JPH0570211A - Production of superconducting magnet - Google Patents

Production of superconducting magnet

Info

Publication number
JPH0570211A
JPH0570211A JP3094830A JP9483091A JPH0570211A JP H0570211 A JPH0570211 A JP H0570211A JP 3094830 A JP3094830 A JP 3094830A JP 9483091 A JP9483091 A JP 9483091A JP H0570211 A JPH0570211 A JP H0570211A
Authority
JP
Japan
Prior art keywords
magnetic field
magnet
superconducting
outside
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3094830A
Other languages
Japanese (ja)
Other versions
JP2709380B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP62075206A external-priority patent/JPS63240004A/en
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP3094830A priority Critical patent/JP2709380B2/en
Publication of JPH0570211A publication Critical patent/JPH0570211A/en
Application granted granted Critical
Publication of JP2709380B2 publication Critical patent/JP2709380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Hard Magnetic Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce a superconducting magnet used as a practical magnet by applying a magnetic field to a solid structure such as a ring-shaped superconducting material from the outside. CONSTITUTION:An oxide ceramic superconducting material is practically converted into a magnet by applying a magnetic field to the material from the outside or a solid structure made of the oxide ceramic superconducting material is practically converted into a magnet by enclosing the structure with a nonmagnetic metal and applying a magnetic field to them from the outside. The oxide ceramic superconducting material is represented by a formula (A1-xBx)yCuzOw (where x is 0-1, y is 2.0-4.0, z is 1.0-4.0, w is 4.0-10.0, A is an element selected among Y, Gd, Yb, Eu, Tb, Dy, Ho, Er, Tm, Lu, Sc and other lanthanoids and B is an element selected among Ra, Ba, Sr, Ca, Mg and Be).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固形物構造、例えばリ
ング状に形成させた超電導材料に外部より磁場を加えて
実質的磁石として用いる超電導磁石の作製方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a superconducting magnet which is used as a substantial magnet by applying a magnetic field from the outside to a solid material structure, for example, a ring-shaped superconducting material.

【0002】[0002]

【従来の技術】従来、超電子材料は、水銀、鉛等の元
素、NbN,Nb3Ge,Nb3Ga 等の合金またはNb3(Al0.8Ge0.2)
等の三元素化合物よりなる金属材料が用いられている。
しかしこれらのTc( 超電導臨界温度) オンセットは25K
までであった。
2. Description of the Related Art Conventionally, superelectronic materials have been elements such as mercury and lead, alloys such as NbN, Nb 3 Ge and Nb 3 Ga, or Nb 3 (Al 0.8 Ge 0.2 ).
A metal material made of a three-element compound such as is used.
However, these Tc (superconducting critical temperature) onset is 25K
It was up to.

【0003】他方、近年、セラミック系の超電導材料が
注目されている。この材料は最初IBM のチュ−リッヒ研
究所よりBa-La-Cu-O( バラクオ) 系酸化物高温超電導体
として報告され、さらにLSCO( 第二銅酸−ランタン−ス
トロンチュ−ム)として知られてきた。しかし、これら
は単にサイコロ状に設けられ、電気抵抗が零であること
を確認したにすぎない。
On the other hand, in recent years, attention has been paid to ceramic-based superconducting materials. This material was first reported as a Ba-La-Cu-O (oxide) high-temperature oxide superconductor by the Zurich Research Laboratories of IBM and was further known as LSCO (cupric acid-lanthanum-strontium). It was However, these are merely provided in the shape of dice, and it is merely confirmed that the electric resistance is zero.

【0004】[0004]

【発明が解決しようとする課題】このため、かかる酸化
物セラミックスが特性を活かした応用はまだ十分には与
えられていないのが現状である。
Therefore, at present, the application of such oxide ceramics making the most of the characteristics has not been sufficiently given.

【0005】さらに、このTco(抵抗が零となる温度) を
さらに高くし、望むべくは液体窒素温度(77K )またはそ
れ以上の温度、特に望むべくは室温で動作せしめること
が強く求められていた。
Further, it has been strongly demanded that the Tco (temperature at which the resistance becomes zero) be further increased to operate at liquid nitrogen temperature (77K) or higher, preferably room temperature. ..

【0006】[0006]

【課題を解決するための手段】本発明は、かかる室温に
より近い高温で超電導を呈するべく、新型を構成すべき
素材を探し求めた。そしてその材料を固形物構造とし、
該固形物に外部より磁場を印可し、その結果磁場をトラ
ップせしめ、永久磁石として作用し得ることを発見し
た。
The present invention has sought a material that should constitute a new type in order to exhibit superconductivity at a temperature close to room temperature. And the material has a solid structure,
It has been discovered that a magnetic field is applied to the solid material from the outside, which traps the magnetic field and can act as a permanent magnet.

