JPH0569976B2 - - Google Patents

Info

Publication number
JPH0569976B2
JPH0569976B2 JP58118652A JP11865283A JPH0569976B2 JP H0569976 B2 JPH0569976 B2 JP H0569976B2 JP 58118652 A JP58118652 A JP 58118652A JP 11865283 A JP11865283 A JP 11865283A JP H0569976 B2 JPH0569976 B2 JP H0569976B2
Authority
JP
Japan
Prior art keywords
timing
fuel injection
internal combustion
combustion engine
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58118652A
Other languages
Japanese (ja)
Other versions
JPS6011650A (en
Inventor
Koichiro Takeuchi
Minoru Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP58118652A priority Critical patent/JPS6011650A/en
Publication of JPS6011650A publication Critical patent/JPS6011650A/en
Publication of JPH0569976B2 publication Critical patent/JPH0569976B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 発明の技術分野 本発明は内燃機関に流入する空気量に基づいて
燃料噴射量を制御する燃料噴射装置の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an improvement in a fuel injection device that controls the amount of fuel injection based on the amount of air flowing into an internal combustion engine.

従来技術と問題点 車載用エンジン等の内燃機関に於いては、流入
空気量を検出するセンサを有し、該センサの検出
結果に基づいて燃料噴射量を演算し、燃料噴射タ
イミングに於いて演算結果に対応した量の燃料を
噴射するようにした燃料噴射装置が従来より使用
されている。このような燃料噴射装置に於いては
センサの検出結果の読取タイミング及び演算タイ
ミングにより加速、減速特性、ドライバビリテ
イ、排気ガスの過渡特性が左右される為、それら
のタイミングの設定は重要な問題である。
Prior art and problems Internal combustion engines such as automotive engines have a sensor that detects the amount of incoming air, calculates the fuel injection amount based on the detection result of the sensor, and calculates the amount at the fuel injection timing. Fuel injection devices that inject an amount of fuel corresponding to the result have been used in the past. In such a fuel injection system, acceleration, deceleration characteristics, drivability, and exhaust gas transient characteristics are affected by the reading timing and calculation timing of sensor detection results, so setting these timings is an important issue. It is.

第1図A〜Dは非同期方式と呼ばれる従来例の
説明図であり、同図Aは上死点信号TDCを示し、
同図Bはセンサの検出結果の読取タイミングを示
し、同図Cは演算タイミングを示し、同図Dは燃
料噴射タイミングを示している。
FIGS. 1A to 1D are explanatory diagrams of a conventional example called an asynchronous method, and FIG. 1A shows a top dead center signal TDC,
B in the same figure shows the reading timing of the detection result of the sensor, C in the same figure shows the calculation timing, and D in the same figure shows the timing of fuel injection.

この方式は同図B,Cに示すようにセンサの検
出結果の読取り、読取結果に基づく燃料噴射量の
演算を一定時間T毎に行ない、例えば同図Dに示
すように上死点信号が“1”となつたタイミング
から最新の演算結果に対応した時間だけ燃料を噴
射させるものであるが、次のような欠点があつ
た。即ち、この方式は一定時間T毎にセンサの検
出結果の読取り、読取結果に基づく燃料噴射量の
演算を行なつているものであり、演算終了時から
燃料噴射開始時までの遅れ時間がまちまちで、最
大Tとなる為、内燃機関の状態変化(例えば加
速、減速等)に応じた応答性の良い噴射制御を行
なうことができない欠点があつた。
In this method, as shown in Figures B and C, the sensor detection results are read and the fuel injection amount is calculated based on the reading results at fixed time intervals T. For example, as shown in Figure D, the top dead center signal is " This method injects fuel for a time corresponding to the latest calculation result from the timing when the value reaches 1", but it has the following drawbacks. In other words, this method reads sensor detection results at fixed time intervals T and calculates the fuel injection amount based on the reading results, and the delay time from the end of the calculation to the start of fuel injection varies. , the maximum T, so there was a drawback that injection control with good responsiveness in response to changes in the state of the internal combustion engine (for example, acceleration, deceleration, etc.) could not be performed.

