滴下し、滴下終了
後70〜80℃で1時間反応を続け、22.6wt%のポリ
アミン誘導体を含有する水溶液を得た。 このポリアミン誘導体水溶液100重量部当りに
第1表に示す硫化ナトリウム類を同表に示す割合
で混合し、更に純水を加えて2wt%水溶液とし
た。次いで実施例1と同様の4種類の金属イオン
含有水溶液各々1000mlに上記混合物の2wt%水溶
液を第1表に示す量添加し、実施例1と同様にし
てフロツク沈澱時間、フロツク生成量、液中の
残存金属イオン濃度を測定した。結果を第1表に
あわせて示す。 実施例 6 実施例1と同様の装置にジエチレントリアミン
31.1gを入れ、90℃にてエポキシアルカン(アル
キル基の炭素数28)123.2gを30分かけて滴下し、
滴下終了後同温度にて更に2時間反応を行い、N
−ヒドロキシアルキルジエチレントリアミンを得
た。次いで40℃に冷却し、この中に純水667.7g
及び水酸化ナトリウム24.2gを加えた後、二硫化
炭素45.9gを2時間かけて滴下し、滴下終了後70
℃にて3時間反応を続けた。反応終了後、80〜90
℃にて27.9gのエピクロルヒドリンを3時間かけ
て滴下し、滴下終了後90〜100℃にて更に3時間
反応を続けた後、純水260.9gを加え、20.0wt%
のポリアミン誘導体水溶液を得た。 このポリアミン誘導体水溶液100重量部当りに
第1表に示す硫化ナトリウム類を同表に示す割合
で混合し、更に純水を加えて2wt%水溶液とし
た。次いで実施例1と同様の4種類の金属イオン
含有水溶液各々1000mlに上記混合物の2wt%水溶
液を第1表に示す量添加し、実施例1と同様にし
てフロツク沈澱時間、フロツク生成量、液中の
残存金属イオン濃度を測定した。結果を第1表に
あわせて示す。 実施例 7 N,N′′′′−ビス(ヒドロキシエチル)トリエ
チレンテトラミン62.7gを実施例3と同様の装置
に入れ、50℃にてエピクロルヒドリン24.8gを4
時間かけて滴下し、滴下終了後80〜90℃にて更に
2時間反応を続けた。次いでこれに8%水酸化ナ
トリウム水溶液672.7gを加え、50℃にて二硫化
炭素81.5gを2時間かけて滴下し、滴下終了後70
℃に昇温して3時間反応を続け、ポリアミン誘導
体を22.3%含有する水溶液を得た。 このポリアミン誘導体水溶液100重量部当りに
第1表に示す硫化ナトリウム類を同表に示す割合
で混合し、更に純水を加えて2wt%水溶液とし
た。次いで実施例1と同様の4種類の金属イオン
含有水溶液各々1000mlに上記混合物の2wt%水溶
液を第1表に示す量添加し、実施例1と同様にし
てフロツク沈澱時間、フロツク生成量、液中の
残存金属イオン濃度を測定した。結果を第1表に
あわせて示す。 実施例 8 実施例1と同様の装置にポリエチレンイミン
(平均分子量70000)22.4g及び1.1%水酸化ナト
リウム水溶液933.2gを入れ、50℃にて二硫化炭
素19.7gを1時間かけて滴下し、滴下終了後同温
度にて更に2時間反応させた。次いでエピクロル
ヒドリン0.5gを3時間かけて滴下し、その後80
℃にて2時間反応を続け、5wt%のポリアミン誘
導体を含有する水溶液を得た。 このポリアミン誘導体水溶液100重量部当りに
第1表に示す硫化ナトリウム類を同表に示す割合
で混合し、更に純水を加えて9wt%水溶液とし
た。次いで実施例1と同様の4種類の金属イオン
含有水溶液各々1000mlに上記混合物の9wt%水溶
液を第1表に示す量添加し、実施例1と同様にし
てフロツク沈澱時間、フロツク生成量、液中の
残存金属イオン濃度を測定した。結果を第1表に
あわせて示す。 実施例 9 実施例3と同様の装置にN−メチルジエチレン
トリアミン42.5gと水−ジオキサン(2:1)混
合物50gを入れ、エピクロルヒドリン33.6gを70
℃で滴下を開始し、95℃を超えないように温度調
整を行いながら4時間かけて滴下した後、更に90
〜95℃にて2時間反応を続けた。次いで40℃に冷
却して純水230g、水酸化ナトリウム43.6gを加
え、二硫化炭素55.3gを3時間かけて滴下し、滴
下終了後70℃にて減圧下、ジオキサンが検出され
なくなるまでトツピングを行つた後、純水120g
を加えて22.5wt%のポリアミン誘導体水溶液を得
た。 このポリアミン誘導体水溶液100重量部当りに
第1表に示す硫化ナトリウム類を同表に示す割合
で混合し、更に純水を加えて2wt%水溶液とし
た。次いで実施例1と同様の4種類の金属イオン
含有水溶液各々1000mlに上記混合物の2wt%水溶
液を第1表に示す量添加し、実施例1と同様にし
てフロツク沈澱時間、フロツク生成量、液中の
残存金属イオン濃度を測定した。結果を第1表に
あわせて示す。 実施例 10 実施例1と同様の装置にN−メチルエチレンジ
アミン64g、純水619.9g及び水酸化ナトリウム
34.6gを入れ、これに二硫化炭素65.7gを50℃に
て3時間かけて滴下し、滴下終了後更に70℃にて
2時間反応を続けた。反応終了後、30℃に冷却
し、エピクロルヒドリン79.9gを70℃にて3時間
かけて滴下し、さらに同温度にて3時間反応を続
け、26.5wt%のポリアミン誘導体を含有する水溶
液を得た。 このポリアミン誘導体水溶液100重量部当り第
2表に示す硫化ナトリウム類を同表に示す種々の
割合で混合し、更に純水を加えて2wt%水溶液と
した。次いで実施例1と同様の4種類の金属イオ
ン含有水溶液各々1000mlに上記混合物の2wt%水
溶液を第2表に示す量添加し、硫化ナトリウム類
の種類、添加量の異なる24回の実験を実施例1と
同様にして行ない、フロツク沈澱時間、フロツク
生成量、液中の残存金属イオン濃度を測定し
た。結果を第2表にあわせて示す。 比較例 1 実施例1と同様の装置にポリエチレンイミン
(平均分子量20000)の30%水溶液500g及び10%
水酸化ナトリウム水溶液1120gを入れ、40℃にて
二硫化炭素212gを3時間かけて滴下し、滴下終
了後45℃で3時間反応を続け、23wt%の反応生
成物を含有する水溶液を得た。 この水溶液100重量部当り第1表に示す硫化ナ
トリウム類を同表に示す量混合し、更に純水を加
えて2wt%水溶液とした。次いで実施例1と同様
の4種類の金属イオン含有水溶液各々1000mlに上
記混合物の2wt%水溶液を第1表に示す量添加
し、実施例1と同様にしてフロツク沈澱時間、フ
ロツク生成量、液中の残存金属イオン濃度を測
定した。結果を第1表にあわせて示す。 比較例 2 実施例1と同様のポリアミン誘導体の0.5wt%
水溶液を、実施例1と同様の4種類の金属イオン
含有水溶液各々1000mlに第1表に示す量添加し、
実施例1と同様にしてフロツク沈澱時間、フロツ
ク生成量、液中の残存金属イオン濃度を測定し
た。結果を第1表にあわせて示す。 比較例 3 実施例1と同様の装置に30.6gのエチレンジア
ミン、450gの純水及び57.2gの水酸化カリウム
を入れ、実施例2と同様の条件で二硫化炭素77.5