【0007】本発明に用いる超電導材料はTco(電気抵抗
が零となる超電導が始まる温度) を50〜107Kまで向上さ
せたものである。
The superconducting material used in the present invention has a Tco (temperature at which superconductivity at which electric resistance becomes zero) starts to be improved to 50 to 107K.

【0008】本発明に用いる代表的な超電導材料は元素
周期表3a族および2a族の元素および銅を用いた酸化
物セラミックスである。尚、本明細書における元素周期
表は理化学辞典(岩波書店 1963年4月1日発行)によ
った。
A typical superconducting material used in the present invention is an oxide ceramic using an element of group 3a or 2a of the periodic table of elements and copper. In addition, the periodic table of elements in this specification is based on a dictionary of physics and chemistry (Iwanami Shoten, published April 1, 1963).

【0009】本発明に用いた超電導材料は(A1-x Bx)yCu
zOw x=0〜1,y=2.0 〜4.0 好ましくは2.5 〜3.5,z
=1.0 〜4.0 好ましくは1.5 〜3.5,w=4.0 〜10.0好ま
しくは6〜8で一般的に示し得るものである。Aはイッ
トリュ−ム族より選ばれた元素およびその他のランタノ
イドより選ばれた元素のうちの1種類または複数種類を
用いている。イットリュ−ム族とは、理化学辞典( 岩波
書店 1963年4月1日発行)によればY(イットリュ−
ム),Gd( ガドリュ−ム),Yb(イッテルビュ−ム),Eu( ユ
−ロピウム),Tb( テルビウム),Dy( ジスプロシウム),Ho
( ホルミウム),Er( エルビウム),Tm( ツリウム),Lu(
ルテチウム),Sc( スカンジウム) およびその他のランタ
ノイドを用いる。
The superconducting material used in the present invention is (A 1-x Bx) yCu
zOw x = 0 to 1, y = 2.0 to 4.0, preferably 2.5 to 3.5, z
= 1.0-4.0, preferably 1.5-3.5, w = 4.0-10.0, preferably 6-8. A uses one kind or plural kinds of elements selected from the yttrium group and other lanthanoids. According to the physics and chemistry dictionary (Iwanami Shoten, published on April 1, 1963), the Ytterbm tribe is Y
Gm), Yb (ytterbium), Eu (europium), Tb (terbium), Dy (dysprosium), Ho
(Holmium), Er (erbium), Tm (thulium), Lu (
Lutetium), Sc (scandium) and other lanthanides are used.

【0010】またBはRa( ラジュ−ム),Ba( バリュ−
ム),Sr( ストロンチュ−ム),Ca( カルシュ−ム),Mg( マ
グネシュ−ム),Be( ベリリュ−ム)より選ばれた元素の
うち1種類または複数種類を用いている。
Also, B is Ra (Radium), Ba (Value)
), Sr (strontium), Ca (calcium), Mg (magnesium), and Be (beryllium).

【0011】本発明はかかる元素を用いた材料を固形物
(例えばタブレット)とし、これを超電導状態で外部よ
り磁場好ましくは500 ガウス以上の磁場を加えることに
より、磁場を該固形物にトラップせしめ、実質的な磁石
(実際には単なる永久磁石とは特性が異なる)として使
用するものである。
In the present invention, a material using such an element is made into a solid substance (for example, a tablet), and a magnetic field, preferably 500 Gauss or more, is externally applied in a superconducting state to trap the magnetic field in the solid substance, It is used as a substantial magnet (actually, it has different characteristics from a simple permanent magnet).

【0012】[0012]

【作用】本発明の新型の超電導材料はきわめて簡単に作
ることができる。そして、かかる材料を固形物構造と
し、これを超電導状態で外部より磁場を加えることによ
り磁場をトラップさせる。その結果、磁石として作用さ
せ得るものである。
The new type of superconducting material of the present invention can be manufactured very easily. Then, such a material is made into a solid structure, and a magnetic field is applied from the outside in a superconducting state to trap the magnetic field. As a result, it can act as a magnet.

【0013】本発明においては、かかる超電導材料を作
るのに特に高価な設備を用いなくともよいという他の特
徴も有する。
Another feature of the present invention is that no particularly expensive equipment is required for producing such superconducting material.