第2図A〜Eは同期方式と呼ばれる他の従来例
の説明図であり、同図Aは上死点信号を示し、同
図Bはクランクが一定角度(この場合は30°)回
転する毎に出力される回転角位置信号を示し、同
図Cはセンサの検出結果の読取タイミングを示
し、同図Dは燃料噴射量の演算タイミングを示
し、同図Eは燃料噴射タイミングを示している。
Figures 2A to 2E are explanatory diagrams of another conventional example called the synchronous system, in which Figure A shows the top dead center signal, and Figure 2B shows the signal every time the crank rotates by a certain angle (30° in this case). FIG. 3C shows the timing of reading the sensor detection results, D shows the calculation timing of the fuel injection amount, and E shows the fuel injection timing.

この方式は同図B〜Dに示すように特定の回転
角位置信号(この場合は回転角位置信号C9)を
検出した時点から、センサの検出結果の読取り及
び読取結果に基づく燃料噴射量の演算を行ない、
例えば同図Eに示すように上死点信号が“1”と
なつたタイミングから最新の演算結果に対応した
時間だけ燃料を噴射させるものであるが、次のよ
うな欠点があつた。
As shown in Figures B to D, this method starts from the time when a specific rotation angle position signal (rotation angle position signal C 9 in this case) is detected, reads the detection result of the sensor, and adjusts the fuel injection amount based on the reading result. perform calculations,
For example, as shown in Figure E, fuel is injected for a period of time corresponding to the latest calculation result from the timing when the top dead center signal becomes "1", but it has the following drawbacks.

回転角位置信号C9が発生してから上死点信号
が“1”となるまでの時間は内燃機関の回転数に
より異なり、回転数が高いほど前記時間は短いも
のとなるが、センサの検出結果の読取りを開始し
てから燃料噴射量の演算が終了するまでの時間は
回転数にかかわらず常に一定時間T1であるので、
回転数が高い場合には同図Dに示すように燃料噴
射タイミング(上死点信号が“1”となつたタイ
ミング)になつても演算E1,E2が終了しない
ことがある。このような場合には演算E1,E2
の演算結果はそれれ同図Eに示すように1回後の
噴射H1,H2に使用されることになり、演算終
了時から燃料噴射開始時までの遅れ時間が大とな
る為、内燃機関の状態変化に応じた応答特性の良
い噴射制御を行なうことが難しい欠点があつた。
このような欠点を改善する為に回転角位置信号
C9より前の特定回転角位置信号を検出した時に
センサの検出結果の読取を開始すると言うことも
考えられるが、この場合は、内燃機関の回転数が
低い場合、演算終了から燃料噴射までの遅れ時間
が大となる為、応答性の良い噴射制御を行なうこ
とが難しい欠点があつた。
The time from when the rotation angle position signal C 9 is generated until the top dead center signal becomes "1" varies depending on the rotation speed of the internal combustion engine, and the higher the rotation speed, the shorter the above-mentioned time becomes. The time from the start of reading the results to the end of calculation of the fuel injection amount is always a constant time T 1 regardless of the rotation speed, so
When the rotational speed is high, as shown in FIG. D, calculations E1 and E2 may not be completed even at the fuel injection timing (the timing when the top dead center signal becomes "1"). In such a case, operations E1, E2
The calculation results are used for the subsequent injections H1 and H2, as shown in Figure E, and the delay time from the end of the calculation to the start of fuel injection is large, so the internal combustion engine The drawback was that it was difficult to perform injection control with good response characteristics in response to state changes.
In order to improve these drawbacks, the rotation angle position signal
It is also possible to start reading the sensor detection results when a specific rotation angle position signal before C 9 is detected, but in this case, if the internal combustion engine speed is low, the time from the end of calculation to fuel injection may be The drawback was that it was difficult to perform injection control with good responsiveness due to the large delay time.

また、この他にも上死点信号が“1”となつた
タイミングに於いて燃料噴射を開始すると共に、
燃料噴射量を決定する為の処理(センサの検出結
果の読取り、読取結果に基づいた燃料噴射量の演
算)を開始し、上死点信号が“1”となつたタイ
ミングから演算結果に対応した時間だけ燃料を噴
射させる方式も提案されているが、演算結果に対
応した燃料噴射時間が燃料噴射量を決定する為の
処理に要する時間より短い場合(例えばアイドリ
ング時等)は、所定量の燃料が既に噴射されてい
るにもかかわらず前記処理が終了するまで燃料が
噴射され続けることになるので、燃費が悪くなる
欠点があると共に生ガスが排気される欠点があつ
た。
In addition to this, fuel injection is started at the timing when the top dead center signal becomes "1", and
The process to determine the fuel injection amount (reading the sensor detection results and calculating the fuel injection amount based on the reading results) was started, and the calculation result was started from the timing when the top dead center signal became "1". A method has also been proposed in which fuel is injected for a specified amount of time, but if the fuel injection time corresponding to the calculation result is shorter than the time required for processing to determine the fuel injection amount (for example, during idling), the predetermined amount of fuel Even though the fuel has already been injected, the fuel continues to be injected until the above-mentioned process is completed, which has the disadvantage of poor fuel efficiency and the disadvantage that raw gas is exhausted.

発明の目的 本発明の前述の如き欠点を改善したものであ
り、その目的は内燃機関の状態変化に応じて応答
性の良い噴射制御を行なえるようにすることにあ
る。
OBJECTS OF THE INVENTION This invention is an attempt to improve the above-mentioned drawbacks of the present invention, and its purpose is to enable highly responsive injection control in response to changes in the state of the internal combustion engine.

発明の構成 本発明は、下記の構成を具える。Composition of the invention The present invention includes the following configuration.

内燃機関内に流入する空気量に対応した燃料を
所定のタイミングで前記内燃機関内に噴射させる
燃料噴射装置に於いて、前記内燃機関内に流入す
る空気量を検出するセンサと、複数のクランク角
度に応じた処理開始タイミングを有し所定の処理
開始タイミングで前記センサの検出結果に基づい
て燃料噴射量を演算する演算手段と、前記複数の
クランク角度に応じた処理開始タイミングの内で
設定され得る最も早い処理開始タイミングよりも
先行するタイミングで前記内燃機関の回転数を検
出する検出手段と、該検出手段の検出結果に基づ
いて前記回転数が高いほど前記処理開始タイミン
グを早くするように制御するタイミング制御手段
と、前記演算手段の演算結果に対応した量の燃料
を所定のタイミングで前記内燃機関内に噴射する
噴射手段とを備えたことを特徴とする燃料噴射装
置としての構成である。
A fuel injection device that injects fuel corresponding to an amount of air flowing into the internal combustion engine into the internal combustion engine at a predetermined timing, the fuel injection device including a sensor that detects the amount of air flowing into the internal combustion engine, and a plurality of crank angles. a calculation means that has a processing start timing corresponding to a predetermined processing start timing and calculates a fuel injection amount based on a detection result of the sensor at a predetermined processing start timing; and a processing start timing that is set according to the plurality of crank angles. Detection means for detecting the rotation speed of the internal combustion engine at a timing preceding the earliest processing start timing, and control such that the higher the rotation speed, the earlier the processing start timing based on the detection result of the detection means. The fuel injection device is characterized in that it comprises a timing control means and an injection means for injecting an amount of fuel into the internal combustion engine at a predetermined timing in accordance with the calculation result of the calculation means.

第7図は本発明の構成図である。センサ100
は内燃機関内に流入する空気量を検出し、演算手
段101はセンサ100の検出結果に基づいて燃
料噴射量を演算する。検出手段102は内燃機関
の回転数を検出し、タイミング制御手段103は
検出手段102の検出結果に基づいて演算手段1
01の処理開始タイミングを制御する。噴射手段
104は演算手段101の演算結果に対応した量
の燃料を所定のタイミングで噴射する。
FIG. 7 is a block diagram of the present invention. sensor 100
detects the amount of air flowing into the internal combustion engine, and the calculation means 101 calculates the fuel injection amount based on the detection result of the sensor 100. The detection means 102 detects the rotation speed of the internal combustion engine, and the timing control means 103 controls the calculation means 1 based on the detection result of the detection means 102.
Controls the processing start timing of 01. The injection means 104 injects an amount of fuel corresponding to the calculation result of the calculation means 101 at a predetermined timing.

発明の実施例 第3図は本発明の実施例の構成図であり、1は
内燃機関、2はエアクリーナ、3は空気量セン
サ、4はスロツトルチヤンバ、5はインテークマ
ニホールド、6は電磁式のフユエールインジエク
タ、7はスロツトル弁、8はAD変換器、9はク
ランクが上死点に達する毎に第4図Aに示すよう
に上死点信号TDCを出力すると共に、クランク
が30°回転する毎に同図Bに示すように回転角位
置信号C1〜C12を出力するクランク角センサ、1
0はマイクロプロセツサ、11はメモリ、12は
データ入力部、13はデータ出力部、14はダウ
ンカウンタであり、カウント値が「0」となるま
でその出力信号を“1”に保持するものである。
また、第5図はマイクロプロセツサ10の処理内
容を示すフローチヤートであり、以下第5図を参
照して動作を説明する。
Embodiment of the Invention Fig. 3 is a configuration diagram of an embodiment of the present invention, in which 1 is an internal combustion engine, 2 is an air cleaner, 3 is an air amount sensor, 4 is a throttle chamber, 5 is an intake manifold, and 6 is an electromagnetic type. , 7 is a throttle valve, 8 is an AD converter, and 9 outputs a top dead center signal TDC as shown in Fig. 4A every time the crank reaches top dead center, and also outputs a top dead center signal TDC when the crank reaches 30°. A crank angle sensor 1 outputs rotation angle position signals C 1 to C 12 as shown in FIG.
0 is a microprocessor, 11 is a memory, 12 is a data input section, 13 is a data output section, and 14 is a down counter, which holds its output signal at "1" until the count value reaches "0". be.
Further, FIG. 5 is a flowchart showing the processing contents of the microprocessor 10, and the operation will be explained below with reference to FIG.

マイクロプロセツサ10はデータ入力部12を
介してクランク角センサ9から回転角位置信号
C5が加えられたことを検出すると(ステツプ
S1)、内部クロツクのカウントを開始し(ステツ
プS2)、この後、回転角位置信号C6を検出すると
(ステツプS3)、内部クロツクのカウントを終了
する(ステツプS4)。この場合、回転角位置信号
C5−C6間の時間は内燃機関の回転数が高いほど
短くなるものであるから、カウント値は内燃機関
の回転数に対応したものとなり、カウント値が小
さいほど高回転であるこことを示す。このステツ
プS1〜S4は後述する複数の処理開始タイミング
(回転角信号C7〜C10の発生時点)の内で最も早い
タイミング(回転角信号C7の発生時点)よりも
先行する回転数を検出する検出手段を構成する。
The microprocessor 10 receives the rotation angle position signal from the crank angle sensor 9 via the data input section 12.
When detecting that C 5 has been added (step
S1), the internal clock starts counting (step S2), and then, when the rotation angle position signal C6 is detected (step S3), the internal clock ends counting (step S4). In this case, the rotation angle position signal
The time between C 5 and C 6 becomes shorter as the rotation speed of the internal combustion engine increases, so the count value corresponds to the rotation speed of the internal combustion engine, and the smaller the count value, the higher the rotation speed. show. These steps S1 to S4 detect the rotation speed that precedes the earliest timing (at the time of generation of rotation angle signal C7) among multiple processing start timings (time of generation of rotation angle signals C7 to C10 ), which will be described later. A detection means is configured to detect the