gを添加して反応させ反応生成物を得た。 この反応生成物に第1表に示す量の五硫化ナト
リウム及び純水を加え2wt%水溶液とした後、実
施例1と同様の4種類の金属イオン含有水溶液
各々1000mlに、上記2wt%水溶液を第1表に示す
量添加し、実施例1と同様にしてフロツク沈澱時
間、フロツク生成量、液中の残存金属イオン濃
度を測定した。結果を第1表にあわせて示す。
[Industrial Field of Application] The present invention relates to a metal collection method. [Prior art] In recent years, as the pollution of rivers, oceans, etc. by wastewater from factories has become a problem, regulations to prevent pollution by wastewater have been strengthened, and metals contained in wastewater must be kept below a specified concentration. It is mandatory that
Particularly strict regulations are in place for heavy metals that are harmful to the human body, such as mercury, cadmium, zinc, lead, copper, and chromium. For this reason, various methods have been proposed to remove metals from wastewater, including ion flotation, ion exchange, electrolytic flotation, electrodialysis, reverse osmosis, slaked lime, A known method is a neutralization coagulation-sedimentation method, in which metals are turned into hydroxides by adding an alkaline neutralizing agent such as caustic soda, and then removed by coagulation and precipitation using a polymer flocculant. A method of collecting and removing metals using a metal scavenger is also known, and a metal scavenger containing aliphatic polydithiocarbamic acid or its salts is known as this type of metal scavenger. (Japanese Patent Publication No. 49-99978). [Problems to be solved by the invention] However, ion flotation, ion exchange,
The electrolytic flotation method, electrodialysis method, and reverse osmosis method have problems with the removal rate of heavy metals, operability, running costs, etc., and are currently only used for some special wastewater treatments. In addition, the neutralization coagulation precipitation method generates a large amount of metal hydroxide sludge, and these hydroxide sludges have problems such as poor dewatering properties and large sludge volumes, making it difficult to transport. It is also very difficult to remove it below the standard value. Moreover, depending on how these sludge is disposed of, there is also the problem that it may re-melt and cause secondary pollution. On the other hand, although the above problems can be solved by a method of collecting and removing metals using a metal scavenger containing aliphatic polydithiocarbamic acid or its salts, the molecular weight of this metal scavenger is small. Therefore, it is necessary to add a large amount, and the floc produced is small, resulting in problems such as poor sedimentation properties. [Means for solving the problem] As a result of intensive research in view of the above points, the present inventors found that at least one carbodithioic acid substituted with the active hydrogen atom of a polycondensed polyamine obtained by polycondensing polyamines and epihalohydrin. We discovered that polyamine derivatives having groups and/or salts thereof as substituents had excellent performance as metal scavengers, and filed an application (Japanese Patent Application No. 89998-1989).
As a result of further intensive research, it was discovered that metal ions in wastewater can be collected most efficiently by using the above polyamine derivative in combination with at least one of sodium monosulfide, sodium polysulfide, and sodium hydrogen sulfide, and the present invention has been achieved. It was completed. The metal collection method of the present invention includes a polyamine derivative having as a substituent at least one carbodithioic acid group and/or a salt thereof substituted with an active hydrogen atom of a polycondensed polyamine obtained by polycondensation of a polyamine and an epihalohydrin; This is a method of collecting and removing metal ions in wastewater by adding at least one of sodium sulfide, sodium polysulfide, and sodium hydrogen sulfide to wastewater containing metal ions. The polyamine derivative used in the present invention has at least one carbodithioic acid group substituted with the active hydrogen atom of the polycondensed polyamine: -CSSH and/or
or its salts as a substituent, which is obtained by polycondensing polyamines and epihalohydrin to obtain a polycondensed polyamine, and then introducing a carbodithioic acid group and/or its salts as a substituent into the polycondensed polyamine. It can be obtained by a method in which a carbodithioic acid group and/or a salt thereof is introduced as a substituent into polyamines, and then polycondensed with epihalohydrin. Further, in the polyamine derivative used in the present invention, one or more types of an alkyl group, a hydroxyalkyl group, and an acyl group may be bonded to the nitrogen atom of the polycondensed polyamine as an N-substituent.
The above N-substituents are used to convert polyamines into methyl halide, ethyl halide, butyl halide, lauryl halide, etc. before polycondensation with epihalohydrin.
Alkyl halides such as stearyl halide; epoxy alkanes such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide, 1,2-dodecyl epoxy alkane, 1,2-octacosyl epoxy alkane, or acetic acid, propionic acid, butyric acid, caproic acid , by reacting with fatty acids such as caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, esters of these fatty acids, or acid halides of these fatty acids, or by polycondensing polyamines and epihalohydrin. It can be introduced by forming a polycondensed polyamine and then reacting it with an alkyl halide, an epoxy alkane, or a fatty acid as described above. Further, as the N-substituent, two or more of the same type may be present in the molecule, or two or more of different types may be present in the molecule. The polyamine derivatives used in the present invention may have a structure in which a carbodithioic acid group and/or its salts are bonded to the nitrogen atom of a polycondensed polyamine, or may have a structure in which a carbodithioic acid group and/or its salts are bonded to the nitrogen atom of a polycondensed polyamine. It may have a structure in which a carbodithioic acid group and/or its salt is bonded to an oxygen atom in substitution for a hydrogen atom, or it may have a structure in which it is bonded to both a nitrogen atom and an oxygen atom. Examples of the salts of the carbodithioic acid group include alkali metal salts such as sodium salts and potassium salts, alkaline earth metal salts such as calcium salts and magnesium salts, and ammonium salts. The above polyamines have 1 or 2 atoms per nitrogen atom.
A compound having two or more imino or amino groups formed by bonding active hydrogen atoms, such as ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, diethylenetriamine, dipropylenetriamine, dibutylenetriamine, triethylenetetramine. , polyalkylene polyamines such as tripropylenetetramine, tributylenetetramine, tetraethylenepentamine, tetrapropylenepentamine, tetrabutylenepentamine, pentaethylenehexamine; phenylenediamine, xylenediamine,
meta-xylene diamine, iminobispropylamine, monomethylaminopropylamine, methyliminobispropylamine, 1,3-bis(aminomethyl)cyclohexane, 1,3-diaminopropane, 1,4-diaminobutane, 3,5-diamino Examples include chlorobenzene, melamine, 1-aminoethylpiperazine, piperazine, diaminophenyl ether, 3,3'-dichlorobenzidine, tolidine base, m-tolylenediamine, and polyethylene polyimine (average molecular weight 300 or more). In addition to the above polyamines, it is also possible to use N-alkyl polyamines, N-hydroxyalkyl polyamines, N-acyl polyamines, etc. obtained by reacting these polyamines with alkyl halides, epoxy alkanes, or fatty acids. . As the N-alkyl polyamine, N-alkylethylenediamine, N-
Alkylpropylene diamine, N-alkylhexamethylene diamine, N-alkylphenylene diamine, N-alkylxylene diamine, N-alkyldiethylenetriamine, N-alkyltriethylenetetramine, N-alkyltetraethylenepentamine, N-alkylpentaethylenehexamine etc. can be used. The N-substituted alkyl group preferably has 2 to 18 carbon atoms. Examples of N-hydroxyalkylpolyamines include N-hydroxyethylpolyamine, N-hydroxypropylpolyamine, N-hydroxybutylpolyamine, and N-hydroxybutylpolyamine.