【0014】以下に実施例に従い、本発明を記す。The present invention will be described below with reference to examples.

【0015】[0015]

【実施例】【Example】

「実施例1」本発明の実施例として、AとしてY,B とし
てBaを用いた。
[Example 1] As an example of the present invention, A was used as Y and B was used as Ba.

【0016】出発材料はY化合物として酸化イットリュ
−ム(Y2O3), Ba化合物としてBaCO3,銅化合物としてCuO
を用いた。これらは高純度化学工業株式会社より入手
し、純度は99.95%またはそれ以上の微粉末を用い、x=
0.67、y=3,z=3,w=6〜9(YBa2)Cu3O6 8 となる
べく選んだ。
The starting materials are yttrium oxide (Y 2 O 3 ) as the Y compound, BaCO 3 as the Ba compound, and CuO as the copper compound.
Was used. These are obtained from Kojundo Chemical Industry Co., Ltd., and use a fine powder with a purity of 99.95% or higher, and x =
0.67, y = 3, z = 3, w = 6 to 9 (YBa 2 ) Cu 3 O 6 to 8 were selected.

【0017】これらを十分乳鉢で混合しカプセルに封入
し、30Kg/cm2の荷重を加えてタブレット化( 外径15mm
φ, 内径5mm φ, 厚さ15mm) のリング形状とした。さら
に酸化性雰囲気、例えば大気中で500 〜1200℃、例えば
700℃で8時間加熱酸化をした。この工程を仮焼成とし
た。
These are thoroughly mixed in a mortar and encapsulated, and a tablet is formed by applying a load of 30 kg / cm 2 (outer diameter 15 mm
The ring shape is φ, inner diameter 5 mm φ, thickness 15 mm). Furthermore, in an oxidizing atmosphere, for example, air, at 500 to 1200 ° C., for example
It was heated and oxidized at 700 ° C. for 8 hours. This process was pre-baked.

【0018】この時外部より磁場を加えた。この磁場は
タブレットの上下に密接し、一方をN、他方をSとする
べく直流磁場とし、強さは500 ガウスとした。この磁場
の強さは強ければ強いほど好ましいことはいうまでもな
い。
At this time, a magnetic field was applied from the outside. This magnetic field was close to the top and bottom of the tablet, and a DC magnetic field was set so that one was N and the other was S, and the strength was 500 gauss. It goes without saying that the stronger the magnetic field, the better.

【0019】次にこれを粉砕し、乳鉢で混合した。そし
てその粉末の平均粉粒径が200 μm〜0.0 3μm、例え
ば10μm以下の大きさとなるようにした。
Next, this was crushed and mixed in a mortar. The average particle size of the powder is set to 200 μm to 0.03 μm, for example, 10 μm or less.

【0020】さらにこれをカプセルに封入し50Kg/cm2
圧力でタブレットに加圧して成型した。
Further, this was encapsulated and pressed into a tablet at a pressure of 50 Kg / cm 2 for molding.

【0021】次に500 〜1200℃、例えば900 ℃の酸化物
雰囲気、例えば大気中で酸化して、本焼成を10〜50時
間、例えば15時間行った。この時、このタブレットの上
下より外部磁場を加えた。この磁場は直流磁場とし、1K
ガウスをリング形状のタブレットに対し加えた。この磁
場は少なくとも10分以上加え続けると、Tco の上昇の効
果がみられた。
Next, the main calcination was carried out for 10 to 50 hours, for example 15 hours, by oxidizing in an oxide atmosphere at 500 to 1200 ° C., for example 900 ° C., for example in the air. At this time, an external magnetic field was applied from above and below the tablet. This magnetic field is a DC magnetic field, 1K
Gauss was added to a ring shaped tablet. When this magnetic field was applied for at least 10 minutes or longer, the effect of increasing Tco was observed.

【0022】この試料を用いて固有抵抗と温度との関係
を調べた。すると最高温度が得られたものとしてのTcオ
ンセットとして101K ,Tcoとして94K を観察することが
できた。
Using this sample, the relationship between specific resistance and temperature was investigated. Then, it was possible to observe 101K as Tc onset and 94K as Tco as the maximum temperature was obtained.