次にマイクロプロセツサ10は前記カウント値
即ち回転数に基づいてメモリ11をアクセスし、
何れの回転角位置信号を検出したときにステツプ
S8の処理を開始するか、即ち処理開始タイミン
グを決定する(ステツプS5)。この場合、メモリ
11には第6図に示すようにカウント値と回転角
位置信号番号とが対応して記憶されており、カウ
ント値が小さいほど、即ち回転数が高いほど処理
開始タイミングを早めるべく番号の小さい回転角
位置信号が選択される。カウント値COUが例え
ばK2≦COU<K1の場合は回転角位置信号C9を検
出した時にステツプS8の処理を開始すると決定
するものである。次にマイクロプロセツサ10は
前記カウント値を「0」とし(ステツプS6)、次
いでステツプS5で決定した回転角位置信号CN
検出すると(ステツプS7)、AD変換器8、デー
タ入力部12を介して加えられる空気量センサ3
の検出結果を読取り(ステツプS8)、次いで読取
結果に基づいて燃料噴射量を演算し(ステツプ
S9)、次いでステツプS9により求めた燃料噴射量
に対応した燃料噴射時間を求める(ステツプ
S10)。そして、この後、クランク角センサ9か
らデータ入力部12を介して上死点信号が加えら
れたことを検出すると(ステツプS11)、マイク
ロプロセツサ10はステツプS10で求めた燃料噴
射時間に対応した数値を求め、これをダウンカウ
ンタ14にセツトし(ステツプS12)、この後ス
テツプS1の処理に戻る。
Next, the microprocessor 10 accesses the memory 11 based on the count value, ie, the number of rotations,
Steps when any rotation angle position signal is detected.
It is determined whether to start the process in S8, that is, the timing to start the process (step S5). In this case, the memory 11 stores the count value and the rotation angle position signal number in correspondence as shown in FIG. The rotation angle position signal with the smaller number is selected. If the count value COU is, for example, K2≦COU<K1, it is determined that the process of step S8 is started when the rotation angle position signal C9 is detected. Next, the microprocessor 10 sets the count value to "0" (step S6), and when it detects the rotation angle position signal C N determined in step S5 (step S7), it controls the AD converter 8 and the data input section 12. air volume sensor 3 applied via
The detection result is read (step S8), and then the fuel injection amount is calculated based on the read result (step S8).
S9), then find the fuel injection time corresponding to the fuel injection amount found in step S9 (step S9).
S10). After that, when it is detected that a top dead center signal is applied from the crank angle sensor 9 via the data input section 12 (step S11), the microprocessor 10 adjusts the fuel injection time corresponding to the fuel injection time determined in step S10. A numerical value is determined and set in the down counter 14 (step S12), after which the process returns to step S1.

ダウンカウンタ14はクロツク信号CKが印加
される毎にそのカウント値を−1し、カウント値
が「0」となるまでその出力信号αを“1”に保
持するものであり、またフユエールインジエクタ
6は信号αが“1”の間、燃料を噴射し続けるも
のである。従つて、ステツプS12で燃料噴射時間
に対応した数値をダウンカウンタ14にセツトす
ることにより、ステツプS9で求めた量の燃料が
内燃機関1内に噴射されることになる。
The down counter 14 increments its count value by 1 every time the clock signal CK is applied, and holds its output signal α at "1" until the count value reaches "0". 6 continues to inject fuel while the signal α is "1". Therefore, by setting a numerical value corresponding to the fuel injection time in the down counter 14 in step S12, the amount of fuel determined in step S9 will be injected into the internal combustion engine 1.

本実施例は上述したように、ステツプS1〜S4
によるカウント値に応じて、即ち内燃機関の回転
数に応じてステツプS8の処理を開始するタイミ
ングを変更するものであり、第6図から判るよう
に回転数が高いほどステツプS8の処理を開始す
るタイミングを早くし、回転数が低いほどステツ
プS8の処理を開始するタイミングを遅くするも
のであるから、燃料噴射量の演算が終了してから
噴射開始までの遅れ時間を少なくすることがで
き、従つて、従来例に比較して応答性の良い噴射
制御を行なうことができる。
As described above, this embodiment includes steps S1 to S4.
The timing at which the process of step S8 is started is changed according to the count value, that is, according to the rotational speed of the internal combustion engine.As can be seen from FIG. 6, the higher the rotational speed is, the more the process of step S8 is started. The timing is made earlier, and the lower the rotation speed, the later the timing to start processing in step S8, so the delay time from the end of calculation of the fuel injection amount to the start of injection can be reduced, Therefore, injection control can be performed with better responsiveness than in the conventional example.