-β-hydroxydodecylpolyamine, N-β-
Examples include hydroxytetradecylpolyamine, N-β-hydroxyhexadecylpolyamine, N-β-hydroxyoctadecylpolyamine, N-β-hydroxyoctacosylpolyamine, and the like. In addition, N-acylpolyamines include N-acetylpolyamine, N-propionylpolyamine, N-
Butyryl polyamine, N-caproyl polyamine, N-lauroyl polyamine, N-oleoyl polyamine, N-myristyroyl polyamine, N
-stearoylpolyamine, N-beheroylpolyamine, and the like. These polyamines can be used alone or in combination of two or more.
Epihalohydrins include epichlorohydrin, epipromhydrin, epiiodohydrin,
etc. The polyamine derivatives used in the present invention are polyamines that are polycondensed with epihalohydrin (if a substituent is introduced into the polyamine before polycondensation with epihalohydrin, the polyamine before the introduction of the substituent) is a diamine having two amino groups. In some cases, it has a linear structure and is generally water-soluble. Further, when it has a crosslinked structure, it has dispersibility or suspendability in water. In the method of the present invention, the above polyamine derivative and at least one of sodium monosulfide, sodium polysulfide, and sodium hydrogen sulfide are added to wastewater to collect and remove metal ions in the wastewater. As the sodium polysulfide, sodium disulfide, sodium trisulfide, sodium tetrasulfide, and sodium pentasulfide are used. The purpose of the present invention can be achieved if the weight ratio of the polyamine derivative and the above-mentioned sodium sulfides is 1:99 to 99:1, but especially 20:80 to 98:1.
It is preferable that it is 2. The polyamine derivative and sodium sulfide may be mixed in advance and added to the wastewater, or may be added to the wastewater separately, but it is preferable to mix them in advance and add them to the wastewater. Incidentally, when adding them separately, the effect of removing metal ions is almost the same whether the polyamine derivative is added first and then the sodium sulfides are added, or the metal ion removal effect is added in the reverse order. The polyamine derivative used in the present invention can be used alone as a metal scavenger, but when used in combination with sodium sulfide, the generated flocs are larger, the time required for floc sedimentation can be shortened, and metal ions in wastewater can be removed. Can be efficiently collected and removed. Sodium sulfides also have the ability to form complexes with metal ions, but when used alone, the flocs produced are extremely small, making it difficult to precipitate and remove the flocs. Metal ions in wastewater can be efficiently collected and removed. This is due to the ability of polyamine derivatives to form complexes with metal ions,
It is thought that the complex-forming ability of sodium sulfides and metal ions act in a mutually effective manner. Therefore, the amount of the polyamine derivative and sodium sulfide added to the wastewater is preferably such that the total amount of both is 0.7 to 4 molar equivalents, particularly 0.9 to 1.5 molar equivalents, of the amount of metal ions in the wastewater. In the present invention, when collecting and removing metal ions in wastewater by adding polyamine derivatives and sodium sulfides to wastewater, it is preferable to adjust the pH of the wastewater to 3-10, particularly 4-9. The acid or alkali used to adjust the pH may be anything as long as it does not inhibit the formation of flocs, but the acid used is usually hydrochloric acid, sulfuric acid, nitric acid, etc., and the alkali used is sodium hydroxide, potassium hydroxide, etc. , calcium hydroxide, etc. are used. According to the method of the present invention, mercury, cadmium, zinc,
Metals such as lead, copper, chromium, arsenic, gold, silver, platinum, vanadium, and thallium can be efficiently collected and removed. [Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 261.1 g of metaxylene diamine and a water-acetone (1:1) mixture were placed in a four-necked flask equipped with a stirrer, thermometer, dropping funnel, and reflux condenser.
300g was added and heated to 60°C with stirring, and 174g of epichlorohydrin was added dropwise over 4 hours while controlling the temperature so as not to exceed 90°C. After the dropwise addition was completed, the temperature was maintained at 80 to 90°C for 1 hour. 727 g of a water-acetone solution of a polycondensed polyamine obtained by polycondensing meta-xylene diamine and epichlorohydrin was obtained. Next, 234.1 g of the polycondensed polyamine solution, 517.4 g of pure water, and 59.9 g of sodium hydroxide were placed in the same apparatus as above, and 86.9 g of carbon disulfide was added dropwise over 3 hours while stirring at 40°C. After further holding at the same temperature for 1 hour, water-acetone was distilled off at 60 to 90°C to obtain a polyamine derivative. The sodium sulfides shown in Table 1 were mixed in the proportions shown in Table 1 per 100 parts by weight of the above polyamine derivative, and a Cu 2+ -containing aqueous solution, a Cd 2+ -containing aqueous solution, a Hg 2+ -containing aqueous solution, a Pb 2+ -containing aqueous solution ( Each of the four types of aqueous solutions with a metal ion content of 50 ppm and PH = 5.0)
A 0.5 wt % aqueous solution of the above mixture was added to 1000 ml in the amount shown in Table 1, stirred for 5 minutes, and left to stand, and the time until the formed flocs precipitated was measured. The results are shown in Table 1. After the generated flocs were filtered out, the concentration of metal ions remaining in the liquid was measured by atomic absorption spectrometry. The results and the amount of flocs separately collected are also shown in Table 1. Example 2 Ethylenediamine was placed in an apparatus similar to Example 1.
30.6 g, pure water 450 g, and potassium hydroxide 57.2 g were added, and 77.5 g of carbon disulfide was added dropwise at 50°C over 4 hours, and then heated at 60°C for 3 hours to form a solution containing potassium carbodithioate base as a substituent. An ethylenediamine derivative was obtained. Next, the mixture was cooled to 30°C, 47.2g of epichlorohydrin was added dropwise over 5 hours, and the reaction was continued at 70 to 90°C for 3 hours. 308g of pure water was added to form a mixture containing 20.0wt% polyamine derivative. An aqueous solution was obtained. The sodium sulfides shown in Table 1 were mixed in the proportions shown in Table 1 per 100 parts by weight of this polyamine derivative aqueous solution, and a 2 wt% aqueous solution of the above mixture was added to 1000 ml of each of the four metal ion-containing aqueous solutions similar to Example 1. The amounts shown in Table 1 were added, and the flocculation time, flocculation amount, and residual metal ion concentration in the solution were measured in the same manner as in Example 1. The results are also shown in Table 1. Example 3 In a 500 ml four-neck flask equipped with a thermometer, reflux condenser, stirrer, and dropping funnel, 71.2 g of metaxylene diamine and 279 g of a 7.5% aqueous sodium hydroxide solution were added.
79.6 g of carbon disulfide was added dropwise over 6 hours at 45°C with vigorous stirring. After the dropwise addition, the reaction was carried out at the same temperature for 1.5 hours, and then at 70°C for 2 hours. An aqueous solution of a reaction product having an acid group and a sodium carbodithioate base as a substituent was obtained. Put 400g of the above aqueous solution and 267.3g of pure water into the same device as above, and heat 50.3g of epichlorohydrin at 60℃.
was added over 4 hours, and the reaction was further carried out at 70 to 80°C for 1 hour to obtain a 28.1 wt % aqueous solution of a polyamine derivative. Sodium sulfides shown in Table 1 were mixed in the proportions shown in Table 1 per 100 parts by weight of this polyamine derivative aqueous solution, and pure water was further added to form a 2 wt % aqueous solution. Next, a 2wt% aqueous solution of the above mixture was added in the amounts shown in Table 1 to 1000 ml of each of the four types of metal ion-containing aqueous solutions similar to those in Example 1, and the floc precipitation time, floc production amount, and concentration in the solution were determined in the same manner as in Example 1. The residual metal ion concentration was measured. The results are also shown in Table 1. Example 4 Diethylenetriamine was added to the same apparatus as in Example 3.
21.0g, pure water 326.4g and sodium hydroxide 24.5g
g, and 46.5 g of carbon disulfide was added dropwise at 40° C. over 3 hours. After the dropwise addition was completed, the reaction was further carried out at 70°C, and then cooled to approximately 30°C and epibromohydrin 34.4
g was added over 2 hours, the temperature was raised to 80 to 90°C, and the reaction was continued for 2 hours to obtain an aqueous solution containing 27.1% of the polyamine derivative. Sodium sulfides shown in Table 1 were mixed in the proportions shown in Table 1 per 100 parts by weight of this polyamine derivative aqueous solution, and pure water was further added to form a 2 wt % aqueous solution. Next, a 2wt% aqueous solution of the above mixture was added in the amounts shown in Table 1 to 1000 ml of each of the four types of metal ion-containing aqueous solutions similar to those in Example 1, and the floc precipitation time, floc production amount, and concentration in the solution were determined in the same manner as in Example 1. The residual metal ion concentration was measured. The results are also shown in Table 1. Example 5 Diethylenetriamine was added to the same apparatus as in Example 1.
29.9 g and 120 g of toluene were added thereto, and 26.8 g of epichlorohydrin was added dropwise over 3 hours at 40 to 50°C. After the dropwise addition was completed, the reaction was continued at 60°C for 2 hours. Next, add 46.4g of sodium hydroxide and pure water to this.
Add 641.8g of carbon disulfide to 66.1g of carbon disulfide at 40℃.
The mixture was added dropwise over a period of time, and after the completion of the addition, the reaction was further carried out at 70°C for 4 hours. After the reaction was completed, the mixture was cooled to 30° C., stirring was stopped, and the mixture was separated into two layers. After removing the toluene in the upper layer, it was heated to 40°C with stirring, and 48.9 g of epibromohydrin was added dropwise over 3 hours. After the dropwise addition, the reaction was continued at 70 to 80°C for 1 hour, and 22.6 wt% polyamine was added. An aqueous solution containing the derivative was obtained. Sodium sulfides shown in Table 1 were mixed in the proportions shown in Table 1 per 100 parts by weight of this polyamine derivative aqueous solution, and pure water was further added to form a 2 wt % aqueous solution. Next, a 2wt% aqueous solution of the above mixture was added in the amounts shown in Table 1 to 1000 ml of each of the four types of metal ion-containing aqueous solutions similar to those in Example 1, and the floc precipitation time, floc production amount, and concentration in the solution were determined in the same manner as in Example 1. The residual metal ion concentration was measured. The results are also shown in Table 1. Example 6 Diethylenetriamine was added to the same apparatus as in Example 1.