【0023】かかる成形物、例えばリング状の成形物に
対し、外部より1Kガウスの磁場を加えた。すると、永久
電流が誘起され、該電流は外部磁場を取り外した後も、
流れ続け、ビオサバ−ルの法則に従って誘起される磁場
に相当する磁場を外部に出すことができ、磁石として作
用する。
A magnetic field of 1 K gauss was applied from the outside to such a molded product, for example, a ring-shaped molded product. Then, a permanent current is induced, which current remains after the external magnetic field is removed.
It continues to flow, and a magnetic field corresponding to the magnetic field induced according to the Biot-Savart's law can be output to the outside and acts as a magnet.

【0024】「実施例2」この実施例は実施例1ででき
たリング状の超電導材料に対し、非磁性材料でカバ−を
した。例えばステンレス・スチ−ルである。すると外部
よりリング形状を十分隠し得る。そして単に磁石として
用い得る。このため、例えば「肩こり」防止用の健康器
具等への応用も可能である。
Example 2 In this example, the ring-shaped superconducting material prepared in Example 1 was covered with a nonmagnetic material. For example, a stainless steel. Then, the ring shape can be sufficiently hidden from the outside. And it can simply be used as a magnet. Therefore, it can be applied to, for example, a health appliance for preventing "stiff shoulders".

【0025】[0025]

【発明の効果】本発明により、これまでまったく不可能
とされていた液体窒素温度以上の温度で動作する超電導
セラミックスを用いて固形物構造、例えばタブレットや
リング状の磁石を作ることができるようになった。
Industrial Applicability According to the present invention, it is possible to form a solid structure, for example, a tablet or a ring-shaped magnet, by using superconducting ceramics that operate at a temperature higher than the liquid nitrogen temperature, which has been heretofore impossible. became.

【0026】本発明において、固形物構造に形成する際
に磁場を加えて、その特性を改良し得る。この磁場は、
この固形物構造に形成してしまった後の成形物に対して
外部より付加する磁場と同じ向きである方が内部に超電
導電流が流れやすく、好ましい。
In the present invention, a magnetic field may be applied when forming a solid structure to improve its properties. This magnetic field is
It is preferable that the direction of the magnetic field applied from the outside to the molded product after it has been formed into this solid structure is the same as the flow of the superconducting electroconductive flow inside.

【0027】本発明において、超電導材料のTco が室温
またはそれ以上であることは実使用にきわめて有効であ
る。かかる超電導材料にも本発明が用い得ることはいう
までもない。
In the present invention, it is extremely effective for practical use that the Tco of the superconducting material is room temperature or higher. Needless to say, the present invention can be applied to such superconducting materials.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】酸化物セラミックス超電導材料に対し、外
部より磁場を加えることによって、前記材料を実質的に
磁石とせしめることを特徴とする超電導磁石の作製方
法。
1. A method for producing a superconducting magnet, characterized in that a magnetic field is applied to an oxide ceramics superconducting material from the outside to make the material substantially a magnet.
【請求項2】請求項1において、酸化物セラミックス超
電導材料は(A1-x Bx)yCuOz, x=0〜1,y=2.0 〜4.
0,z=1.0 〜4.0,w=4.0 〜10.0を有し、AはY(イット
リュ−ム),Gd(ガドリニュ−ム),Yb(イッテルビュ−
ム),Eu( ユ−ロピウム),Tb( テルビウム),Dy(ジスプロ
シウム),Ho( ホルミウム),Er( エルビウム),Tm( ツリウ
ム),Lu( ルテチウム),Sc(スカンジウム) およびその他
のランタノイドより選ばれた元素よりなり、BはRa(ラ
ジュ−ム),Ba( バリュ−ム),Sr(ストロンチュ−ム),Ca
( カルシュ−ム),Mg( マグネシュ−ム),Be( ベリリュ−
ム)より選ばれた元素よりなることを特徴とする超電導
磁石の作製方法。
2. The oxide ceramics superconducting material according to claim 1, wherein (A 1-x Bx) yCuOz, x = 0 to 1, y = 2.0 to 4.
0, z = 1.0 to 4.0, w = 4.0 to 10.0, and A is Y (it rum), Gd (gadolinum), Yb (ytterbue).
), Eu (europium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Lu (lutetium), Sc (scandium), and other lanthanoids. B (Ra), Ba (Ba), Sr (Strontium), Ca
(Calcium), Mg (magnesium), Be (
A method for producing a superconducting magnet, which comprises an element selected from
【請求項3】酸化物セラミックス超電導材料が固形物構
造を有し、かつ該材料を囲んで、非磁性金属で囲み、そ
れら全体に外部より磁場を加えることにより実質的に磁
石せしめることを特徴とする超電導磁石の作製方法。
3. The oxide ceramics superconducting material has a solid structure, is surrounded by a non-magnetic metal, and is substantially magnetized by applying a magnetic field from the outside to the whole. A method for manufacturing a superconducting magnet.
【請求項4】請求項3において、酸化物セラミックス超
電導材料は(A1-x Bx)yCuOz, x=0〜1,y=2.0 〜4.0,
z=1.0 〜4.0,w=4.0 〜10.0を有し、AはY(イットリ
ュ−ム),Gd(ガドリニュ−ム),Yb( イッテルビュ−ム),
Eu( ユ−ロピウム),Tb( テルビウム),Dy( ジスプロシウ
ム),Ho( ホルミウム),Er( エルビウム),Tm( ツリウム),
Lu( ルテチウム),Sc(スカンジウム) およびその他のラ
ンタノイドより選ばれた元素よりなり、BはRa( ラジュ
−ム),Ba( バリュ−ム),Sr( ストロンチュ−ム),Ca( カ
ルシュ−ム),Mg( マグネシュ−ム),Be( ベリリュ−ム)
より選ばれた元素よりなることを特徴とする超電導磁石
の作製方法。
4. The oxide ceramics superconducting material according to claim 3, wherein (A 1-x Bx) yCuOz, x = 0 to 1, y = 2.0 to 4.0,
z = 1.0 to 4.0, w = 4.0 to 10.0, and A is Y (it rum), Gd (gadolinum), Yb (ytterbum),
Eu (europium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium),
It consists of elements selected from Lu (lutetium), Sc (scandium) and other lanthanoids, and B is Ra (radium), Ba (volume), Sr (strontium), Ca (calcium). , Mg (magnesium), Be (beryrum)
A method for producing a superconducting magnet, which is characterized by comprising a more selected element.
JP3094830A 1987-03-27 1991-04-01 How to make a superconducting magnet Expired - Fee Related JP2709380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3094830A JP2709380B2 (en) 1987-03-27 1991-04-01 How to make a superconducting magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62075206A JPS63240004A (en) 1987-03-27 1987-03-27 Superconducting material
JP3094830A JP2709380B2 (en) 1987-03-27 1991-04-01 How to make a superconducting magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62075206A Division JPS63240004A (en) 1987-03-27 1987-03-27 Superconducting material