尚、実施例に於いては内燃機関に流入する空気
量を空気量センサ3により検出するようにした
が、空気圧センサにより検出するようにしても良
いことは勿論である。
In the embodiment, the amount of air flowing into the internal combustion engine is detected by the air amount sensor 3, but it goes without saying that the amount of air flowing into the internal combustion engine may be detected by an air pressure sensor.

以上説明したように、本発明によれば、複数の
クランク角度に応じた処理開始をタイミングを設
定し、この処理開始タイミングのうちで設定され
得る最も早い処理開始タイミングより先行するタ
イミングで検出した回転数に基づいて、最適な処
理開始タイミングをきめ細かく選定するものであ
るから、特定の処理開始タイミングを過ぎた後で
の回転数変動に影響されることなく、確実に処理
を開始することができ、前記処理が終了してから
燃料を噴射するまでの遅れ時間を内燃機関の回転
数によらず可及的に短いものとすることができ、
従つて、内燃機関の状態変化に応じて応答性の良
い噴射制御を行なうことができる利点がある。
As explained above, according to the present invention, the timing for starting processing is set according to a plurality of crank angles, and the rotation is detected at a timing preceding the earliest processing start timing that can be set among the processing start timings. Since the optimal process start timing is carefully selected based on the number of processes, it is possible to start the process reliably without being affected by fluctuations in the rotation speed after the specific process start timing. The delay time from the end of the process until the fuel is injected can be made as short as possible regardless of the rotation speed of the internal combustion engine,
Therefore, there is an advantage that injection control can be performed with good responsiveness in response to changes in the state of the internal combustion engine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A〜D、第2図A〜Eはそれぞれ異なる
従来例の説明図、第3図は本発明の実施例の構成
図、第4図A,Bはそれぞれ上死点信号、回転角
位置信号の波形図、第5図はマイクロプロセツサ
の処理内容を示すフローチヤート、第6図はメモ
リの記憶内容を示す図。第7図は本発明の構成図
である。 1は内燃機関、2はエアクリーナ、3は空気量
センサ、4はスロツトルチヤンバ、5はインテー
クマニホールド、6はフユエールインジエクタ、
7はスロツトル弁、8はAD変換器、9はクラン
ク角センサ、10はマイクロプロセツサ、11は
メモリ、12はデータ入力部、13はデータ出力
部、14はダウンカウンタ、100はセンサ、1
01は演算手段、102は検出手段、103はタ
イミング制御手段、104は燃料の噴射手段であ
る。
Figures 1 A to D and Figures 2 A to E are explanatory diagrams of different conventional examples, Figure 3 is a configuration diagram of an embodiment of the present invention, and Figures 4 A and B are top dead center signals and rotation angles, respectively. FIG. 5 is a flowchart showing the processing contents of the microprocessor, and FIG. 6 is a diagram showing the contents stored in the memory. FIG. 7 is a block diagram of the present invention. 1 is an internal combustion engine, 2 is an air cleaner, 3 is an air amount sensor, 4 is a throttle chamber, 5 is an intake manifold, 6 is a fuel injector,
7 is a throttle valve, 8 is an AD converter, 9 is a crank angle sensor, 10 is a microprocessor, 11 is a memory, 12 is a data input section, 13 is a data output section, 14 is a down counter, 100 is a sensor, 1
01 is a calculation means, 102 is a detection means, 103 is a timing control means, and 104 is a fuel injection means.

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関内に流入する空気量に対応した燃料
を所定のタイミングで前記内燃機関内に噴射させ
る燃料噴射装置に於いて、前記内燃機関内に流入
する空気量を検出するセンサと、複数のクランク
角度に応じた処理開始タイミングを有し所定の処
理開始タイミングで前記センサの検出結果に基づ
いて燃料噴射量を演算する演算手段と、前記複数
のクランク角度に応じた処理開始タイミングの内
で設定され得る最も早い処理開始タイミングより
も先行するタイミングで前記内燃機関の回転数を
検出する検出手段と、該検出手段の検出結果に基
づいて前記回転数が高いほど前記処理開始タイミ
ングを早くするよう制御するタイミング制御手段
と、前記演算手段の演算結果に対応した量の燃料
を所定のタイミングで前記内燃機関内に噴射する
噴射手段とを備えたことを特徴とする燃料噴射装
置。
1. In a fuel injection device that injects fuel corresponding to the amount of air flowing into the internal combustion engine into the internal combustion engine at a predetermined timing, the fuel injection device includes a sensor that detects the amount of air flowing into the internal combustion engine, and a plurality of cranks. a calculation means having a processing start timing according to the angle and calculating a fuel injection amount based on the detection result of the sensor at a predetermined processing start timing; a detection means for detecting the rotation speed of the internal combustion engine at a timing preceding the earliest processing start timing to be obtained, and control such that the higher the rotation speed, the earlier the processing start timing is based on the detection result of the detection means. A fuel injection device comprising: timing control means; and injection means for injecting an amount of fuel into the internal combustion engine at a predetermined timing in accordance with the calculation result of the calculation means.
JP58118652A 1983-06-30 1983-06-30 Fuel injection device Granted JPS6011650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58118652A JPS6011650A (en) 1983-06-30 1983-06-30 Fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58118652A JPS6011650A (en) 1983-06-30 1983-06-30 Fuel injection device

Publications (2)

Publication Number Publication Date
JPS6011650A JPS6011650A (en) 1985-01-21
JPH0569976B2 true JPH0569976B2 (en) 1993-10-04

Family

ID=14741860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58118652A Granted JPS6011650A (en) 1983-06-30 1983-06-30 Fuel injection device

Country Status (1)

Country Link
JP (1) JPS6011650A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165770A (en) * 1980-05-21 1981-12-19 Mitsubishi Electric Corp Ignition time controller
JPS58217734A (en) * 1982-06-09 1983-12-17 Toyota Motor Corp Digital control method of internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165770A (en) * 1980-05-21 1981-12-19 Mitsubishi Electric Corp Ignition time controller
JPS58217734A (en) * 1982-06-09 1983-12-17 Toyota Motor Corp Digital control method of internal-combustion engine

Also Published As

Publication number Publication date
JPS6011650A (en) 1985-01-21

Similar Documents

Publication Publication Date Title
US4479186A (en) Method and apparatus for controlling an internal combustion engine
EP0184020A2 (en) Apparatus for discriminating operativeness/inoperativeness of an air-fuel ratio sensor
JPS6314174B2 (en)
JP3978679B2 (en) Engine control device
JPH0112931B2 (en)
JPS5951137A (en) Fuel injection controller of multi-cylinder internal combustion engine
JPS6256342B2 (en)
US4706196A (en) Apparatus and method for injecting fuel into engine according to group injection system
JPH0723582Y2 (en) Ignition timing control device for internal combustion engine
JPH0569976B2 (en)
JP2634278B2 (en) Internal combustion engine fuel injection device
JPH0472987B2 (en)
JPS60261947A (en) Accelerative correction of fuel injector
JPH09264169A (en) Cylinder direct injection type engine
JPH029173B2 (en)
JPS5968530A (en) Control method of internal-combustion engine
JP2611473B2 (en) Fuel injection amount control device for internal combustion engine
JPS608331B2 (en) Fuel control device for internal combustion engines
JP3538862B2 (en) Engine ignition timing control device
JPS59200034A (en) Method of controlling fuel injection in internal- combustion engine
JPH07117023B2 (en) Engine controller
JPH0313419B2 (en)
JPS6035156A (en) Fuel injection device for internal-combustion engine
JPH0617663B2 (en) Fuel injection timing control device
JPS62186033A (en) Fuel injection controller for multicylinder internal combustion cylinder