JPH0569770B2 - - Google Patents

Info

Publication number
JPH0569770B2
JPH0569770B2 JP14186586A JP14186586A JPH0569770B2 JP H0569770 B2 JPH0569770 B2 JP H0569770B2 JP 14186586 A JP14186586 A JP 14186586A JP 14186586 A JP14186586 A JP 14186586A JP H0569770 B2 JPH0569770 B2 JP H0569770B2
Authority
JP
Japan
Prior art keywords
ions
smectite
swellable silicate
heavy metal
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14186586A
Other languages
Japanese (ja)
Other versions
JPS62297210A (en
Inventor
Kazuo Torii
Takashi Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14186586A priority Critical patent/JPS62297210A/en
Publication of JPS62297210A publication Critical patent/JPS62297210A/en
Publication of JPH0569770B2 publication Critical patent/JPH0569770B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Colloid Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

この発明は氎䞭においお膚最し、優れたゲル圢
成胜、むオン亀換胜、フむルム圢成胜などを有
し、曎に金属倚栞氎酞化むオンや各皮有機物を局
間に包接するなどの特殊機胜を持぀スメクタむト
に類䌌した構造を有する新芏の膚最性ケむ酞塩お
よびその補造方法に関する。 スメクタむトは局のシリカ四面䜓局がマグネ
シりム八面䜓局あるいはアルミニりム八面䜓局を
間にはさんだサンドむツチ型の䞉局構造を有する
フむロケむ酞塩の䞀員あり、氎䞭においお陜むオ
ン亀換胜を有し、曎に局間に氎をずり蟌んで膚最
しおゆく特異な性質を瀺す粘土鉱物である。倩然
には八面䜓局に䞉䟡のアルミニりムを含む−八
面䜓型スメクタむトであるモンモリロナむト、バ
むデラむトおよび八面䜓局に二䟡のマグネシりム
を含む−八面䜓型スメクタむトであるヘクトラ
むト、サポナむトなどが知られおいる。これらの
スメクタむトの有する膚最性、ゲル特性、包接特
性などを掻甚しお氎系塗料、化粧品、医薬品、觊
媒などの分野ぞの甚途開発が詊みられおおり、倩
然物ず合成物がその察象ずされおいる。倩然物に
぀いおは我囜では工業的芏暡で産出するのはモン
モリロナむトを含むベントナむトのみであり、こ
れよりモンモリロナむトを抜出した玔モンモリロ
ナむトが補品化されおいるが、粟補コストが極め
お高いため、高䟡栌であり、特性にも問題があ
り、需芁は限定されおいる。たた、、化孊組成、
構造、欠陥、䞍玔物など材料特性の倉動が倧であ
るため、特性制埡ができず、高床な機胜性粟密玠
材ずしおの適正を欠いおいる。䞀方、合成の膚最
性フツ玠雲母系鉱物であるナトリりム型四ケむ玠
雲母特開昭51−24598補品がゲル化剀などず
しお垂販されおいるが、構造がもずもず氎䞭では
膚最しがたい雲母構造であるため、氎䞭での膚最
特性がやや劣぀おいるきらいがあり、たた組性が
ほが䞀定であるため化孊組成の制埡もほずんど䞍
可胜であり、機胜性粟密玠材ずしおは需芁が限定
されおいる。 本発明の目的は工業的に満足し埗る蚭蚈可胜な
粟密玠材ずしお、垂販のナトリりム型四ケむ玠雲
母補品より曎に高機胜を有し、化孊組成の制埡も
可胜な新芏の膚最性ケむ酞塩およびその補造技術
を提䟛するこずである。 本発明者らは優れた陜むオン亀換胜あるいはゲ
ル圢成胜を有する膚最性ケむ酞塩の合成に぀いお
長幎鋭意研究を重ねた結果、先に本発明者らが発
明補造した合成膚最性ケむ酞塩公開特蚱公報昭
59−21517に類䌌した構造を有し、優れたゲル
圢成胜、むオン亀換胜、フむルム圢成胜など特殊
機胜を有する新芏の膚最性ケむ酞塩およびその補
造方法の発明に至぀た。 すなわちこの発明は䞀般匏 〔SiO28MO2/3aMgO2/3bOH2/3(a+b)
+c-d
Fd〕c-・Ay+ c/y 匏䞭の、、、およびの倀は
≊≊≊≊
≊≊および≊≊
ずし、はCoNiZnCdCuFeMn
Pbなどから遞んだ少なくずも個の䟡重金属
むオンであり、たたはアルカリ金属むオン、ア
ルカリ土類金属むオン、アンモニりムむオンおよ
びアルキルアンモニりムむオンからなる矀から遞
んだ少なくずも個の陜むオンである。で衚わ
されるスメクタむトに類䌌した構造を有する新芏
の膚最性ケむ酞塩およびその補造方法を提䟛する
ものである。 マク゚ワンMontmorillonite minerals by
D.M.C MacEwanThe −ray identification
and crystal structures of xlay minerals
edited by G.BrownMineralogical society
London1972pp.143−207 によれば−八面䜓スメクタむトに属するヘクト
ラむトの局電荷は八面䜓局における䟡のマグネ
シりムの䞀郚が䟡のリチりムず眮換しお生じた
ものず考えられおおり、やはり−八面䜓型スメ
クタむトに属するサポナむトでは四面䜓局におけ
る䟡のシリコンの䞀郚が䟡のアルミニりムず
眮換したため、その陰電荷が生成するずされおい
る。䞀方、本発明者らは先にシリコン、マグネシ
りムおよび陜むオンのみから新芏のスメクタむト
の合成に成功しおおり公開特蚱公報昭59−
21517、シリコンずした堎合、マグネシりムの
量が〜10の広い組成範囲で補造できるこずを明
らかずしおいる。このマグネシりムスメクタむト
の構造では局電荷は八面䜓局䞭におけるマグネシ
りムずそれに配䜍しおいる酞玠、氎酞基あるいは
フツ玠ずの電荷バランスが氎酞基あるいはフツ玠
がやや過剰に存圚するこずにより陰電荷偎に倉移
するこずにより発生するずされおいる。これらの
−八面䜓型スメクタむトは局陰電荷を電気的に
バランスする圢で局間に陜むオンが入぀おいる。 䞀般匏で衚わされる本発明の新芏の膚最
性ケむ酞塩は䞊蚘マグネシりムスメクタむト公
開特蚱公報昭59−21517における八面䜓局䞭の
マグネシりムの党おあるいは䞀郚がコバルト、ニ
ツケル、亜鉛、カドミりム、銅、鉄、マンガン、
鉛など䟡の重金属むオンで眮換された構造を有
しおいる。䞊蚘マグネシりムスメクタむト自䜓が
倩然には存圚しおおらず、埓぀お䞊蚘䟡重金属
を倚く含む本発明の膚最性ケむ酞塩は党く新芏の
スメクタむトであるず考えられる。 本発明を達成するための方法に぀いお以䞋に述
べる。本発明の合成膚最性ケむ酞塩の補造方法は
次の工皋からなる。第にシリコンず䟡重金属
および芁すればマグネシりムを含有させた均質耇
合沈殿物を調敎し、第にこの均質耇合沈殿物に
氎および芁すれば亀換性陜むオンあるいはフツ玠
むオンを添加しお出発原料シラリヌずし、第に
該スラリヌを氎熱反応せしめお膚最性ケむ酞塩を
生成させ、第にこの氎熱反応生成物を也燥埌粉
砕するこずによ぀お本発明補品を埗るこずができ
る。 第工皋においおケむ酞ず䟡重金属塩および
芁すればマグネシりム塩を混合しお埗た均質溶液
をアルカリ溶液で沈殿させ、濟過、氎掗により副
生溶解質を陀去するこずにより均質耇合沈殿物が
調敎される。ケむ酞ず䟡重金属塩および芁すれ
ばマグネシりム塩を含む均質溶液はケむ酞溶液ず
䟡重金属塩氎溶液を混合し、必芁に応じおマグ
ネシりム塩氎溶液を加えるこずにより、あるいは
ケむ酞溶液に盎接䟡重金属塩および必芁に応じ
おマグネシりム塩を溶解するこずにより埗られ
る。ケむ酞ず䟡重金属塩およびマグネシりム塩
の混合割合は䞀般匏を満足する範囲のお
よびの倀を遞ぶこずにより䞎えられる。
の倀はからの間であるが、通垞奜たしい
倀はからの間である。仕蟌組成は䞀般匏
を満足するのが奜たしいが、の倀
をより少し倚く倉動させおも本発明の膚最性ケ
む酞塩は補造可胜であり、6.5皋床たでの倀は蚱
容される。のマグネシりムを党く含有しな
い組成でも本発明の合成膚最性ケむ酞塩は合成可
胜である。ケむ酞溶液はケむ酞゜ヌダず鉱酞を混
合し、液のPHを酞性ずするこずにより埗られる。
ケむ酞゜ヌダは䞀般に垂販されおいる号ないし
号氎ガラスならびにメタケむ酞゜ヌダはいずれ
も䜿甚できる。鉱酞ずしおは硝酞、塩酞、硫酞な
どが甚いられる。ケむ酞゜ヌダず鉱酞を混合する
堎合、鉱酞の量が少ないずゲル化する堎合が倚い
ので液のPHが以䞋ずなる様にケむ酞゜ヌダず鉱
酞の割合を遞ぶ必芁がある。䟡重金属塩はコバ