Publications (2)

Publication Number Publication Date
JPH0570211A true JPH0570211A (en) 1993-03-23
JP2709380B2 JP2709380B2 (en) 1998-02-04

Family

ID=26416362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3094830A Expired - Fee Related JP2709380B2 (en) 1987-03-27 1991-04-01 How to make a superconducting magnet

Country Status (1)

Country Link
JP (1) JP2709380B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117208A (en) * 1981-01-14 1982-07-21 Toshiba Corp Exciting method for superconduction magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117208A (en) * 1981-01-14 1982-07-21 Toshiba Corp Exciting method for superconduction magnet

Also Published As

Publication number Publication date
JP2709380B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
EP0280812A1 (en) Superconductivity in square - planar compound systems
JPH0570211A (en) Production of superconducting magnet
US5270292A (en) Method for the formation of high temperature semiconductors
JP3219563B2 (en) Metal oxide and method for producing the same
JPH01145364A (en) Production of high-temperature superconducting ceramics
JPS63232215A (en) Manufacture of superconductive wire
JPH0737442A (en) Oxide superconductor and preparation of superconductor thereof
JPH0569059B2 (en)
JPS63240004A (en) Superconducting material
JP2854338B2 (en) Copper oxide superconductor
JPH01275433A (en) Multiple oxide superconducting material and production thereof
JPH02296760A (en) Porcelain composition of oxide superconductor and its production
JP2590370B2 (en) Superconducting material and manufacturing method thereof
JP2585621B2 (en) How to make superconducting material
JP2696690B2 (en) Oxide superconducting material
JPH07138019A (en) Production of thallium-based oxide superconductor
JPH01141866A (en) Production of ceramic sintered body superconducting at high temperature
JP2778100B2 (en) Oxide superconducting material and method for producing the same
JP2749194B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JPH01153565A (en) Production of oxide superconductor
Kim et al. Magnetic and Electrical Properties of High-Tc Superconductor YBa, Cu, O “
JPH01286927A (en) Oxide superconductor composition and production thereof
JPH04305015A (en) Superconducting material producting thereof
JPH0543234A (en) Oxide superconductor and production thereof
JPH01188457A (en) Process for forming high temperature superconducting ceramic to wire rod shape

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees