JPS5921517A - Synthetic swellable silicate and its manufacture - Google Patents

Synthetic swellable silicate and its manufacture

Info

Publication number
JPS5921517A
JPS5921517A JP13009382A JP13009382A JPS5921517A JP S5921517 A JPS5921517 A JP S5921517A JP 13009382 A JP13009382 A JP 13009382A JP 13009382 A JP13009382 A JP 13009382A JP S5921517 A JPS5921517 A JP S5921517A
Authority
JP
Japan
Prior art keywords
precipitate
soln
silicic acid
magnesium
homogeneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13009382A
Other languages
Japanese (ja)
Other versions
JPS636485B2 (en
Inventor
Kazuo Torii
一雄 鳥居
Tadasu Asaga
浅賀 質
Masami Hotta
堀田 正巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13009382A priority Critical patent/JPS5921517A/en
Publication of JPS5921517A publication Critical patent/JPS5921517A/en
Publication of JPS636485B2 publication Critical patent/JPS636485B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a novel synthetic swellable silicate having superior gel forming capacity by preparing a homogeneous precipitate consisting of silicon and magnesium, adding an exchangeable cation to the precipitate, carrying out a hydrothermal reaction, drying the reaction product, and pulverizing it. CONSTITUTION:A homogeneous mixed soln. contg. silicic acid and a magnesium salt is prepared by mixing a silicic acid soln. with an aqueous magnesium salt soln. in a proper ratio, and an alkali soln. such as an aqueous ammonia soln. is added to the mixed soln. to form a precipitate. Soluble by-products are sufficiently removed from the precipitate by filtration and washing. The hydroxide or the like of a uni- or bivalent cation is added to the resulting homogeneous precipitate, and after adding fluorine ion as required, a hydrothermal reaction is carried out at 100-350 deg.C. The reaction product is dried at <=about 200 deg.C and pulverized to obtain a synthetic swellable silicate represented by the general formula (where 0<a<10, 0<b<=1, 0<c<=2/3a+b, 1<=y<=2, and M is at least 1 kind of cation selected from alkali metallic ions, alkaline earth metallic ions, ammonium ion and amine).

Description

【発明の詳細な説明】 この発明は水中において膨潤し、優れたゲル形成能を有
する3−八面体型スメクタイトに類似した構造を有する
新規の合成膨潤性ケイ酸塩およびその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel synthetic swellable silicate having a structure similar to a 3-octahedral smectite that swells in water and has excellent gel-forming ability, and a method for producing the same.

マグネシウムおよびシリコンを含み、アルミニウムをほ
とんど含有していない膨潤性粘土鉱物としては天然には
スチブンサイトおよびヘクトライトが知られている。マ
クエワンによればスチブンサイトおよびヘクトライトの
モデル的化学式は(I)式および(II)式で表わされ
ている(Montmorillonite miner
als by D.M.C.MacEwan,The 
X−ray identification and 
crystalstructures of clay
 minerals edited by G.Bro
wn,Mineralogical Society,
London,1972,pp143〜207)。
Stevensite and hectorite are naturally known as swelling clay minerals that contain magnesium and silicon and contain almost no aluminum. According to McEwan, the model chemical formulas of stevensite and hectorite are represented by formulas (I) and (II) (Montmorillonite miner
als by D. M. C. MacEwan, The
X-ray identification and
crystal structures of clay
Minerals edited by G. Bro
wn, Mineralological Society,
London, 1972, pp 143-207).

ここにM+は層間に存在する1価の交換性陽イオンであ
る。スチブンサイトおよびヘクトライトは3−八面体型
スメクタイトに属し、四面体層にシリコン、八面体層に
マグネシウムが位置している。
Here, M+ is a monovalent exchangeable cation present between the layers. Stevensite and hectorite belong to 3-octahedral smectites, with silicon located in the tetrahedral layer and magnesium located in the octahedral layer.

スチブンサイトの層間電荷の発生源は八面体層中のマグ
ネシウムの欠損に基づくものと考えられており、交換性
陽イオンの数はO20(OH)4を基準として比べた場
合、スメクタイトの他の種より小さく、ほぼ半分である
。一方ヘクトライトの場合は八面体層におけるマグネシ
ウムの一部がリチウムと置換したために生じた陰電荷と
電気的中性を保つ形で層間に陽イオンが入る。
The source of the interlayer charge in stevensite is thought to be based on the deficiency of magnesium in the octahedral layer, and the number of exchangeable cations is higher than that of other species of smectite when compared on the basis of O20(OH)4. It's small, almost half the size. On the other hand, in the case of hectorite, a portion of the magnesium in the octahedral layer is replaced with lithium, and cations enter between the layers in a manner that maintains the negative charge and electrical neutrality.

本発明前らは優れた陽イオン交換能あるいはゲル形成能
を有する膨潤性ケイ酸塩の合成について長年鋭意研究を
重ねた結果、天然に存在しない新規の合成膨潤性ケイ酸
塩およびその製造方法の発明に至つた。
As a result of many years of intensive research into the synthesis of swellable silicates with excellent cation exchange ability or gel-forming ability, we have developed a new synthetic swellable silicate that does not exist in nature and a method for producing the same. This led to the invention.

すなわち、この発明は一般式 (式中のa、b、cおよびyの値は0<a<100<b
≦1、0≦c≦2/3a+bおよび1≦y≦2とし、M
はアルカリ金属イオン、アルカリ土類金属イオン、アン
モニウムイオンおよびアミンからなる群から選んだ少く
とも1個の陽イオンである)で表される合成膨潤性ケイ
酸塩およびその製造方法を提供するものである。
That is, this invention is based on the general formula (the values of a, b, c and y in the formula are 0<a<100<b
≦1, 0≦c≦2/3a+b and 1≦y≦2, and M
is at least one cation selected from the group consisting of alkali metal ions, alkaline earth metal ions, ammonium ions, and amines) and a method for producing the same. be.

この一般式(III)式におけるシリコンは四面体層に
またマグネシウムは八面体層に位置してり、本発明の合
成膨潤性ケイ酸塩は3−八面体型スメクタイトに類似し
た構造を有する新規のスメクタイトであると考えられる
。本発明の合成膨潤性ケイ酸塩と同様な化学成分で構成
されている天然に存在するスメクタイトとしてはスチブ
ンサイトのみが知られている。スチブンサイトにおける
層間電荷の発生源は八面体層中のマグネシウムの欠損に
基づくものと考えられており、交換性陽イオンの数はス
メクタイトの他の種のものより小さく、ほぼ半分である
。坂本等が岩鉱学会誌で明らかとしているように、日本
国内で産出したスチブンサイトの八面体層中のイオン数
はシリコンの値を8とした場合、5.44〜5.74の
間にあり、(I)式における5.84とは大きな差がな
く、また陽イオン交換容量の値は41.0〜45.4ミ
リ当量/100gである。一方、本発明の合成膨潤性ケ
イ酸塩においてはシリコンの数を8とした場合、八面体
層を構成するマグネシウムの数は3〜10の広い範囲の
値を示し、陽イオン交換容量は60〜120ミリ当量/
100gの高い値を示す。すなわち、本発明の合成膨潤
性ケイ酸の層電荷の発生源は(I)式で示されるスチブ
ンサイトの構造式では説明できず、その化学組成あるい
は陽イオン交換容量の値もかなり相違が認められ、明ら
かにこの合成膨潤性ケイ酸塩は4スチブンサイトとは異
なるスメクタイトであると考えられる。
In this general formula (III), silicon is located in the tetrahedral layer and magnesium is located in the octahedral layer. It is thought to be smectite. Stevensite is the only known naturally occurring smectite that is composed of chemical components similar to the synthetic swellable silicate of the present invention. The source of the interlayer charge in stevensite is thought to be based on the deficiency of magnesium in the octahedral layer, and the number of exchangeable cations is smaller than that of other species of smectite, almost half. As revealed by Sakamoto et al. in the Journal of the Japanese Society of Rock and Mineral Science, the number of ions in the octahedral layer of stevensite produced in Japan is between 5.44 and 5.74, assuming the value of silicon is 8. There is no big difference from 5.84 in formula (I), and the value of cation exchange capacity is 41.0 to 45.4 milliequivalents/100g. On the other hand, in the synthetic swellable silicate of the present invention, when the number of silicones is 8, the number of magnesium constituting the octahedral layer shows a wide range of values from 3 to 10, and the cation exchange capacity is from 60 to 10. 120 milliequivalent/
It shows a high value of 100g. That is, the source of the layer charge of the synthetic swellable silicic acid of the present invention cannot be explained by the structural formula of stevensite shown by formula (I), and there are considerable differences in the chemical composition or cation exchange capacity value. Apparently, this synthetic swellable silicate is considered to be a smectite different from 4 stevensite.

本発明の合成膨潤性ケイ酸塩はシリコンの数を8とした
場合、マグネシウム欠損が考えられないマグネシウム値
6〜10の間でも合成可能であり、層間電荷の発生源は
他の要因に起因することが容易に推察されうる。3−八
面体型スメクタイトに属するヘクトライトは八面体層中
の2価のマグネシウムが1価のリチウムと置換すること
により、またサボナイトは四面体層中の4価のシリコン
が3価のアルミニウムと置換することにより、それぞれ
層間電荷が発生することが知られているが、本発明の合
成膨潤性ケイ酸塩では八面体層あるいは四面体層で置換
可能なリチウムあるいはアルミニウムのごとき原子は存
在せず、陽イオン置換は考えられない。3−八面体型ス
メクタイトにおいては八面体層中の陽イオン数は通常5
.7〜6.0の間の値を示すが、本発明の合成膨潤性ケ
イ酸塩は6より著しく少ない値のマグネシウム量でも合
成可能である。一般式(III)は本発明の合成膨潤性
ケイ酸塩に対して、3−八面体型スメクタイトの通常の
モデル式では満足する説明のできない前述のいくつかの
事実に基づいており、これらを矛盾なく合理的に説明で
きる。すなわち、本発明の合成膨潤性ケイ酸塩では八面
体層中におけるマグネシウムとそれに配位している酸素
、水酸基あるいはフツ素との電荷バランスが水酸基ある
いはフツ素がやや過剰に存在することにより陰電荷側に
変移することにより層電荷が発生ずることを示す。八面
体層中に存在するマグネシウム量に比例して、配位する
酸素、水酸基あるいはフツ素の量が変動し、酸素と水酸
基の割合は3−八面体型スメクタイトの理想構造におけ
る割合と同じく、層電荷がゼロの時1:1であるとの仮
定で作られている。フツ素は水酸基の一部あるいは全て
と置換する形で構造に導入されうる。本発明製品を化学
分析し、一般式(III)にあてはめた場合、例えばイ
)(SiO2)8(MgO2/3)3.32(OH)2
.72K0.51a=3.32、b=0.51、C.E
.C.=68ミリ当量/100gロ)(SiO2)8(
MgO2/3)5.53(OH)4.43Na0.74
a=5.33、b=0.74、C.E.C.=88ミリ
当量/100gハ)(SiO2)8(MgO2/3)6
.55(OH)5.04Na0.12K0.55a=6
.55、b=0.67、C.E.C.=82ミリ当量/
100gに相当する。八面体層に配位した水酸基を正確
に定量するのは非常に困難であるが、熱天秤による50
0℃〜850℃の間の加熱減量の値は(イ)=3.17
wt.%、(ロ)=4.13wt%、(ハ)=4.85
wt%であり、水酸器量に換算するとそれぞれ(イ)=
2.66、(ロ)=4.09、(ハ)=5.01となり
、一般式(III)より計算される水酸基量(イ)=2
.72、(ロ)=4.43、(ハ)=5.04に非常に
近い値を示し、一般式(III)は妥当性をもつことが
証明できる。
When the number of silicon atoms is 8, the synthetic swellable silicate of the present invention can be synthesized even with a magnesium value between 6 and 10, where no magnesium deficiency is considered, and the source of interlayer charge is due to other factors. This can be easily inferred. In hectorite, which belongs to the 3-octahedral smectite, divalent magnesium in the octahedral layer is replaced with monovalent lithium, and in savonite, tetravalent silicon in the tetrahedral layer is replaced with trivalent aluminum. It is known that interlayer charges are generated by the above, but in the synthetic swellable silicate of the present invention, there are no atoms such as lithium or aluminum that can be substituted in the octahedral or tetrahedral layers. Cation substitution is not considered. In 3-octahedral smectites, the number of cations in the octahedral layer is usually 5.
.. The synthetic swellable silicates of the present invention can also be synthesized with magnesium amounts significantly lower than 6. The general formula (III) is based on the above-mentioned several facts that cannot be satisfactorily explained by the usual model formula of 3-octahedral smectite for the synthetic swellable silicate of the present invention, and contradicts these facts. It can be explained rationally. That is, in the synthetic swellable silicate of the present invention, the charge balance between magnesium and the oxygen, hydroxyl group, or fluorine coordinated to it in the octahedral layer is negative due to the slightly excessive presence of hydroxyl groups or fluorine. This shows that the layer charge is generated by shifting to the side. The amount of coordinating oxygen, hydroxyl, or fluorine changes in proportion to the amount of magnesium present in the octahedral layer, and the ratio of oxygen and hydroxyl groups is the same as the ratio in the ideal structure of 3-octahedral smectite. It is made on the assumption that the ratio is 1:1 when the charge is zero. Fluorine can be introduced into the structure to replace some or all of the hydroxyl groups. When the product of the present invention is chemically analyzed and applied to general formula (III), for example, a) (SiO2)8(MgO2/3)3.32(OH)2
.. 72K0.51a=3.32, b=0.51, C. E
.. C. = 68 meq/100g) (SiO2) 8(
MgO2/3)5.53(OH)4.43Na0.74
a=5.33, b=0.74, C. E. C. =88 milliequivalent/100gc)(SiO2)8(MgO2/3)6
.. 55(OH)5.04Na0.12K0.55a=6
.. 55, b=0.67, C. E. C. =82 milliequivalent/
Equivalent to 100g. Although it is very difficult to accurately quantify the hydroxyl groups coordinated in the octahedral layer, 50
The value of heating loss between 0°C and 850°C is (a) = 3.17
wt. %, (b) = 4.13wt%, (c) = 4.85
wt%, and when converted to the amount of hydroxide, each (a) =
2.66, (b) = 4.09, (c) = 5.01, and the amount of hydroxyl groups calculated from general formula (III) (a) = 2
.. 72, (b) = 4.43, and (c) = 5.04, which proves that general formula (III) has validity.

本発明を達成するための方法について以下に述べる。本
発明の合成膨潤性ケイ酸塩の製造方法は次の工程から成
る。第1にケイ素とマグネシウムの均質沈殿物を調整し
、第2にこの均質沈殿物に交換性陽イオンおよび要すれ
ばフツ素イオンを添加して出発原料粗成物スラリーとし
、第3に該スラリーを水熱反応により合成膨潤性ケイ酸
塩を生成させ、第4にこの水熱反応物を乾燥し粉砕する
ことによつて本発明製品を得ることができる。
A method for achieving the present invention will be described below. The method for producing a synthetic swellable silicate of the present invention consists of the following steps. First, a homogeneous precipitate of silicon and magnesium is prepared; second, exchangeable cations and optionally fluoride ions are added to the homogeneous precipitate to form a starting crude slurry; and third, the slurry The product of the present invention can be obtained by hydrothermally reacting the silicate to produce a synthetic swellable silicate, and then drying and pulverizing the hydrothermally reacted product.

第1段階においてケイ酸とマグネシウム塩の均質溶液を
アルカリ溶液で均質沈殿とし、濾過、水洗により副生溶
解質を除去することにより均質沈殿物が調整される。ケ
イ酸とマグネシウム塩の均質溶液はケイ酸溶液とマグネ
シウム塩水溶液の混合あるいはマグネシウム塩をケイ酸
溶液に直接溶解することにより得られる。ケイ酸とマグ
ネシウム塩の混合割合は一般式(III)を満足する範
囲のaの値であれば良いが、通常好ましいaの値は3〜
10の間である。ケイ酸溶液はケイ酸ソーダと鉱酸を混
合し、液のpHを酸性とすることにより得られる。ケイ
酸ソーダは一般に市販されている1号ないし4号水ガラ
スならびにメタケイ酸ソーダはいずれも使用できる。鉱
酸としては硝酸、塩酸、硫酸などが用いられる。ケイ酸
ソーダと鉱酸を混合する場合、鉱酸の量が少ないとゲル
化する場合が多いので液のpHが5以下となるようにケ
イ酸ソーダと鉱酸の割合を選ぶ必要がある。また鉱酸の
量が多いとケイ酸溶液のpHが下りすぎ、後の操作でア
ルカリ溶液により均質沈殿物を生成させる場合多量のア
ルカリ溶液を必要とし、更には副生塩が多量生成するの
で、ケイ酸溶液のpHは1〜3の間になるようにケイ酸
ソーダと鉱酸の割合を調整するのが望ましい。次に常温
でケイ酸とマグネシウム塩の均質混合溶液とアルカリ溶
液を混合して均質沈殿物を得る。アルカリ溶液としては
アンモニア水、水酸化ナトリウム溶液、水酸化カリウム
溶液などが用いられる。アルカリ溶液の量は混合後のp
Hが10以上になる量を選ぶのが望ましい。ケイ酸とマ
グネシウム塩の均質混合液とアルカリ溶液を混合する場
合アルカリ溶液中に均質混合液を滴下して沈殿せしめて
もよく、あるいはその逆の順序に滴下してもよい。また
両方の液を瞬時に混合しても均質沈殿は得られる。混合
の際特に撹拌を必要としないが、撹拌することは一向に
さしつかえない。次いで濾過、水洗をくり返して副生し
た電解質を充分に除去する。
In the first step, a homogeneous solution of silicic acid and a magnesium salt is made into a homogeneous precipitate with an alkaline solution, and by-product solutes are removed by filtration and water washing to prepare a homogeneous precipitate. A homogeneous solution of silicic acid and a magnesium salt can be obtained by mixing a silicic acid solution and an aqueous magnesium salt solution or by directly dissolving a magnesium salt in a silicic acid solution. The mixing ratio of silicic acid and magnesium salt may be as long as the value of a is within the range that satisfies the general formula (III), but the usually preferred value of a is 3 to 3.
Between 10 and 10. A silicic acid solution is obtained by mixing sodium silicate and a mineral acid and making the pH of the solution acidic. As the sodium silicate, any of commercially available No. 1 to No. 4 water glass and sodium metasilicate can be used. Nitric acid, hydrochloric acid, sulfuric acid, etc. are used as mineral acids. When mixing sodium silicate and mineral acid, it is necessary to select the ratio of sodium silicate and mineral acid so that the pH of the solution is 5 or less, since gelation often occurs if the amount of mineral acid is small. In addition, if the amount of mineral acid is large, the pH of the silicic acid solution will drop too much, and if a homogeneous precipitate is to be generated using an alkaline solution in a later operation, a large amount of alkaline solution will be required, and furthermore, a large amount of by-product salt will be produced. It is desirable to adjust the ratio of sodium silicate and mineral acid so that the pH of the silicic acid solution is between 1 and 3. Next, a homogeneous mixed solution of silicic acid and magnesium salt and an alkaline solution are mixed at room temperature to obtain a homogeneous precipitate. As the alkaline solution, ammonia water, sodium hydroxide solution, potassium hydroxide solution, etc. are used. The amount of alkaline solution is p after mixing
It is desirable to select an amount such that H is 10 or more. When a homogeneous mixture of silicic acid and magnesium salt is mixed with an alkaline solution, the homogeneous mixture may be dropped into the alkaline solution to cause precipitation, or the mixture may be added dropwise in the reverse order. A homogeneous precipitate can also be obtained by instantaneously mixing both solutions. Although stirring is not particularly required during mixing, stirring is absolutely prohibited. Next, filtration and washing with water are repeated to sufficiently remove by-product electrolytes.

第2工程の出発原料スラリーは第1工程で得た均質沈殿
物に陽イオンの水酸化物、フツ化物またはそれらの混合
水溶液を加え、あるいは要すればフツ化水素酸を加える
ことによつて調整される。
The starting material slurry for the second step is prepared by adding an aqueous solution of cationic hydroxide, fluoride, or a mixture thereof to the homogeneous precipitate obtained in the first step, or by adding hydrofluoric acid if necessary. be done.

交換性陽イオンの添加量は一般式(III)のcによつ
て与えられ、通常好ましい値は0.5〜0.9であるが
、4倍量程度までの添加は許容される。フツ素の添加は
特に必要としないが、製造条件によっては添加すること
により水熱反応速度を高めるのに役立ち、また製品の粘
性特性に良い影響を与える。
The amount of exchangeable cations added is given by c in general formula (III), and the usually preferred value is 0.5 to 0.9, but addition of up to about 4 times the amount is permitted. Although the addition of fluorine is not particularly necessary, depending on the manufacturing conditions, its addition can help increase the hydrothermal reaction rate and positively influence the viscous properties of the product.

第3工程の水熱反応は第2工程で得られた出発原料組成
物スラリーをオートクレーブに仕込み、100℃ないし
350℃温度で自生圧力下で反応させ、本発明の合成膨
潤性ケイ酸塩を生成せしめる。反応中特に撹拌を必要と
しないが撹拌することは一向にさしつかえない。一般に
反応温度が高いほど反応速度は大となり、反応時間が長
いほど結晶は良好となるが、5kg/cm2、150℃
の条件では少くとも12時間以上、望ましくは24時間
以上の反応時間を要し、41kg/cm2、250℃の
条件では1〜6時間で充分である。
In the third step, the hydrothermal reaction, the starting material composition slurry obtained in the second step is charged into an autoclave and reacted at a temperature of 100°C to 350°C under autogenous pressure to produce the synthetic swellable silicate of the present invention. urge Although stirring is not particularly required during the reaction, stirring is absolutely prohibited. In general, the higher the reaction temperature, the faster the reaction rate, and the longer the reaction time, the better the crystal formation.
Under these conditions, a reaction time of at least 12 hours, preferably 24 hours or more is required; under the conditions of 41 kg/cm2 and 250 DEG C., 1 to 6 hours is sufficient.

第4工程においては、第3工程の水熱反応終了後オート
クレーブ内容物を取りだし、60℃以上200℃以下の
温度で乾燥し、粉砕することにより最終製品が得られる
In the fourth step, after the completion of the hydrothermal reaction in the third step, the contents of the autoclave are taken out, dried at a temperature of 60° C. or higher and 200° C. or lower, and pulverized to obtain a final product.

本発明を実施すことによつて製造した新規の合成膨潤性
ケイ酸塩はX線回折、示差熱分析、赤外吸収スペクトル
、化学分析、陽イオン交換容量(C.E.C.)、粘性
特性測定などによつて評価することができる。
The novel synthetic swellable silicate produced by carrying out the present invention was determined by X-ray diffraction, differential thermal analysis, infrared absorption spectrum, chemical analysis, cation exchange capacity (C.E.C.), and viscosity. It can be evaluated by measuring characteristics.

本発明の新規の合成膨潤性ケイ酸塩はCu−Kα線を用
いた場合の回折角(2θ)が、(nk)反射の(35、
06)について約61度に現われ、3−八面体型スメク
タイトであることがわかる。X線回折パターンはヘクト
ライトあるいはサボナイトのものに類似しているが、全
般的に他の3−八面体型スメクタイトに比べてピークが
ややブロードとなっている。水溶液中で通常70〜10
0ミリ当量/100gの高い陽イオン交換容量を示し、
あるいは水中において優れた膨潤性および分散性を示し
、ほとんど着色しない水系ゲルを生成する特徴があり、
チクソトロピー的性質を有しているため化粧品、医薬品
、水溶性塗料などの添加剤、固体粒子の懸濁安定剤、チ
クソトロピー付与剤などとして極めて有用である。また
、試薬から合成するため重金属イオンを本質的にほとん
ど含有せず、食酢、ブドウ酒などの濁りとりなど食品分
野での応用にも適している。更に有機物複合体とするこ
とにより親油性粘土として用いることもでき、あるいは
金属多核錯体との層間複合体を形成し、触媒、触媒担体
、吸着剤などとして有用である。
The novel synthetic swellable silicate of the present invention has a diffraction angle (2θ) of (35,
06), it appears at about 61 degrees, and is found to be a 3-octahedral smectite. The X-ray diffraction pattern is similar to that of hectorite or savonite, but the peaks are generally somewhat broader compared to other 3-octahedral smectites. Usually 70-10 in aqueous solution
It exhibits a high cation exchange capacity of 0 meq/100g,
Alternatively, it exhibits excellent swelling and dispersibility in water, and is characterized by producing an aqueous gel with almost no coloration.
Because it has thixotropic properties, it is extremely useful as an additive for cosmetics, pharmaceuticals, water-soluble paints, etc., a suspension stabilizer for solid particles, and a thixotropic agent. In addition, since it is synthesized from reagents, it essentially contains almost no heavy metal ions, making it suitable for applications in the food field, such as removing cloudiness from vinegar and wine. Furthermore, it can be used as a lipophilic clay by forming an organic composite, or by forming an interlayer composite with a metal polynuclear complex, it is useful as a catalyst, catalyst carrier, adsorbent, etc.

次に実施例をあげて説明する。Next, an example will be given and explained.

実施例1 1lのビーカーに水400mlを入れ、3号水ガラス(
SiO228%、Na2O9%、モル比3.22)86
gを溶解し、12規定塩酸溶液25mlを撹拌しながら
一度に加えてケイ酸溶液を得る。次に水100mlに塩
酸マグネシウム六水和物一級試薬(純度98%)55g
を溶解した溶液をケイ酸溶液に加えて調製したケイ酸−
マグネシウム塩均質溶液を2規定水酸化ナトリウム溶液
380ml中に撹拌しながら5分間で滴下する。直ちに
得られた反応沈殿物を濾過し、充分に水洗した後、水酸
化ナトリウム3gを溶解した水溶液20mlを加えてス
ラリー状とし、オートクレーブに移す。41kg/cm
2、250℃で3時間反応させる。冷却後、反応物をと
りだし、80℃で乾燥した後、擂潰機にて粉砕する。
Example 1 Put 400 ml of water into a 1 liter beaker and place it in a No. 3 water glass (
SiO2 28%, Na2O 9%, molar ratio 3.22) 86
g was dissolved, and 25 ml of 12N hydrochloric acid solution was added at once with stirring to obtain a silicic acid solution. Next, 55 g of magnesium hydrochloride hexahydrate first class reagent (98% purity) was added to 100 ml of water.
Silicic acid prepared by adding a solution of silicic acid to a silicic acid solution.
The homogeneous magnesium salt solution is added dropwise to 380 ml of 2N sodium hydroxide solution over 5 minutes with stirring. Immediately, the reaction precipitate obtained is filtered and thoroughly washed with water, and then 20 ml of an aqueous solution containing 3 g of sodium hydroxide is added to form a slurry, and the slurry is transferred to an autoclave. 41kg/cm
2. React at 250°C for 3 hours. After cooling, the reaction product is taken out, dried at 80° C., and then pulverized using a grinder.

本品はa=5.33、b=0.90に相当し陽イオンと
してナトリウムを含み、その陽イオン交換容量は88ミ
リグラム当量/100gである。X線粉末回折図は3−
八面体型スメクタイトであるヘクトライトあるいサポナ
イトに類似したパターンを示すが、全体的に各ピークは
ブロードであり、(35、06)反射ピークのd値は1
.534Åであつた。2%水溶液は一昼夜放置後、チク
ソトロピー性のある固体ゲルを形成した。
This product corresponds to a=5.33 and b=0.90, contains sodium as a cation, and has a cation exchange capacity of 88 milligram equivalents/100 g. The X-ray powder diffraction diagram is 3-
It shows a pattern similar to hectorite or saponite, which are octahedral smectites, but each peak is broad overall, and the d value of the (35,06) reflection peak is 1.
.. It was 534 Å. The 2% aqueous solution formed a solid gel with thixotropic properties after being left for a day and night.

実施例2 実施例1と同様な操作で反応沈殿物を調整する。ただし
使用する塩化マグネシウム六水和物一級試薬(純度98
%)量を67.4gとし、アルカリ溶液は20%アンモ
ニア水350mlを用いる。次に得られた反応沈殿物に
水酸化ナトリウム3gを溶解した水溶液20mlを加え
てスラリー状とし、1l内容積のオートクレーブに移す
。41kg/cm2、250℃で3時間反応させる。冷
却後、反応物をとりだし80℃で乾燥した後、擂潰機に
て粉砕する。
Example 2 A reaction precipitate was prepared in the same manner as in Example 1. However, the magnesium chloride hexahydrate first-class reagent used (purity 98
%) amount is 67.4 g, and 350 ml of 20% aqueous ammonia is used as the alkaline solution. Next, 20 ml of an aqueous solution containing 3 g of sodium hydroxide is added to the obtained reaction precipitate to form a slurry, and the slurry is transferred to an autoclave having an internal volume of 1 liter. React at 41 kg/cm2 and 250°C for 3 hours. After cooling, the reaction product was taken out, dried at 80° C., and then crushed using a grinder.

本品はa=6.55、b=0.80に相当し、陽イオン
してナトリウムを含み、陽イオン交換容量は80ミリグ
ラム当量/100gである。X線粉末回折図は実施例1
の製品のものと同様なバターンを示し、(35、06)
反射ピークのd値は1.528Åであつた。
This product corresponds to a=6.55 and b=0.80, contains sodium as a cation, and has a cation exchange capacity of 80 milligram equivalents/100 g. The X-ray powder diffraction diagram is from Example 1.
It shows a pattern similar to that of the product of (35, 06)
The d value of the reflection peak was 1.528 Å.

本品3gを水97mlに分散した処、チクソトロピー性
の大なる固体ゲルを形成した。
When 3 g of this product was dispersed in 97 ml of water, a large thixotropic solid gel was formed.

実施例1および実施例2で得られた本発明製品の水系分
散液と市販の精製ベントナイトであるクニビアFおよび
オスモスNの各水系分散液の粘度を比較した結果は次の
通りで本発明製品が極めて高い増粘作用をもつているこ
とが認められる。
The results of comparing the viscosity of the aqueous dispersions of the products of the present invention obtained in Examples 1 and 2 with the aqueous dispersions of Kunivia F and Osmos N, which are commercially available purified bentonites, are as follows. It is recognized that it has an extremely high thickening effect.

水系分散液の粘度※(センチポアズ/25℃)※回転粘
度計ピスコテスター、62.5rpmで測定実施例1お
よび実施例2で得られた本発明製品はフツ素を含有しな
いため、食品、化粧品、医薬品などの分野での使用に有
用である。
Viscosity of aqueous dispersion* (centipoise/25°C) *Measured using a rotational viscometer, Pisco Tester, 62.5 rpm Since the products of the present invention obtained in Examples 1 and 2 do not contain fluorine, they can be used in foods, cosmetics, etc. It is useful for use in fields such as medicine.

実施例3 実施例1と同様な操作で反応沈殿物を調整する。ただし
、使用する鉱酸は16規定硝酸23mlとし、、塩化マ
グネシウム六水和物一級試薬(純度98%)量は31g
とし、アルカリ溶液は20%アンモニア水350mlを
使用する。次に得られた反応沈殿物に水酸化ナトリウム
1.47gおよび10%フツ化水素酸20mlを加えて
スラリー状とし、1l内容積のオートクレーブに移す。
Example 3 A reaction precipitate was prepared in the same manner as in Example 1. However, the mineral acid used is 23 ml of 16N nitric acid, and the amount of magnesium chloride hexahydrate first-class reagent (98% purity) is 31 g.
350 ml of 20% ammonia water is used as the alkaline solution. Next, 1.47 g of sodium hydroxide and 20 ml of 10% hydrofluoric acid are added to the obtained reaction precipitate to form a slurry, and the slurry is transferred to an autoclave having an internal volume of 1 liter.

41kg/cm2、250℃で3時間反応させる。冷却
後、反応物をとりだし、80℃で乾燥した後、擂潰機に
て粉砕する。
React at 41 kg/cm2 and 250°C for 3 hours. After cooling, the reaction product is taken out, dried at 80° C., and then pulverized using a grinder.

本品はa=3.34、b=0.58、c=20に相当し
、陽イオンとしてナトリウムを含み、陽イオン交換容量
は78ミリグラム当量/100gを示す。X線粉末回折
図は実施例1の製品のものと同様なパターンを示すが、
(001)反射ピークがややシヤープとなつている。(
35、06)反射ピークのd値は1.516Åであつた
This product corresponds to a = 3.34, b = 0.58, c = 20, contains sodium as a cation, and has a cation exchange capacity of 78 milligram equivalents/100g. The X-ray powder diffraction pattern shows a similar pattern to that of the product of Example 1, but
(001) The reflection peak is slightly sharp. (
35,06) The d value of the reflection peak was 1.516 Å.

本品2gを熱水98mlに分散したところ、きわめてチ
クソトロピー性の大なる固体ゲルを形成した。
When 2 g of this product was dispersed in 98 ml of hot water, a large solid gel with extremely thixotropic properties was formed.

本品の2%水系分散液の各温度における粘度の測定結果
は次の通りで、本発明製品が高温できわめて高い増粘作
用をもっていることが認められ、高温における使用に特
に有用である。
The measurement results of the viscosity of the 2% aqueous dispersion of this product at various temperatures are as follows, and it is recognized that the product of the present invention has an extremely high thickening effect at high temperatures, and is particularly useful for use at high temperatures.

2%水系分散液の粘度※(センチポアズ)※回転粘度計
ピスコテスター、625rpmで測定実施例4 1lのビーカーに4規定硝酸溶液90mlを入れ、3号
水ガラス(SiO228%、Na2O9%、モル比3.
22)86gを溶解した水溶液400mlを撹拌しなが
らゆつくり滴下してケイ酸溶液を得る。このケイ酸溶液
に塩化マグネシウム六水和物一級試薬(純度98%)8
3gを溶解して得たケイ酸−マグネシウム塩均質溶液を
20%アンモニア水350ml中に撹拌しながら3分間
で滴下する。一夜放置熟成した反応沈殿物を実施例1と
同様な操作で原料スラリーを調整する。ただし、加える
試薬は水酸化カリウム21gを溶解した水溶液20ml
とする。原料スラリーをオートクレーブに移し、41k
g/cm2、250℃で3時間反応させる。冷却後、反
応物をとりだし、80℃で乾燥した後、擂潰機にて粉砕
する。
Viscosity of 2% aqueous dispersion * (centipoise) * Measured using rotational viscometer Pisco tester at 625 rpm Example 4 Put 90 ml of 4N nitric acid solution into a 1 liter beaker, and mix with No. 3 water glass (SiO2 28%, Na2O 9%, molar ratio 3). ..
22) 400 ml of an aqueous solution in which 86 g of silicic acid was dissolved was slowly added dropwise while stirring to obtain a silicic acid solution. Add magnesium chloride hexahydrate first class reagent (98% purity) to this silicic acid solution.
A homogeneous solution of silicate-magnesium salt obtained by dissolving 3 g of the silicic acid-magnesium salt was added dropwise to 350 ml of 20% aqueous ammonia over 3 minutes with stirring. A raw material slurry is prepared from the reaction precipitate left to ripen overnight in the same manner as in Example 1. However, the reagent to be added is 20ml of an aqueous solution containing 21g of potassium hydroxide.
shall be. Transfer raw material slurry to autoclave, 41k
g/cm2 and react at 250°C for 3 hours. After cooling, the reaction product is taken out, dried at 80° C., and then pulverized using a grinder.

本品はa=8.05.b=0.74に相当し、陽イオン
としてカリウムを含み、陽イオン交換容量は68ミリグ
ラム当量/100gを示す。X線粉末回折図は実施例1
の製品に類似したパターンを示すが、全体的に各ピーク
は更にブロードであり、特に(001)反射ピークはは
つきりしない。(35、06)反射ピークのd値は1.
539Åであつた。本品4gを熱水96mlに分散した
ところ、きわめてチクソトロピー性の大なる固体ゲルを
形成した。
This product has a=8.05. It corresponds to b=0.74, contains potassium as a cation, and has a cation exchange capacity of 68 milliequivalents/100 g. The X-ray powder diffraction diagram is from Example 1.
It shows a pattern similar to that of the product, but each peak is broader overall, and the (001) reflection peak in particular is not prominent. (35,06) The d value of the reflection peak is 1.
It was 539 Å. When 4 g of this product was dispersed in 96 ml of hot water, a large solid gel with extremely thixotropic properties was formed.

特許出願人 工業技術院長 石 坂 誠 一指定代理人
 工業技術院東北工業技術試験所長和泉 学
Patent applicant Seiichi Ishizaka, Director of the Agency of Industrial Science and Technology Designated agent Manabu Izumi, Director of Tohoku Industrial Technology Testing Institute, Agency of Industrial Science and Technology

Claims (1)

【特許請求の範囲】 1)一般式 (式中のa、b、cおよびyの値は0<a<10、0<
b≦1、0≦c≦2/3a+bおよび1≦y≦2とし、
Mはアルカリ金属イオン、アルカリ土類金属イオン、ア
ンモニウムイオンおよびアミンからなる群から選んだ少
くとも1個の陽イオンである)で表される合成膨潤性ケ
イ酸塩。 2)ケイ酸とマグネシウム塩の均質混合溶液をアルカリ
溶液で沈殿させ、濾過、水洗により副生溶解質を除去し
た後、一価あるいは二価の陽イオンおよび要すればフツ
素イオンを添加し、100℃ないし350℃の条件下で
水熱反応を行い、次いで乾燥した後粉砕することを特徴
とする3−八面体型スメクタイトに類似した構造、すな
わち一般式 (式中のa、b、cおよびyの値は0<a<10、0<
b≦1、0<c≦2/3+bおよび1/≦y≦2とし、
Mはアルカリ金属イオン、アルカリ土類金属イオン、ア
ンモニウムイオンおよびアミンからなる群から選んだ少
くとも1個の陽イオンである)で示される合成膨潤性ケ
イ酸塩の製造方法。
[Claims] 1) General formula (in the formula, the values of a, b, c and y are 0<a<10, 0<
b≦1, 0≦c≦2/3a+b and 1≦y≦2,
M is at least one cation selected from the group consisting of alkali metal ions, alkaline earth metal ions, ammonium ions and amines). 2) A homogeneous mixed solution of silicic acid and magnesium salt is precipitated with an alkaline solution, by-product solutes are removed by filtration and washing with water, and then monovalent or divalent cations and, if necessary, fluorine ions are added, It has a structure similar to 3-octahedral smectite, which is characterized by carrying out a hydrothermal reaction under conditions of 100 to 350 °C, then drying and pulverizing. The value of y is 0<a<10, 0<
b≦1, 0<c≦2/3+b and 1/≦y≦2,
M is at least one cation selected from the group consisting of alkali metal ions, alkaline earth metal ions, ammonium ions, and amines.
JP13009382A 1982-07-26 1982-07-26 Synthetic swellable silicate and its manufacture Granted JPS5921517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13009382A JPS5921517A (en) 1982-07-26 1982-07-26 Synthetic swellable silicate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13009382A JPS5921517A (en) 1982-07-26 1982-07-26 Synthetic swellable silicate and its manufacture

Publications (2)

Publication Number Publication Date
JPS5921517A true JPS5921517A (en) 1984-02-03
JPS636485B2 JPS636485B2 (en) 1988-02-10

Family

ID=15025794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13009382A Granted JPS5921517A (en) 1982-07-26 1982-07-26 Synthetic swellable silicate and its manufacture

Country Status (1)

Country Link
JP (1) JPS5921517A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185811A (en) * 1987-01-26 1988-08-01 Agency Of Ind Science & Technol Synthetic porous material and production thereof
JPS63190705A (en) * 1987-02-02 1988-08-08 Mizusawa Ind Chem Ltd Synthetic stevensite and its production
JPH11292530A (en) * 1998-04-09 1999-10-26 Agency Of Ind Science & Technol Synthetic iron-containing swellable silicate and its production
US9728918B2 (en) 2013-05-22 2017-08-08 Knuerr Gmbh Distribution strip

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0423388A (en) * 1990-05-14 1992-01-27 Matsushita Electric Ind Co Ltd Printed board
JP5435632B2 (en) * 2009-09-02 2014-03-05 独立行政法人産業技術総合研究所 Method for producing lithium-exchanged clay by exchanging interlayer ions of clay with lithium ions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124598A (en) * 1974-08-23 1976-02-27 Nobutoshi Daimon Unmo oyobi sonokendakutaino seizohoho
JPS58185431A (en) * 1982-04-22 1983-10-29 Agency Of Ind Science & Technol Synthetic method of silicate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124598A (en) * 1974-08-23 1976-02-27 Nobutoshi Daimon Unmo oyobi sonokendakutaino seizohoho
JPS58185431A (en) * 1982-04-22 1983-10-29 Agency Of Ind Science & Technol Synthetic method of silicate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185811A (en) * 1987-01-26 1988-08-01 Agency Of Ind Science & Technol Synthetic porous material and production thereof
JPS63190705A (en) * 1987-02-02 1988-08-08 Mizusawa Ind Chem Ltd Synthetic stevensite and its production
JPH0639323B2 (en) * 1987-02-02 1994-05-25 水澤化学工業株式会社 Synthetic stevensite and its manufacturing method
JPH11292530A (en) * 1998-04-09 1999-10-26 Agency Of Ind Science & Technol Synthetic iron-containing swellable silicate and its production
US9728918B2 (en) 2013-05-22 2017-08-08 Knuerr Gmbh Distribution strip

Also Published As

Publication number Publication date
JPS636485B2 (en) 1988-02-10

Similar Documents

Publication Publication Date Title
CA1125991A (en) Method of synthesizing zincosilicate or stannosilicate or titanosilicate material
CN106745013A (en) A kind of lithium magnesium silicate compound and preparation method thereof
KR102070380B1 (en) Method for producing synthetic hectorite at low temperature and atmospheric pressure
JPS5921517A (en) Synthetic swellable silicate and its manufacture
JP2636178B2 (en) Synthetic mixed-layer silicate and method for producing the same
JPH0569769B2 (en)
JP2003238819A (en) Heat-resistant filler
JPH0662290B2 (en) Method for producing swellable silicate
JPS6112848B2 (en)
JP2667978B2 (en) Synthetic porous body and method for producing the same
JPS58181718A (en) Novel synthetic silicate and its manufacture
JPH07187656A (en) New clay-organic composite
JP4976671B2 (en) Dispersion containing organoclay complex and thickener using organoclay complex
JP3007954B2 (en) Mixed layer silicate and method for producing the same
JP3998748B2 (en) Synthetic layered silicate
EP3395762B1 (en) Method for producing synthetic hectorite at low temperature and under atmospheric pressure
JPH0569770B2 (en)
JP2814216B2 (en) Method for producing aluminosilicate
JP3314184B2 (en) Method for producing swellable silicate
JPH01212212A (en) Production of smectite interlayer composite material
JP4000377B2 (en) Organoclay composite and method for producing the same
JPH0248411A (en) Production of swelling synthetic saponite-type clay mineral
JP7416441B2 (en) Hydrotalcite compounds and photoactive catalysts
JP4584561B2 (en) Organoclay complex
JPH09235116A (en) New phyllosilicate and production thereof