ルト、ニツケル、亜鉛、カドミりム、鉄、マンガ
ン、鉛などの塩化物、硫酞塩、硝酞塩などから遞
ぶこずができる。䞀般匏の組成を満足する
量の倀であれば、重金属は皮類だけでなく、
皮類以䞊のどの様な組成の組合せからも遞ぶこず
が可胜であり、甚途に応じた組成を蚭蚈できる。
必芁に応じおマグネシりム塩を添加するこずも可
胜であり、塩化マグネシりム、硫酞マグネシり
ム、硝酞マグネシりムなどから遞ぶこずができ
る。次に垞枩でケむ酞ず䟡重金属塩あるいは芁
すればマグネシりム塩を含有する均質溶液ずアル
カリ溶液を混合しお均質耇合沈殿物を埗る。アル
カリ溶液ずしおは氎酞化ナトリりム溶液、氎酞化
カリりム溶液、アンモニア氎などが甚いられる。
アルカリ溶液の量は混合埌のPHが10以䞊ずなる様
な量を遞ぶのが望たしい。䞊蚘均質溶液ずアルカ
リ溶液を混合する堎合、アルカリ溶液䞭に均質溶
液を滎䞋しお沈殿せしめおもよく、あるいはその
逆の順序にしおもよい。たた䞡者の液を瞬時に混
合しおも均質耇合沈殿物は埗られる。次いで濟過
氎掗をくり返えしお副生溶解質を充分に陀去す
る。これらの重金属を含む均質耇合沈殿物は線
粉末回析によればすでに䜎結晶質のスメクタむト
様構造を有しおおり、そのため、第段階の工皋
では比范的䜎枩でしかも短時間の氎熱凊理により
良奜な特性をも぀た本発明の合成膚最性ケむ酞塩
が生成するものず掚察される。たた䞊蚘均質耇合
沈殿物は沈殿する時にすでに陜むオンをずり蟌ん
でいる堎合が倚いので、第工皋の段階で亀換性
陜むオンを特に添加する必芁はない。 第工皋の出発原料スラリヌは第工皋で埗た
均質耇合沈殿物に氎および芁すれば陜むオンの氎
酞化物、フツ化物あるいはそれらの混合氎溶液を
加え、たたは芁すればフツ化氎玠酞を添加するこ
ずによ぀お調敎される。陜むオンは特に添加する
必芁はないが、添加する堎合で䞎えられる
量を添加するのが望たしい。は添加すべき陜む
オンの䟡電数が䞎えられ、皮類の堎合はある
いはである。はからの間の倀であるが、
通垞奜たしい倀は0.5から1.2の間の倀であり、普
通には0.8前埌の倀を遞べば良い。添加すべき陜
むオン量はの倀の倍量皋床たでは蚱容され
る。フツ玠むオンは特に添加しなくずも本発明の
膚最性ケむ酞塩は合成可胜であるが、添加する堎
合のの倀はからの範囲の
量を遞べば良い。の倀がであれば、
0.8ず仮定しお、蚈算䞊はから4.8たでの間
のフツ玠むオン量を遞ぶこずができるが、4.8の
倍量皋床たでの添加は蚱容できる。 第工皋の氎熱反応は第工皋で埗られた原料
スラリヌをオヌトクレヌブに仕蟌み、100℃ない
し350℃の枩床で氎熱反応させ、本発明の膚最性
ケむ酞塩を生成せしめる。反応䞭特に攪拌を必芁
ずしないが攪拌するこずは䞀向にさし぀かえな
い。䞀般に反応枩床が高いほど反応速床は倧ずな
り、反応時間が長いほど結晶は良奜ずなるが、反
応枩床200℃、反応圧力15.9Kg〜cm2では〜時
間の反応時間で充分である。 第工皋においおは、第工皋の氎熱反応終了
埌オヌトクレヌブ内容物を取り出し、60℃以䞊
200℃以䞋の枩床で也燥し、粉砕するこずにより
最終補品が埗られる。 本発明を実斜するこずによ぀お補造した新芏の
合成膚最性ケむ酞塩は線回析、瀺差熱分析、赀
倖吞収スペクトル、化孊分析、陜むオン亀換容量
C.E.C、粘性特性などによ぀お評䟡するこずが
できる。 本発明の新芏の膚最性ケむ酞塩はCu−Kα線を
甚いた堎合の回折角2Ξがhk反射の35
06に぀いお59.5床から61床の間に珟れ、−八
面䜓型スメクタむトであるこずがわかる。線回
折パタヌンはヘクトラむトやサポナむトのものに
類䌌しおいるが、党般的にピヌクがブロヌドずな
぀おいる堎合が倚い。氎溶液䞭では通垞50〜120
ミリ圓量〜100gの高い陜むオン亀換容量を瀺し、
あるいは氎䞭においお優れた膚最特性および分散
性を瀺し、重金属の皮類に察応した着色した氎系
ゲルを生成し、チク゜トロピヌ性を有するため、
氎溶性塗料、化粧品、セラミツクス原料、觊媒な
どの添加剀、スラリヌ安定剀、着色剀、増粘剀、
粘結剀、懞濁安定剀、チク゜トロピヌ付䞎剀など
ずしお極めお有甚である。本発明の新芏の膚最性
ケむ酞塩は本質的に䟡重金属を含有するため、
殺菌、抗菌、防虫、消毒などの目的にも䜿甚され
埗る。たた構造䞭に觊媒掻性の匷い重金属を様々
な割合で入れるこずが可胜なので觊媒、觊媒担䜓
ずしお有甚であり、、曎に皮々の金属倚栞氎酞化
むオンずの局間耇合䜓を圢成しうるので、新芏の
觊媒、觊媒担䜓、吞着剀などずしお利甚され埗
る。曎に有機化合物耇合䜓ずするこずにより芪油
性粘土ずしお各皮有機溶媒のゲル化剀、チク゜ト
ロピヌ付䞎剀などずしお、あるいは高分子材料の
充おん材、耇合材などにも甚いられる。たた焌成
しおセラミツクスずしお甚いるこずもでき、セン
サ、電磁遮蔜材、攟射線遮蔜材、半導䜓などずし
おも有甚である。 次に実斜䟋をあげお説明する。 実斜䟋  のビヌカヌに氎400mlを入れ、、号氎ガラ
スSiO2 28Na2 モル比3.22
86gを溶解し、16N硝酞23mlを攪拌しながら䞀床
に加えおケむ酞溶液を埗る。次に氎100mlに塩化
コバルト六氎和物特玚詊薬玔床9971.3gを
溶解し、ケむ酞溶液に加えお均質混合溶液を調敎
し、芏定氎酞化ナトリりム溶液400ml䞭に攪拌
しながら分間で滎䞋する。盎ちに埗られた反応
均質耇合沈殿物を濟過し、充分に氎掗した埌、氎
20mlを加えおスラリヌ状ずし、オヌトクレヌブに
移す。15.9Kgcm2200℃で時間反応させる。
冷华埌、反応生成物をずりだし、80℃で也燥した
埌、擂朰機にお粉砕する。 本品はずしおコバルトを含有し、
0.57に盞圓し、亀換性陜むオ
ンずしおナトリりムを含み、その陜むオン亀換容
量は60ミリ圓量〜100gであ぀た。線粉末回折
図は−八面䜓型スメクタむトであるヘクトラむ
トやサポナむトに類䌌したパタヌンを瀺すが、党
䜓的にピヌクはブロヌドであり、3506反射
ピヌクの倀は1.544Åであ぀た。粉末の色調は
玫色であり、氎系分散液は玫色の半透明のチ
ク゜トロピヌ性の固䜓ゲルを圢成した。 実斜䟋  原料物質の仕蟌量を次の通りずしお実斜䟋ず
同様に操䜜した。 号氎ガラス 86g 塩化ニツケル六氎和物特玚詊薬玔床98
 71g 10フツ化氎玠酞 10ml 埗られた補品は緑色を呈し、ずしおニツケル
を含有し、0.61に
盞圓し、亀換性陜むオンずしおナトリりムを含
み、陜むオン亀換容量は64ミリ圓量100gであ
぀た。線粉末回折図は実斜䟋の本発明補品の
パタヌンに類䌌しおおり、3506反射ピヌク
の倀は1.525Åであ぀た。氎系分散液はチ
ク゜トロピヌ性の緑色半透明の固䜓ゲルを圢成し
た。 実斜䟋および実斜䟋で埗られた本発明補品
および氎系分散剀ずしお垂販されおいる合成ナト
リりム型四ケむ玠雲母補品を甚いお2.5氎系分
散液を調敎し、その流動孊的性質を回転粘床蚈で
あるFann VGメヌタヌで枬定した結果を衚に瀺
す。
This invention is a smectite that swells in water and has excellent gel-forming, ion-exchange, and film-forming abilities, and also has special functions such as inclusion of metal polynuclear hydroxide ions and various organic substances between layers. The present invention relates to a novel swellable silicate having a structure and a method for producing the same. Smectite is a member of phyllosilicates that has a three-layer structure of the Sanderutsch type, consisting of two silica tetrahedral layers sandwiched between a magnesium octahedral layer or an aluminum octahedral layer, and has cation exchange ability in water. It is a clay mineral that exhibits the unique property of swelling by absorbing water between its layers. Naturally known smectites such as montmorillonite and beidellite, which are 2-octahedral smectites containing trivalent aluminum in the octahedral layer, and hectorite and saponite, which are 3-octahedral smectites containing divalent magnesium in the octahedral layer, are known. It is being Utilizing the swelling properties, gel properties, and inclusion properties of these smectites, attempts are being made to develop applications in fields such as water-based paints, cosmetics, pharmaceuticals, and catalysts, and natural products and synthetic products are being targeted. ing. Regarding natural products, bentonite containing montmorillonite is the only product produced on an industrial scale in Japan, and pure montmorillonite, which is extracted from this bentonite, is commercialized, but it is expensive due to extremely high refining costs. There are also problems with its characteristics, and demand is limited. Also, chemical composition,
Due to large fluctuations in material properties such as structure, defects, and impurities, properties cannot be controlled, making it unsuitable as a highly functional precision material. On the other hand, sodium-type tetrasilicon mica (JP-A-51-24598) products, which are synthetic swelling fluorinated mica-based minerals, are commercially available as gelling agents, but the mica structure originally makes it difficult to swell in water. Therefore, its swelling properties in water tend to be somewhat poor, and since its assemblability is almost constant, it is almost impossible to control the chemical composition, so its demand as a functional precision material is limited. . The purpose of the present invention is to develop a novel swellable silicate, which has higher functionality than commercially available sodium-type tetrasilicon mica products and whose chemical composition can be controlled, as a designable precision material that is industrially satisfactory. Our goal is to provide manufacturing technology. The present inventors have conducted intensive research for many years on the synthesis of swellable silicates having excellent cation exchange ability or gel-forming ability. Published Patent Publication Showa
The present invention led to the invention of a new swellable silicate having a structure similar to that of 59-21517) and special functions such as excellent gel-forming ability, ion-exchange ability, and film-forming ability, and a method for producing the same. That is, this invention has the general formula [(SiO 2 ) 8 (MO 2/3 ) a (MgO 2/3 ) b (OH) 2/3(a+b)
+cd
F d ] c-・A y+ c/y () (The values of a, b, c, d and y in the formula are 0<a
≩6,0≩b<6,3<a+b≩6,0<c≩
2,0≩d≩2/3(a+b)+c and 1≩y≩
2, and M is Co, Ni, Zn, Cd, Cu, Fe, Mn,
At least one divalent heavy metal ion selected from Pb, etc., and A is at least one cation selected from the group consisting of alkali metal ions, alkaline earth metal ions, ammonium ions, and alkylammonium ions. ) and a method for producing the same. McEwan (Montmorillonite minerals by
DMC MacEwan, The X-ray identification
and crystal structures of xlay minerals
edited by G.Brown, Mineralogical society,
London, 1972, pp. 143-207), the layer charge of hectorite, which belongs to the 3-octahedral smectite, is caused by the substitution of part of the divalent magnesium in the octahedral layer with monovalent lithium. It is believed that in saponite, which also belongs to the tri-octahedral smectite, a part of the tetravalent silicon in the tetrahedral layer is replaced with trivalent aluminum, so that negative charges are generated. On the other hand, the present inventors had previously succeeded in synthesizing a new smectite from only silicon, magnesium, and cations (Publication of Patent Publication No. 1986-
21517), it has been clarified that when silicon 8 is used, it can be manufactured in a wide composition range with an amount of magnesium in the range of 3 to 10. In this structure of magnesium smectite, the charge balance between magnesium in the octahedral layer and the oxygen, hydroxyl group or fluorine coordinated to it shifts to the negative charge side due to the presence of a slight excess of hydroxyl group or fluorine. It is said that this occurs due to These 3-octahedral smectites have cations between the layers to electrically balance the layer negative charges. The novel swellable silicate of the present invention represented by the general formula ( , copper, iron, manganese,
It has a structure substituted with divalent heavy metal ions such as lead. The above-mentioned magnesium smectite itself does not exist naturally, and therefore, the swellable silicate of the present invention containing a large amount of the above-mentioned divalent heavy metal is considered to be a completely new smectite. A method for achieving the present invention will be described below. The method for producing a synthetic swellable silicate of the present invention consists of the following steps. First, a homogeneous composite precipitate containing silicon, divalent heavy metals, and optionally magnesium is prepared, and second, water and optionally exchangeable cations or fluorine ions are added to the homogeneous composite precipitate. to obtain a starting material silary, thirdly to subject the slurry to a hydrothermal reaction to produce a swellable silicate, and fourthly to obtain the product of the present invention by drying and pulverizing this hydrothermal reaction product. I can do it. In the first step, a homogeneous solution obtained by mixing silicic acid, a divalent heavy metal salt and, if necessary, a magnesium salt is precipitated with an alkaline solution, and by-product solutes are removed by filtration and water washing to form a homogeneous composite precipitate. be adjusted. A homogeneous solution containing silicic acid and a divalent heavy metal salt and, if necessary, a magnesium salt can be prepared by mixing the silicic acid solution and a divalent heavy metal salt aqueous solution and adding an aqueous magnesium salt solution if necessary, or by directly adding divalent heavy metal salt to the silicic acid solution. Obtained by dissolving a heavy metal salt and, if necessary, a magnesium salt. The mixing ratio of silicic acid, divalent heavy metal salt, and magnesium salt is determined by selecting the values of a and b within a range that satisfies the general formula (). (a+
The value of b) is between 3 and 6, although normally preferred values are between 5 and 6. Although it is preferable that the charging composition satisfies the general formula (), the swellable silicate of the present invention can be produced even if the value of (a+b) is varied slightly more than 6, and values up to about 6.5 are acceptable. be done. The synthetic swellable silicate of the present invention can be synthesized even with a composition containing no magnesium, where b=0. A silicic acid solution is obtained by mixing sodium silicate and mineral acid and making the pH of the solution acidic.
As the sodium silicate, any of commercially available No. 1 to No. 4 water glass and sodium metasilicate can be used. Nitric acid, hydrochloric acid, sulfuric acid, etc. are used as mineral acids. When mixing sodium silicate and mineral acid, gelation often occurs if the amount of mineral acid is small, so it is necessary to select the ratio of sodium silicate and mineral acid so that the pH of the liquid is 5 or less. Divalent heavy metal salts can be selected from chlorides, sulfates, nitrates, etc. of cobalt, nickel, zinc, cadmium, iron, manganese, lead, and the like. If the amount satisfies the composition of general formula (), there are not only one type of heavy metal but also two types of heavy metals.
It is possible to select from any combination of compositions over types, and compositions can be designed according to the application.
It is also possible to add a magnesium salt if necessary, and it can be selected from magnesium chloride, magnesium sulfate, magnesium nitrate, etc. Next, a homogeneous solution containing silicic acid and a divalent heavy metal salt or, if necessary, a magnesium salt, and an alkaline solution are mixed at room temperature to obtain a homogeneous composite precipitate. As the alkaline solution, sodium hydroxide solution, potassium hydroxide solution, aqueous ammonia, etc. are used.
It is desirable to select the amount of alkaline solution such that the pH after mixing is 10 or higher. When the homogeneous solution and the alkaline solution are mixed, the homogeneous solution may be dropped into the alkaline solution to cause precipitation, or the reverse order may be used. A homogeneous composite precipitate can also be obtained by instantaneously mixing both liquids. Next, filtration and washing with water are repeated to sufficiently remove by-product solutes. According to X-ray powder diffraction, these homogeneous composite precipitates containing heavy metals already have a low-crystalline smectite-like structure, and therefore, in the third step, hydrothermal treatment at a relatively low temperature and for a short time is required. It is inferred that the synthetic swellable silicate of the present invention having better properties is produced by this method. Furthermore, since the above-mentioned homogeneous composite precipitate often already incorporates cations at the time of precipitation, there is no particular need to add exchangeable cations in the second step. The starting material slurry for the second step is prepared by adding water and, if necessary, a cationic hydroxide, fluoride, or a mixed aqueous solution thereof to the homogeneous composite precipitate obtained in the first step, or adding hydrofluoric acid to the homogeneous composite precipitate obtained in the first step. Adjusted by adding It is not particularly necessary to add cations, but if they are added, it is desirable to add them in an amount given by c/y. y is given the valence number of the cation to be added, and is 1 or 2 in the case of one type of cation. c is a value between 0 and 2,
Usually the preferred value is between 0.5 and 1.2, and usually a value around 0.8 should be chosen. The amount of cations to be added is permissible up to about four times the value of c. The swellable silicate of the present invention can be synthesized without adding fluoride ions, but when added, the value of d may be selected within the range of 0 to 2/3 (s+b)+c. If the value of (a+b) is 6,
Assuming that c=0.8, the amount of fluorine ions can be selected between 0 and 4.8 in terms of calculation, but addition up to about twice the amount of 4.8 is permissible. In the hydrothermal reaction of the third step, the raw material slurry obtained in the second step is charged into an autoclave and subjected to a hydrothermal reaction at a temperature of 100° C. to 350° C. to produce the swellable silicate of the present invention. Although stirring is not particularly required during the reaction, stirring is absolutely prohibited. In general, the higher the reaction temperature, the faster the reaction rate, and the longer the reaction time, the better the crystal formation, but at a reaction temperature of 200°C and a reaction pressure of 15.9 kg to cm 2 , a reaction time of 2 to 3 hours is sufficient. In the fourth step, after the completion of the hydrothermal reaction in the third step, the contents of the autoclave are taken out and heated to a temperature above 60℃.
The final product is obtained by drying at a temperature below 200°C and grinding. The novel synthetic swellable silicate produced by carrying out the present invention was determined by X-ray diffraction, differential thermal analysis, infrared absorption spectrum, chemical analysis, cation exchange capacity (CEC), viscosity properties, etc. can be evaluated based on The novel swellable silicate of the present invention has a diffraction angle (2Ξ) of (hk) reflection when using Cu-Kα radiation (35,
06), it appears between 59.5 degrees and 61 degrees, indicating that it is a 3-octahedral smectite. The X-ray diffraction pattern is similar to that of hectorite and saponite, but the peaks are generally broad in many cases. Usually 50-120 in aqueous solution
Exhibits high cation exchange capacity of milliequivalents to 100g,
Alternatively, it shows excellent swelling properties and dispersibility in water, produces a colored aqueous gel corresponding to the type of heavy metal, and has thixotropic properties.
Additives for water-soluble paints, cosmetics, ceramic raw materials, catalysts, slurry stabilizers, colorants, thickeners,
It is extremely useful as a binder, suspension stabilizer, thixotropy agent, etc. Since the novel swellable silicates of the present invention essentially contain divalent heavy metals,
It can also be used for purposes such as sterilization, antibacterial, insect repellent, and disinfection. In addition, it is possible to incorporate heavy metals with strong catalytic activity into the structure in various proportions, making it useful as a catalyst and catalyst carrier.Furthermore, it can form interlayer complexes with various metal polynuclear hydroxide ions, making it a novel material. It can be used as a catalyst, catalyst carrier, adsorbent, etc. Furthermore, by forming an organic compound composite, it can be used as a lipophilic clay as a gelling agent for various organic solvents, a thixotropy imparting agent, etc., or as a filler for polymeric materials, a composite material, etc. It can also be fired and used as ceramics, and is useful as sensors, electromagnetic shielding materials, radiation shielding materials, semiconductors, etc. Next, an example will be given and explained. Example 1 Put 400ml of water into the beaker 1, and add No. 3 water glass (SiO 2 28%, Na 2 O 9%, molar ratio 3.22)
Dissolve 86 g and add 23 ml of 16N nitric acid at once while stirring to obtain a silicic acid solution. Next, dissolve 71.3 g of cobalt chloride hexahydrate special reagent (purity 99%) in 100 ml of water, add it to the silicic acid solution to prepare a homogeneous mixed solution, and add it to 400 ml of 2N sodium hydroxide solution while stirring. Drip in minutes. The reaction homogeneous composite precipitate immediately obtained was filtered, thoroughly washed with water, and then washed with water.
Add 20ml to make a slurry and transfer to an autoclave. React at 15.9Kg/cm 2 and 200°C for 3 hours.
After cooling, the reaction product is taken out, dried at 80°C, and then crushed using a grinder. This product contains cobalt as M, a=6, b
=0, c=0.57, d=0, it contained sodium as an exchangeable cation, and its cation exchange capacity was 60 milliequivalents to 100 g. The X-ray powder diffraction pattern shows a pattern similar to hectorite and saponite, which are 3-octahedral smectites, but the peaks are broad overall, and the d value of the (35,06) reflection peak is 1.544 Å. Ta. The powder was purple in color and the 2% aqueous dispersion formed a purple translucent thixotropic solid gel. Example 2 The same procedure as in Example 1 was carried out except that the amounts of raw materials charged were as follows. No. 3 water glass 86g Nickel chloride () hexahydrate special grade reagent (purity 98
%) 71g 10% hydrofluoric acid 10ml The product obtained has a green color and contains nickel as M, corresponding to a = 6, b = 0, c = 0.61, d = 1, and as an exchangeable cation. It contained sodium and had a cation exchange capacity of 64 meq/100g. The X-ray powder diffraction pattern was similar to the pattern of the inventive product of Example 1, and the d value of the (35,06) reflection peak was 1.525 Å. The 2% aqueous dispersion formed a thixotropic green translucent solid gel. A 2.5% aqueous dispersion was prepared using the products of the present invention obtained in Examples 1 and 2 and a commercially available synthetic sodium-type tetrasilicon mica product as an aqueous dispersant, and its rheological properties were determined by rotational viscosity. The table shows the results measured with a Fann VG meter.

【衚】 衚から明らかなごずく、実斜䟋のコバルトを
含む本発明補品および実斜䟋のニツケルを含む
本発明補品の氎系分散液は垂販の合成ナトリりム
型四ケむ玠雲母補品の氎系分散液ず比范しお、䜎
回転数においお高い粘性、降䌏倀およびゲル匷床
を有し、氎系に察するゲル化剀ずしお優れた性胜
を有するこずがわかる。
[Table] As is clear from the table, the aqueous dispersion of the cobalt-containing inventive product of Example 1 and the nickel-containing inventive product of Example 2 was compared with the aqueous dispersion of a commercially available synthetic sodium-type tetrasilicon mica product. It can be seen that it has high viscosity, yield value, and gel strength at low rotational speeds, and has excellent performance as a gelling agent for aqueous systems.

Claims (1)

【特蚱請求の範囲】  䞀般匏 〔SiO28MO2/3aMgO2/3bOH2/3(a+b)
+c-d
Fd〕c-・Ay+ c/y 匏䞭の、、、およびの倀は
≊≊≊≊
≊≊および≊≊
ずし、はCoNiZnCdCuFeMn
Pbなどから遞んだ少なくずも個の䟡重金属
むオンであり、たたはアルカリ金属むオン、ア
ルカリ土類金属むオン、アンモニりムむオンおよ
びアルキルアンモニりムむオンからなる矀から遞
んだ少なくずも個の陜むオンである。で衚わ
されるスメクタむトに類䌌した構造を有する膚最
性ケむ酞塩。  特蚱請求の範囲第項に蚘茉のスメクタむト
に類䌌した構造を有する膚最性ケむ酞塩を合成す
るにあたり、第項の䞀般匏の組成を満足するケ
む酞、䟡重金属塩およびマグネシりム塩の均質
混合溶液ずアルカリ溶液より均質耇合沈殿物を調
補し、副生溶解質を陀去した埌、氎および芁すれ
ば陜むオンあるいはフツ玠むオンを添加しお調補
したスラリヌを100℃ないし350℃の条件で氎熱反
応を行い、次いで反応生成物を也燥・粉砕するこ
ずを特城ずする膚最性ケむ酞塩の補造方法。
[Claims] 1 General formula [(SiO 2 ) 8 (MO 2/3 ) a (MgO 2/3 ) b (OH) 2/3(a+b)
+cd
F d ] c-・A y+ c/y (The values of a, b, c, d and y in the formula are 0<a
≩6,0≩b<6,3<a+b≩6,0<c≩
2,0≩d≩2/3(a+b)+c and 1≩y≩
2, and M is Co, Ni, Zn, Cd, Cu, Fe, Mn,
At least one divalent heavy metal ion selected from Pb, etc., and A is at least one cation selected from the group consisting of alkali metal ions, alkaline earth metal ions, ammonium ions, and alkylammonium ions. ) is a swellable silicate with a structure similar to smectite. 2. In synthesizing the swellable silicate having a structure similar to smectite as set forth in claim 1, a combination of silicic acid, divalent heavy metal salt, and magnesium salt satisfying the composition of the general formula set forth in claim 1 is used. After preparing a homogeneous composite precipitate from a homogeneous mixed solution and an alkaline solution and removing by-product solutes, the slurry prepared by adding water and, if necessary, cations or fluorine ions, is heated at 100°C to 350°C. 1. A method for producing a swellable silicate, which comprises carrying out a hydrothermal reaction, followed by drying and pulverizing the reaction product.
JP14186586A 1986-06-18 1986-06-18 Swelling silicate and production thereof Granted JPS62297210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14186586A JPS62297210A (en) 1986-06-18 1986-06-18 Swelling silicate and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14186586A JPS62297210A (en) 1986-06-18 1986-06-18 Swelling silicate and production thereof

Publications (2)

Publication Number Publication Date
JPS62297210A JPS62297210A (en) 1987-12-24
JPH0569770B2 true JPH0569770B2 (en) 1993-10-01

Family

ID=15301962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14186586A Granted JPS62297210A (en) 1986-06-18 1986-06-18 Swelling silicate and production thereof

Country Status (1)

Country Link
JP (1) JPS62297210A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075295B2 (en) * 1988-02-18 1995-01-25 工業技術院長 Method for producing smectite interlayer composite material

Also Published As

Publication number Publication date
JPS62297210A (en) 1987-12-24

Similar Documents

Publication Publication Date Title
CA1125991A (en) Method of synthesizing zincosilicate or stannosilicate or titanosilicate material
JPH0513889B2 (en)
JPH0569769B2 (en)
JP2636178B2 (en) Synthetic mixed-layer silicate and method for producing the same
KR20150063511A (en) Method for preparing a composition comprising coloured silicate mineral particles and a composition comprising coloured silicate mineral particles
JPS62292615A (en) Production of swelling silicate
JP2667978B2 (en) Synthetic porous body and method for producing the same
JP2003238819A (en) Heat-resistant filler
JPH0569770B2 (en)
JPS5921517A (en) Synthetic swellable silicate and its manufacture
JP2514780B2 (en) New organoclay complex
JPS636486B2 (en)
JPWO2020040169A1 (en) Silicate coating
JPS6112848B2 (en)
US5958354A (en) Aluminosilicate cation exchange compounds
JP3007954B2 (en) Mixed layer silicate and method for producing the same
JPH01212212A (en) Production of smectite interlayer composite material
KR102070379B1 (en) Method for producing synthetic hectorite at low temperature and atmospheric pressure
JP4000377B2 (en) Organoclay composite and method for producing the same
JP2006052136A (en) Organic clay composite and method of manufacturing the same
JPH0559843B2 (en)
JP4925040B2 (en) Method for producing metal ion-containing synthetic layered silicate
JPH1129760A (en) Ultraviolet protecting agent
JP4584561B2 (en) Organoclay complex
JPH0248411A (en) Production of swelling synthetic saponite-type clay mineral

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term