31.1g was added, and 123.2g of epoxyalkane (alkyl group has 28 carbon atoms) was added dropwise at 90℃ over 30 minutes.
After the dropwise addition, the reaction was further carried out at the same temperature for 2 hours, and N
-Hydroxyalkyldiethylenetriamine was obtained. Next, it was cooled to 40℃, and 667.7g of pure water was added to it.
After adding 24.2 g of sodium hydroxide, 45.9 g of carbon disulfide was added dropwise over 2 hours.
The reaction was continued for 3 hours at ℃. After the reaction is completed, 80-90
27.9g of epichlorohydrin was added dropwise over 3 hours at ℃, and after the dropwise addition was completed, the reaction was continued for another 3 hours at 90-100℃, and then 260.9g of pure water was added to give a concentration of 20.0wt%.
An aqueous solution of polyamine derivative was obtained. Sodium sulfides shown in Table 1 were mixed in the proportions shown in Table 1 per 100 parts by weight of this polyamine derivative aqueous solution, and pure water was further added to form a 2 wt % aqueous solution. Next, a 2wt% aqueous solution of the above mixture was added in the amounts shown in Table 1 to 1000 ml of each of the four types of metal ion-containing aqueous solutions similar to those in Example 1, and the floc precipitation time, floc production amount, and concentration in the solution were determined in the same manner as in Example 1. The residual metal ion concentration was measured. The results are also shown in Table 1. Example 7 62.7 g of N,N′′′′-bis(hydroxyethyl)triethylenetetramine was placed in the same apparatus as in Example 3, and 24.8 g of epichlorohydrin was added at 50°C.
The mixture was added dropwise over a period of time, and after the completion of the addition, the reaction was continued for an additional 2 hours at 80 to 90°C. Next, 672.7 g of 8% sodium hydroxide aqueous solution was added to this, and 81.5 g of carbon disulfide was added dropwise at 50°C over 2 hours.
The temperature was raised to .degree. C. and the reaction was continued for 3 hours to obtain an aqueous solution containing 22.3% of the polyamine derivative. Sodium sulfides shown in Table 1 were mixed in the proportions shown in Table 1 per 100 parts by weight of this polyamine derivative aqueous solution, and pure water was further added to form a 2 wt % aqueous solution. Next, a 2wt% aqueous solution of the above mixture was added in the amounts shown in Table 1 to 1000 ml of each of the four types of metal ion-containing aqueous solutions similar to those in Example 1, and the floc precipitation time, floc production amount, and concentration in the solution were determined in the same manner as in Example 1. The residual metal ion concentration was measured. The results are also shown in Table 1. Example 8 22.4 g of polyethyleneimine (average molecular weight 70,000) and 933.2 g of a 1.1% aqueous sodium hydroxide solution were placed in the same apparatus as in Example 1, and 19.7 g of carbon disulfide was added dropwise at 50°C over 1 hour. After completion of the reaction, the reaction was continued for an additional 2 hours at the same temperature. Next, 0.5 g of epichlorohydrin was added dropwise over 3 hours, and then 80 g of
The reaction was continued at ℃ for 2 hours to obtain an aqueous solution containing 5 wt% of the polyamine derivative. Sodium sulfides shown in Table 1 were mixed with 100 parts by weight of this polyamine derivative aqueous solution in the proportions shown in the same table, and pure water was further added to form a 9 wt % aqueous solution. Next, 9 wt% aqueous solution of the above mixture was added in the amount shown in Table 1 to 1000 ml of each of the four metal ion-containing aqueous solutions as in Example 1, and the floc precipitation time, floc production amount, and in-liquid content were determined in the same manner as in Example 1. The residual metal ion concentration was measured. The results are also shown in Table 1. Example 9 42.5 g of N-methyldiethylenetriamine and 50 g of a water-dioxane (2:1) mixture were placed in the same apparatus as in Example 3, and 33.6 g of epichlorohydrin was added to 70 g of a mixture of water and dioxane (2:1).
Start dropping at a temperature of 95°C, continue dropping for 4 hours while adjusting the temperature so as not to exceed 95°C.
The reaction continued for 2 hours at ~95°C. Next, the mixture was cooled to 40°C, 230g of pure water and 43.6g of sodium hydroxide were added, and 55.3g of carbon disulfide was added dropwise over 3 hours. After the dropwise addition, topping was continued at 70°C under reduced pressure until dioxane was no longer detected. After going, 120g of pure water
was added to obtain a 22.5wt% polyamine derivative aqueous solution. Sodium sulfides shown in Table 1 were mixed in the proportions shown in Table 1 per 100 parts by weight of this polyamine derivative aqueous solution, and pure water was further added to form a 2 wt % aqueous solution. Next, a 2wt% aqueous solution of the above mixture was added in the amounts shown in Table 1 to 1000 ml of each of the four types of metal ion-containing aqueous solutions similar to those in Example 1, and the floc precipitation time, floc production amount, and concentration in the solution were determined in the same manner as in Example 1. The residual metal ion concentration was measured. The results are also shown in Table 1. Example 10 In a device similar to Example 1, 64 g of N-methylethylenediamine, 619.9 g of pure water, and sodium hydroxide were added.
34.6 g of carbon disulfide was added thereto, and 65.7 g of carbon disulfide was added dropwise thereto at 50°C over 3 hours, and after the dropwise addition was completed, the reaction was continued at 70°C for an additional 2 hours. After the reaction was completed, the mixture was cooled to 30°C, 79.9 g of epichlorohydrin was added dropwise at 70°C over 3 hours, and the reaction was further continued at the same temperature for 3 hours to obtain an aqueous solution containing 26.5 wt% of the polyamine derivative. Sodium sulfides shown in Table 2 were mixed in various proportions shown in Table 2 per 100 parts by weight of this polyamine derivative aqueous solution, and pure water was further added to form a 2 wt % aqueous solution. Next, a 2wt% aqueous solution of the above mixture was added in the amounts shown in Table 2 to 1000 ml of each of the four types of metal ion-containing aqueous solutions similar to those in Example 1, and 24 experiments were conducted with different types of sodium sulfides and amounts added. The procedure was carried out in the same manner as in 1, and the flocculation time, flocculation amount, and residual metal ion concentration in the solution were measured. The results are also shown in Table 2. Comparative Example 1 500 g of a 30% aqueous solution of polyethyleneimine (average molecular weight 20,000) and a 10% aqueous solution were placed in the same apparatus as in Example 1.
1120 g of sodium hydroxide aqueous solution was added, and 212 g of carbon disulfide was added dropwise at 40° C. over 3 hours. After the dropwise addition was completed, the reaction was continued at 45° C. for 3 hours to obtain an aqueous solution containing 23 wt% of the reaction product. The sodium sulfides shown in Table 1 were mixed in the amount shown in Table 1 per 100 parts by weight of this aqueous solution, and pure water was further added to form a 2 wt % aqueous solution. Next, a 2wt% aqueous solution of the above mixture was added in the amounts shown in Table 1 to 1000 ml of each of the four types of metal ion-containing aqueous solutions similar to those in Example 1, and the floc precipitation time, floc production amount, and concentration in the solution were determined in the same manner as in Example 1. The residual metal ion concentration was measured. The results are also shown in Table 1. Comparative Example 2 0.5wt% of the same polyamine derivative as Example 1
The aqueous solution was added in the amounts shown in Table 1 to 1000 ml of each of the four types of metal ion-containing aqueous solutions similar to Example 1,
In the same manner as in Example 1, the flocculation time, flocculation amount, and residual metal ion concentration in the solution were measured. The results are also shown in Table 1. Comparative Example 3 30.6 g of ethylenediamine, 450 g of pure water and 57.2 g of potassium hydroxide were placed in the same apparatus as in Example 1, and 77.5 g of carbon disulfide was added under the same conditions as in Example 2.
g was added and reacted to obtain a reaction product. To this reaction product, the amounts of sodium pentasulfide and pure water shown in Table 1 were added to make a 2wt% aqueous solution, and then the above 2wt% aqueous solution was added to 1000ml each of the same four types of metal ion-containing aqueous solutions as in Example 1. The amount shown in Table 1 was added, and the flocculation time, flocculation amount, and residual metal ion concentration in the liquid were measured in the same manner as in Example 1. The results are also shown in Table 1.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の金属捕集方法はポ
リアミン類とエピハロヒドリンとが重縮合した重
縮合ポリアミンの活性水素原子と置換した少なく
とも1個のカルボジチオ酸基及び/又はその塩類
を置換基として有するポリアミン誘導体と、一硫
化ナトリウム、ポリ硫化ナトリウム、硫化水素ナ
トリウムの少なくとも1種とを金属捕集剤として
金属イオンを含有する廃水中に添加して廃水中の
金属イオンを捕集除去する方法を採用したから、
従来の脂肪族ポリジチオカルバミン酸またはその
塩類を含有する金属捕集剤に比べて少ない添加量
で充分に廃水中の金属イオンを捕集除去できる。
しかも本発明において用いるポリアミン誘導体は
単独で金属捕集剤として用いても金属を捕集して
生じたフロツクが大きく、該フロツクの沈澱速度
が速いため廃水中の金属イオンを迅速に捕集して
除去することができるが、一硫化ナトリウム、ポ
リ硫化ナトリウム、硫化水素ナトリウムの少なく
とも1種と併用したことにより両者が相剰効果的
に作用し、ポリアミン誘導体を単独で用いた場合
より、更にフロツクの沈澱速度が速く、きわめて
効率良く廃水中の金属イオンを捕集除去できる効
果を有する。
As explained above, the metal collection method of the present invention uses a polyamine having as a substituent at least one carbodithioic acid group and/or a salt thereof substituted with an active hydrogen atom of a polycondensed polyamine obtained by polycondensing a polyamine and an epihalohydrin. A method was adopted for collecting and removing metal ions in wastewater by adding the derivative and at least one of sodium monosulfide, sodium polysulfide, and sodium hydrogen sulfide to wastewater containing metal ions as a metal collecting agent. from,
Compared to conventional metal collectors containing aliphatic polydithiocarbamic acids or salts thereof, metal ions in wastewater can be sufficiently collected and removed with a smaller amount added.
Furthermore, even when the polyamine derivative used in the present invention is used alone as a metal scavenger, the flocs generated by capturing metals are large and the sedimentation rate of the flocs is fast, so that metal ions in wastewater can be quickly captured. However, when used in combination with at least one of sodium monosulfide, sodium polysulfide, and sodium hydrogen sulfide, the two act synergistically, resulting in even more floc removal than when polyamine derivatives are used alone. It has a fast sedimentation rate and is effective in collecting and removing metal ions in wastewater extremely efficiently.

Claims (1)

【特許請求の範囲】 1 ポリアミン類とエピハロヒドリンとが重縮合
した重縮合ポリアミンの活性水素原子と置換した
少なくとも1個のカルボジチオ酸基及び/又はそ
の塩類を置換基として有するポリアミン誘導体
と、一硫化ナトリウム、ポリ硫化ナトリウム、硫
化水素ナトリウムの少なくとも1種とを金属イオ
ンを含有する廃水中に添加して廃水中の金属イオ
ンを捕集除去することを特徴とする金属捕集方
法。 2 ポリアミン誘導体が重縮合ポリアミンの窒素
原子に結合したN−置換基としてアルキル基、ヒ
ドロキシアルキル基、アシル基からなる群より選
ばれた少なくとも1種を有する特許請求の範囲第
1項に記載の金属捕集方法。
[Scope of Claims] 1. A polyamine derivative having as a substituent at least one carbodithioic acid group and/or a salt thereof substituted with an active hydrogen atom of a polycondensed polyamine obtained by polycondensation of a polyamine and an epihalohydrin, and sodium monosulfide. A method for collecting metals, which comprises adding at least one of sodium polysulfide, sodium polysulfide, and sodium hydrogen sulfide to wastewater containing metal ions to collect and remove metal ions in the wastewater. 2. The metal according to claim 1, wherein the polyamine derivative has at least one type selected from the group consisting of an alkyl group, a hydroxyalkyl group, and an acyl group as an N-substituent bonded to the nitrogen atom of the polycondensed polyamine. Collection method.
JP14769385A 1985-04-26 1985-07-05 Method for collecting metal Granted JPS627492A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP14769385A JPS627492A (en) 1985-07-05 1985-07-05 Method for collecting metal
US06/853,692 US4670180A (en) 1985-04-26 1986-04-18 Metal scavenger and metal scavenging process
DE8686105545T DE3673222D1 (en) 1985-04-26 1986-04-22 RELEASE AGENTS AND METHOD OF SEPARATION.
EP86105545A EP0200143B1 (en) 1985-04-26 1986-04-22 Metal scavenger and metal scavenging process
AT86105545T ATE55362T1 (en) 1985-04-26 1986-04-22 SEPARATION MEANS AND SEPARATION PROCESSES FOR METALS.
US06/905,977 US4670160A (en) 1985-04-26 1986-09-11 Metal scavenger and metal scavenging process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14769385A JPS627492A (en) 1985-07-05 1985-07-05 Method for collecting metal

Publications (2)

Publication Number Publication Date
JPS627492A JPS627492A (en) 1987-01-14
JPH057078B2 true JPH057078B2 (en) 1993-01-28

Family

ID=15436131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14769385A Granted JPS627492A (en) 1985-04-26 1985-07-05 Method for collecting metal

Country Status (1)

Country Link
JP (1) JPS627492A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221579A (en) * 1990-01-26 1991-09-30 Arakawa Chem Ind Co Ltd Heavy metal-trapping agent

Also Published As

Publication number Publication date
JPS627492A (en) 1987-01-14

Similar Documents

Publication Publication Date Title
US4670180A (en) Metal scavenger and metal scavenging process
US4731187A (en) Removal of heavy metals from waste water
US5164095A (en) Dithiocarbamate polymers
US5510040A (en) Removal of selenium from water by complexation with polymeric dithiocarbamates
US7722841B2 (en) Polymeric chelant and coagulant to treat metal-containing wastewater
US5658487A (en) Polymeric dithiocarbamate acid salt compositions and method of use
EP0727391B1 (en) Polymeric dithiocarbamic acid salt and method of use
JP2948879B2 (en) Metal collecting agent and metal collecting method
JPH057078B2 (en)
CN109621904B (en) Purifying agent for nickel-containing aqueous solution and method for purifying nickel-containing aqueous solution
JPH0582871B2 (en)
JPS5924727B2 (en) Method for producing basic aluminum chloride salt containing magnesium
CA2079663C (en) Dithiocarbamate polymers
JPH0464757B2 (en)
JP3786293B2 (en) Method for recovering selenium from a solution containing selenium
JPH057079B2 (en)
JPS6123040B2 (en)
JPH1147766A (en) Arsenic fixing agent and treatment of drainage containing arsenic
JP3783970B2 (en) Method for recovering selenium from a solution containing selenium
JP4306917B2 (en) Anion scavenger and method for recovering inorganic anion from waste water
JPH057080B2 (en)
JPH09108683A (en) Waste water treating agent
JPH0525559B2 (en)
JPH03221579A (en) Heavy metal-trapping agent
JP3701057B2 (en) Metal scavenger and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees